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Abstract

This paper deals with the reduced-order H®° fil-
tering problem for nonlinear continuous-time systems
with sampled measurements. Using the concepts of
dissipativity and differential game, sufficient condi-
tions are derived for the existence of filters that satisfy
a specified H* performance bound. These conditions
are expressed in terms of the solution of a differential
Hamilton-Jacobi inequality with jumps. This differen-
tial Hamilton-Jacobi inequality is exactly the one used
in the construction of full-order H™ filters. When
these conditions hold, state-space formulae are also
given for such filters.

I. INTRODUCTION

The celebrated Kalman filter is the optimal state es-
timator that minimizes either the average root-mean-
square power of the estimation error or the variance of
the terminal state estimation error, where the signal
generating system is assumed to be driven by a white
noise process and the measured output is also assumed
to be corrupted by a white noise process, both with
known statistical properties, while the purpose of an
H® filter is to ensure that the L?-energy gain from
the disturbance, which is assumed to be unknown de-
terministic but of finite energy, to the estimation er-
ror is less than a prespecified level. In contrast to the
traditional Kalman filter, an H* filter has some prac-
tical advantages. First, it does not require knowledge
of the statistical properties of the noise; instead, the
only requirement for the noise is that it has bounded
energy. Consequently, H™ filters are less sensitive to

the noise uncertainty. Second, it is more robust than
Kalman filter to the unmodeled uncertainties of signal
systems.

In this paper, we address the problem of filter-
ing for nonlinear systems with sampled measurements
in an H™ setting. This problem is to estimate the
states of a continuous-time system using only sam-
pled measurements at discrete instants of time. Mo-
tivation of studying this problem comes from the fact
that in many practical situations the underlying plant
is continuous-time while the measurements are usu-
ally taken only at discrete-time instants, and virtually
all physical systems are nonlinear in nature. More-
over, such systems are important in practice because
of the widespread use of digital computers in imple-
mentation. Typically, sampled-data filtering is de-
signed either by discretizing an analog design by, e.g.,
the bilinear transformation, or directly through their
discrete-time behavior by the use of the modified Z-
transform. However, many performances, such as dis-
turbance and noise attenuation, overshoot, require a
deeper insight into the intersampling behavior. The
H*® performance criterion is defined directly in terms
of the continuous-time signals and thus intersampling
behavior is taken into account. Our goal is to de-
sign a filter that achieves a given bound on the ratio
between the L2?-energy of a given function of the es-
timation error and the L%-energy of the disturbances
that consist of the continuous-time process noise and
the discrete-time measurement noise.

The H® filtering problem was first addressed by
Elsayed and Grimble [4] and Grimble [7] for the scalar
case and later generalized by Grimble et al.[8] to the
multivariable case. A game theoretic approach has
been given by Yaesh and Shaked [15] and a state-space
approach has been offered by Nagpal and Khargoneker



[12] for the linear continuous-time system, and Sun et
al.[14] for the linear sampled-data case.

On the other hand, using a game theoretic ap-
proach, the nonlinear H® filtering problems have
been extensively studied by Berman and Shaked [1],
Fridman and Shaked [5], and Yung et al.[19] for
continuous-time systems, and Li et al.[11] for sampled-
data systems.

The filters obtained from the aforementioned pa-
pers have a state dimension greater than or equal to
that of the system model which is built from the phys-
ical plant and some of its weighting functions. This
limits the use of full-order filters in practical applica-
tions, since a high order filter usually results in high
implementation cost and tends to be numerically ill
conditioned. Reduced-order filters, i.e., filters of or-
der lower than the order of system, are often desirable
to reduce the complexity and computational burden
of the real-time filtering process. For this reason, the
reduced-order filter design is very important and nec-
essary, especially when fast data processing is desired
or when the estimation of small number of state vari-
ables are actually required.

Recently, a number of papers have dealt with
reduced-order (or fixed-order) H™ filtering problem.
Utilizing Bounded Real Lemma approach, Bernstein
et al.[2], Bettayeb et al.[3], Hsu et al.[9], Kim et
al.[10], and Yu et al.[17] tackled the reduced-order
H™ filtering problem for the continuous-time time-
invariant systems. Yu and Hsu [16], using Bounded
Real Lemma method, settled the reduced-order H®°
filtering problem for the continuous-time time-varying
systems. Grigoriadis et al.[6] have also addressed
this filtering problem for the continuous- and discrete-
time time-invariant systems by linear matrix inequal-
ity (LMI) method. In addition, Rawson et al.[13] and
Yu and Hsu [18] have solved this filtering problem for
the discrete-time time-varying systems. In these pa-
pers, the problem was studied only for linear systems.
To the best of our knowledge, no discussion has yet
been given on how to design reduced-order H™ filters
for nonlinear systems.

The purpose of this study is to continue this line of
research to address the problem of H™ filtering de-
sign for nonlinear sampled-data systems [11]. By ex-
tending the technique developed by Yung and Wang
[20] for nonlinear H® controller reduction, we present
sufficient conditions for the existence of an H® filter
with a state dimension less than that of the plant.
The conditions obtained are expressed in terms of the
solution to a Hamilton-Jacobi inequality in only n 41
independent variables. The Hamilton-Jacobi inequal-
ity is exactly the one used in the construction of the
full-order H® filters obtained in [11].

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a time-invariant nonlinear sampled-data
system described by the dynamic equations

2(t) = f(@)+ki(z)w(t), (1)
y(kT) hi(z(ET)) + v(KT), k=0,1,2, ..., (2)

where z represents the state defined on a neighbor-
hood of the origin in IR?, and w € IR™ represents
a continuous-time process noise which is assumed to
be a member of L?[0,[,IR™] := {w : ||w||?. :=
fOF |[w(t)]|?dt < oo for afixed ' > 0}. Here ||-|| denotes
the Euclidean norm. Eq.(2) defines the discrete-time
measured variable y € IR which is available at sam-
pling instants k7" with the sampling period T, and
v € IRP represents measurement noise which is as-
sumed to be a member of (%[0, T, IRF] := {v : [Jv]|% =
Z,EI;/OTJ |[v(kT)||* < oo for a fixed ' > 0}. Here |e]
denotes the integer part of e € IR. We assume that f,
k1, and h are all smooth functions. We also assume
that f(0) =0, and h1(0) = 0.

Our task is to design a causal filter using the output
measurement y(kT) to estimate a function of state

z(t) = ha(x(t)), (3)
where hy(z) is a smooth function in « with h2(0) = 0.
Suppose that Z(¢) is the estimate of z(t), and that the
estimation error is

g(t) = z(t) — £(¢). (4)
The objective of H™ filtering design is to ensure that
the L? gain from the disturbances consisting of the ex-
ogenous input w and the measurement noise v(k7) to
the estimation error £(¢) is bounded by a prespecified
valve 7, namely

r r [T/T]
/0 ()Pt < +* (N + / le(t)]2de+ 3 (kD))

(5)
for some positive function N, which is a function of
initial states, see below for details. For clarity, we
denote N = N; for full-order filter case and N = NV,
for reduced-order filter case.

The following result quoted from [11] provides a full-
order H™ filter of the form

B(1) = [E0). L# KT,

2(KT™) 4+ g(&(KT7))(y(kT) — ha(2(KT7)))
(6

with & € IR", that solves the problem in question.

Proposition 1 : Suppose that there exists a posi-
tive definite function Q(x,t) with Q(x(0) — #(0),0) =
2Ny (2(0), #(0)), locally defined on Wy x [0,1] with
Uy a neighborhood of the origin in IR™, which is T-
periodic, piecewise differentiable with respect to t, and
C3 with respect to x, and is such that the Hessian
matriz Qg5 (0,T) is nonsingular,

g7 (0)Q.2 (0, T)g(0) — 24%T < 0, (7)

and for all t € [0,T) the function Kq(x,t) is negative
definite near x = 0 with nonsingular Hessian matriz
at x = 0, where the function Ky (z,t) is piecewise con-
tinuous defined as

Ki(et) = Qule,t) + Qule, ) f(x) + hT (2)ha(x)
+$Qx<x,t>k1<x>k1<x>TQ£<x,t>, (8)



for 0 <t < T, and
= Q(,T) = Q(z, T7) = 4*hi (2)ha(x). (9)

Then the H® nonlinear sampled-data filtering prob-
lem is solved by the full-order filter (6) with

2(t) = ha(2(t)),
and filter gain g(x) satisfying

Qu(x, T)g(x) = 272/1?(1‘).

1{71 (l‘, T)

III. SoLuTiON OoF REDUCED-ORDER FILTERING
PROBLEM

The reduced-order H™ filtering problem considered
in this paper involves finding a state estimator of the
form

o = FE), U#RT
ST) = E(KT™) + g(y(kT) — ha (€(T 7)),
) = ha(),

(10)
where £ € IR" (r < n) is defined on a neighborhood of
the origin, with £(0) = 0, h1(0) = 0, and h5(0) = 0,
such that the estimation error (4) against the discrep-
ancy between x and ¢ satisfies the dissipativity in-
equality (5).

More precisely, we seek a state estimator (10) such
that there exists a neighborhood 1T of (z,&) = (0,0),
and for all (x(0),£(0)) € II and for each input w(:) €
L2[0,T,IR™] and v(-) € [?[0,T,IR"], the trajectory
Xe(t) :=col(x(t),£(1)) of the augmented system

Xe = F(X°)+G(X)w(t), t# kT
Xe(KT) = F5(X¢(EKT™)) + Ga(X¢(KT™))o(kT),
11
with ( )
e [ J@)
Fxe = _ﬂ@]’
B = | ey sy () - ) |-
6y = | ],
and

remains in I for all ¢ € [0,T], and the dissipativity
inequality (5) is satisfied
A preliminary lemma will be needed in the sequel.

Lemma 2 : Suppose that there exists a smooth func-
tion ¢ : IR® x IR — IR", locally defined on a neigh-
borhood of the origin (x,t) = (0,0) in IR™ x IR, with
#(0,1) = 0 and %(O,t)(%)T(O,t) = 1. For a given
¥ > 0 and the augmented system (11), a sufficient
condition for G(&) to solve the H filtering prob-
lem is that there exists a function V(X¢,t), locally

defined on ¥ x [0,T] with ¥ a neighborhood of the
origin in IR"T", C? with respect to X¢, T-periodic
(i.e., V(Xe,t) = V(Xe,t +T) for all t), and piece-
wise differentiable with respect to t, which vanishes at
X¢ =col(x,¢(x,t)) for all t € [0,T], is positive else-
where, satisfies

V(X?(0),0) = 4*N; (2(0),£(0)) (12)
and is such that the following conditions are satisfied.
(a) The quantity

GL(0)Vxexe(0,T)Gq(0) — 2421 < 0. (13)

(b) The function

JNX) = (ha(x) = ha(€)T (ha(x) — ha(€))
1 e T e T
+ 57 Ve GG (XA

+Vi + Vx Fe(X°) (14)

vanishes at X¢ = col(x, ¢(x,1)) and is negative

elsewhere for allt € [0,T], witht # kT.

(¢) The function
JiX) = V{FFXT)+ Ga(X)o", T)

—V(Xe,T7) =72 To*  (15)

is less than or equal to zero, where v* is the
unique solution with v*(0) = 0 of the implicit

equation
oV
Far le=Fr(xe)taatxeyy Ga(X9) = 297" = 0.
(16)

Proof. We first observe that the problem in question
can be cast as a two players, zero sum, differential
game with a value functional

. 2 2
09, (w,v)) = ellzz = 7* [V (2(0),£(0)) + |||z
2
+[[vll;],
where || - ||i2 denotes the L?-energy on [0,I], || - ||l22

denotes the [?-energy on [0,I], w and v are the max-
imizers, and ¢ is the minimizer. Associated with this
differential game setup, we define two Hamiltonian
function M; : IRt x IR™ x IR — IR,

Vi 4 Ve (F9(X°) + G(X)w(t))
o2 (ut) + €T (e(t), (17)

where t £ kT, and My, : IR*" x IRP — IR,

My (X w,t) =

Mig(X%v) & V(F§(X®) 4 Ga(X)v,T)

—V(X,T7) —~*"v,  (18)

fort = kT. Then it can be shown that M;(X¢,w,t) <
0 and My,4(X¢ v) < 0. To see this, observe that M
can be rewritten as

My (X® w,t) = JE(XC, 1) — ¥?|lw — w*||?,



where w* := %GT(XS)VT is the worst distur-
bance. Since Je( €,t) < 0 by hypothesis, we have
Mi(X¢ w,t) < 0. Also, a simple calculation shows
that

OMy4(X%,0) OV .
% - Ja |O‘:F§(Xe)+Gd(Xe)v Gd(X )—Q’yZUT
(19)
and
BZM Xe’ v BZV
1(;152 ) - Gg da? |°‘:F§(Xe)+Gd(Xe)U Gd_Q'YZI-

(20)
Since the Hessian matrix is nonsingular at (X°,v) =
(0,0) by hypothesis, there exists a unique solution
v*(X°?), defined on a neighborhood of X¢ = 0, sat-
isfying -
IMy4(X°,v)
- |v:v*: 07
dv

and
V" (X%) [xemo= 0,

provided by the implicit function theorem. Using the
Taylor expansion, M1, can be expressed as

My (X<, v) —IIU—U 17, + Ol —v* ),

=J3(X°) +

where r11 := %(;XU) |(Xe v)=(0,0) is negatlve defi-

nite. Since J§ < 0 by hypothesis, we have M7, < 0.

Combination of (17) and (18) and integration on
[0, T'] with the initial condition (12) give

11

T

V(X®(T),T) = 5" Ny (2(0),£(0)) + /0 lle(0)][*dt

[r/r]

= | [ et e 3 G| <o

Since V(X©(t),t) > 0, we obtain (5). This completes
the proof. O

The filter given above is a nonlinear system with
finite jumps at discrete instants of time. At the sam-
pling instants, the measurement y(kT) is used to up-
date the estimate with filter gain g, and the function
Jg is only available at sampling instant k7. The com-
bination (14) and (15) can be regarded as a differential
Hamiltonian function with jumps.

The conditions in Lemma 2 can be further simpli-
fied by providing an alternative set of sufficient con-
ditions for the solution of this H* filtering problem,
which involves a new Hamilton Jacobi inequality hav-
ing fewer independent variables, without involving the
estimation gain §(£). Also, the ”jump condition” is
explicitly given. This is summarized in the following
statement.

Theorem 3 : Suppose that the hypotheses of Propo-
sition 1 hold and suppose that there exists a smooth
function ¢ : IR? x IR — IR", locally defined on a neigh-
borhood of the origin x = 0 in IR", with ¢(0,t) = 0
and %(O,t)(%)T(O,t) = I. Suppose also that there

erists a smooth positive definite function Q(f,t), lo-

cally defined on Uy x [0,T] with ¥2 a neighborhood of

the origin in IR", which is T-periodic, piecewise dif-

ferentiable with respect to t, C° with respect to &, and
. ) ) ) )

satisfies 658(0 t) ¢(0 1) = ¢(0 t) M?(O t). Then,

if

N:(2(0),€(0)) = Ny (2(0), 2(0)),

and the following conditions are satisfied:

hi(é(z,t),t) = hy(z,t), (21)
ho(é(z,t),t) = ho(e,1), (22)
Fo(z,t),t) = ou(w,t)f(x,t) + du(w,1), (23)
g(o(x,t),t) = ¢olx,t)g(w, 1), (24)

then the nonlinear sampled-data H™ reduced-order fil-
tering problem is solved by the filter (10).

Proof. Clearly, V(X©,t) = Q(f — ¢(x,1),1) is posi-
tive definite with respect to (£ — ¢(x,t)), T-periodic,
piecewise differentiable with respect to t, and C? with
respect to (£ — ¢(z,t)). Then we make a change of

variable R
€:€_¢(xat)a (25)

where é € IR™ and ¢ € IR" are defined on a neigh-
borhood of the origin. Thus, equation (13) can be
rewritten as

37 (0)Qge (0, T)3(0) — 2471 < 0.

Applying (24) to (26), it can be easily checked that
(26) is the same as (7) of Proposition 1, thus the
condition (a) of Lemma 2 holds.

Furthermore, let

(26)

Jl(l‘,f,t) = Je(Xe’t) |§:€+¢(x,t),v(Xe,t):Q(f,t)

for all ¢ # 0. It is straightforward to verify that

oJ
J1 |£:0: 0, a—g|é:0 =0,
and
82J1 1 - T T A
852 = WQ{{(Oat)qu(oat)kl(o)kl (0)¢x (Oat)Qgg(Oat)
+féT (07 t)Qég(O, t) + Qéé(oa t)fg(oa t)
+2/31§T(o,t)ﬁlg(o,t) (27)
t (J:,é’) = (0,0). Moreover, substituting (21)-(24)
into (27) gets
0%J, T
+2h1 (0)h1,(0))67 (0,1)
+#Qm(0,t)kl(O)le(O)Qm(O,t). (28)
A routine calculation shows that
2y (x, € PK
Mkzow:o = 6.(0,1) %h:o o7 (0,1).

dE?



By Taylor expansion theorem around (J:,é’) = (0,0),
we have

2
I ét) = %éT%gmm
1, *K .
= S€7(6:(0,6) 5tomo 0T (0,0
+h.o.t.,

where 7h.o.t” means higher order terms and ¢ # 0.
Since % |s=0 is negative definite for all ¢ € [0,T]
by hypothesis, it is concluded that for all ¢ € [0, T] the
function J¢(X¢,t) vanishes at ¢(x,t) = £ and is nega-
tive elsewhere. Thus, the condition (b) of Lemma 2
holds.

At the jump points ¢ = kT, a routine manipulation
shows that the worst disturbance is equal to

by setting the filter gain as
gT (O)Qgé(oa T) = 272i7'15(0)'

A similar argument leads to

e 975
Jd|g:0:07 aé |£:0:07
and
D5 0e(0.1) = Qr(0,77) — 242027 (0)02 (0
852 —Qgg(a )_Qgg(a ) — 7Y ()Ug()

at (l‘,é) = (0,0). Using Taylor expansion again, it
can be shown that

92K, (x,T)

THX) = .

L7 (6.00,7)
+h.o.t..

Thus, the condition (c¢) of Lemma 2 is satisfied. This
completes the proof. O

IV. (CoNCLUSIONS

The reduced-order H™ filtering problem for non-
linear sampled-data systems has been addressed. It
has been shown that reduced-order H® filters can
be built from the solution of a standard differential
Hamilton-Jacobi inequality with jumps, together with
some auxiliary equations.
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