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Abstract

The problem of state feedback sampled-data stabilization
of nonlinear systems is considered under the ”low measure-
ment rate” constraint and in presence of (not necessarily
small) time-delay in the measurement channel. A multi-
rate control scheme is proposed which utilizes a numerical
integration scheme to approximately predict the current
state from the delayed measurements and to reconstruct
state trajectories between samples. For both the controller
emulation approach and the approach based on approxi-
mate discrete-time model of the system, we show that un-
der the standard assumptions borrowed from [8, 10] the
closed-loop multirate sampled data system is asymptoti-
cally stable in the semiglobal practical sense. An illustra-
tive example of sampled-data control of VTOL aircraft is
presented that demonstrates the advantages of the pro-
posed scheme.

1 Introduction

Since modern control systems usually employ digital
technology for controller implementation, the study of
sampled-data control systems [2, 1] becomes an impor-
tant part of control science. In the recent years, es-
sential progress has been made in the area of nonlinear
sampled-data control systems (see [7], and the bibliogra-
phy therein). In particular, in the survey paper [7] two
different approaches to sampled-data controller design for
nonlinear systems were described. The first one, so-called
controller emulation, involves digital implementation of
a continuous-time stabilizing control law at a sufficiently
high sampling rate. The second approach consists of dis-
cretizing the plant model and then proceed to design a
discrete-time control law. The main difficulty of the sec-
ond approach is that an exact discrete-time model of a
continuous-time nonlinear system is usually not available.

This problem has been successfully overcome in [8] by
providing a set of sufficient conditions that ensure that
a controller which stabilizes an approximate model of the
system, will also stabilize the exact discrete-time model.
Note that both of these approaches are essentially single-
rate, i.e. sampling rates of the input and the measurement
channels are assumed to be equal.

In practical applications, however, hardware restrictions
on input and measurement sampling rates can be essen-
tially different. For example, the D/A converters are gen-
erally faster than the A/D converters, so the input sam-
pling rate can be made higher than the measurement one.
Moreover, in some important cases, for instance, in vi-
sual servo control systems [6, 3], the sensor channel con-
tains complex image processing blocks which cause essen-
tial slowing down of the measurement sampling rate to-
gether with delays in the measurement process. Note that,
even in the absence of the measurement delay, none of the
mentioned approaches directly leads to controllers that
can successfully operate under the essential restrictions
on measurement sampling rate. Indeed, for the controller
emulation approach, the closed-loop sampled data system
inherits the stability properties of the corresponding con-
tinuous time system only if sampling rate is sufficiently
fast. On the other hand, for a discrete-time model of a
continuous-time nonlinear system with sufficiently large
sampling period a stabilizing controller may not exist or
can lead to strong deterioration of control performance.

In this paper another scenario is considered, namely, the
use of a multirate control scheme. We address the problem
of sampled-data stabilization of nonlinear systems under
the “low measurement rate” constraint and in the presence
of delay in the measurement channel. The idea behind
our approach is as follows. We propose a multirate con-
troller that contains a “fast” numerical integration scheme
that represents an approximate discrete-time model of the
plant and allows us to reconstruct approximately state
trajectories between samples. The state of the model is
updated periodically using the “low-rate delayed” mea-



surements of the actual state. The control law, in turn,
depends on the state of the model rather than the actual
state of the plant. We show that, using this scheme, one
can successfully overcome the difficulties that arise if the
measurement sampling rate is low and/or time delay exists
in the measurement channel. More precisely, we address
the design of multirate controllers based on the controller
emulation approach as well as on the approach that uti-
lizes the properties of approximate discrete-time models.
In both cases we show that under the standard assump-
tions borrowed from [8, 10] , for any measurement delay
and for an arbitrary slow output measurement sampling
rate the proposed multirate scheme makes the system as-
ymptotically stable in the semiglobal practical sense.

The paper is organized as follows. In section 2, the general
statement of the problem is presented. In section 3, we
address the multirate scheme based on the controller em-
ulation approach, while in section 4 the multirate scheme
based on the properties of approximate discrete-time mod-
els is considered. An illustrative example of sampled-data
hovering control of vertical take-off and landing (VTOL)
aircraft is presented in section 5. Some concluding re-
marks are given in section 6.

The following standard notations and definitions will be
used throughout the paper. Denote R+ := [0, +∞). A
continuous function α: R+ → R+ is said to belong to class
K (α ∈ K) if α(0) = 0 and it is strictly increasing. A
continuous function β: R+ × R+ → R+ is said to belong
to classKL (β ∈ KL), if for each fixed t ≥ 0, β(·, t) belongs
to class K and for each fixed s ≥ 0, β(s, t) decreases to
zero as t → +∞. Also, a closed ball of radius ∆ ≥ 0
centered at 0 in Rn will be denoted by B̄n (∆).

2 Statement of the problem

Consider a nonlinear system of the form

ẋ = f(x, u), (1)

where x ∈ Rn is a state, u ∈ Rm is input, and the right-
hand side f(·, ·) is assumed to be locally Lipschitz in both
arguments.

In sampled-data control systems, a continuous-time plant
is connected with digital controller via the analog-discrete
(A/D) and discrete-analog (D/A) converters. In this
paper we will consider a practically important case
when essential hardware restrictions are imposed on the
”measurement-A/D conversion” process. More precisely,
we address a problem of multi-rate sampled data state
feedback stabilization of the system (1) under ”low mea-
surement rate” constraint and in the presence of delay in

the measurement channel, described as follows. We as-
sume that the minimal output sampling period T ∗

m > 0 as
well as the minimal measurement delay τ∗ ≥ 0 are given,
so that the ”measurement-A/D conversion” process is de-
scribed by the following ”ideal sampler + delay” equation

y(i) := x(iTm − τ), for each i ∈ {0, 1, . . .} , (2)

where the measurement sampling period Tm and the de-
lay τ can be chosen by designer but must satisfy the con-
straints

Tm ≥ T ∗
m,

τ ≥ τ∗.
(3)

Informally speaking, we address the case when the con-
stants T ∗

m, τ∗ are large enough, i.e. the measurement sam-
pling rate is low, and the measurement delay is large. In
this case, the single rate design methods presented in [7]
may lead to unstable closed-loop sampled data system (see
example in section 5).

Let the digital controller be described by difference equa-
tions of the form

xc(k + 1) = F (xc(k), xc(k − 1), . . . , xc(k − qc),
y(i), y(i − 1), . . . y(i − q)) ,

(4)

v(j) = G (xc(k), xc(k − 1), . . . , xc(k − qc),
y(i), y(i − 1), . . . y(i − q))

(5)

where q, qc are some nonnegative integers.

Finally, the D/A converter is described as a zero-order
hold of the form

u(t) = v(j) for t ∈ [jTi, (j + 1)Ti) ,

where Ti > 0 is input sampling period. In the following,
the input sampling period Ti > 0 is assumed either to
be arbitrarily chosen by designer (section 3), or fixed but
such that the single-rate discrete-time model of the system
corresponding to sampling period Ti satisfies some set of
assumptions (section 4).

We endeavour to solve the following problem: for any
given minimal measurement sampling period T ∗

m > 0 and
any given minimal measurement delay τ∗ > 0 find a con-
troller of the form (4),(5), which makes (possibly after
choosing Ti > 0 appropriately small) the closed loop sys-
tem asymptotically stable with the prescribed (finite) re-
striction and the prescribed (nonzero) offset.

3 Multirate design based on continuous-time

model

In this section we consider a multi-rate control scheme
which is based on the knowledge of the solution of



continuous-time stabilization problem for the system (1).
More precisely, we address the problem formulated in the
previous section under the following two assumptions.

Assumption 1. There exists a state feedback locally Lip-
schitz control law γ: Rn → Rm such that the equilibrium
x = 0 of the closed-loop continuous-time system

ẋ = f (x, γ(x)) (6)

is globally asymptotically stable.

Assumption 2. The value of input sampling period Ti > 0
can be assigned arbitrarily.

Now, given h > 0, let us denote

fh(x, u) := x + hf(x, u). (7)

Thus,
x(k + 1) = fh (x(k), u(k)) (8)

is the discrete-time Euler approximation of the
continuous-time system (1) corresponding to inte-
gration period h > 0. In the following, we will utilize the
approximation (8) in the construction of our multirate
controller. The value of integration period h > 0 will
always be taken from a set H defined as follows. First,
without loss of generality we assume that the measure-
ment sampling period Tm and the delay τ , which satisfy
the constraints (3), are chosen such that

τ

Tm
=

p1

p2
,

for some integers p1 ≥ 0, p2 > 0. Now, let the set H be
defined as follows

H =
{

Tm

khp2
, kh = 1, 2, . . .

}
. (9)

Note that, if h ∈ H, then Tm, τ , and h are related as
follows

Tm = khp2h, τ = khp1h,

where kh ∈ {1, 2, . . .}. Now, let us denote the sequence of
“low-rate” delayed measurements as follows

y(j) = x(jTm − τ) = x (hkh(jp2 − p1)) . (10)

We propose a digital controller of the following structure

xc(i + 1)

=
{

fh (x̃(i), γ (xc(i))) for i = jkhp2 − 1, j = 0, 1, . . . ,

fh (xc(i), γ (xc(i))) otherwise,
(11)

v(i) = γ (xc(i)) , (12)

where x̃(i) is the Euler approximate estimate of the state
x(ih) that is calculated for each i = jkhp2−1, j = 0, 1, . . .

using measurements (10) by the formula

x̃(i) = fh (. . . (fh (y(j), γ (xc(i + 1 − khp1))) ,

γ (xc(i + 2 − khp1))) , . . . , γ (xc(i − 1))) .
(13)

Finally, using assumption 2, we set Ti = h, so that

u(t) = v(i) for t ∈ [iTi, (i + 1)Ti) . (14)

Remark 1. The main idea behind the proposed controller
(11), (12) is to use Euler approximate discrete-time model
of a continuous time system to obtain an approximation of
the system’s current state based on the delayed low-rate
measurements. Note that, due to measurement delay τ =
khp1h, each y(j) = x (hkh(jp2 − p1)) becomes available to
the controller at the (jp2kh)-th step.

To formulate our result, we need to identify a state of
the closed loop sampled-data system (1), (10), (11), (12),
(14). In general, a closed-loop sampled data system with
delay in the measurement channel can be described by
functional differential equations [10]. A state of the closed
loop sampled data system for each t ∈ [ih, (i + 1)h) can
be defined as

x(t) :=
{

[x(·)]tt−τ , [xc(·)]ii−khp1

}
, (15)

where [x(·)]ba (a ≤ b) is a piece of continuous-time tra-
jectory x(t) restricted on interval [a, b], while [xc(·)]i2i1
(i1 ≤ i2) is a sequence {xc(i1), xc(i1 + 1), . . . , xc(i2)}.
Thus, the state x(t) consists of pieces of trajectories
of the continuous-time system (1) and the discrete-time
controller (11). Let us define a norm of x(t), where
t ∈ [ih, (i + 1)h), as follows

‖x(t)‖ := max
{

max
s∈[t−τ,t]

|x(t)| , max
j∈{i−khp1,i}

|xc(j)|
}

.

(16)

The main result of this section is presented in the following
theorem.

Theorem 1. Consider the system (1), (10), (11), (12), (14).
Under Assumptions 1,2 there exists β ∈ KL such that the
following holds. Given Tm ≥ T ∗

m, τ > τ∗, ∆ > 0, δ > 0,
there exists hmax > 0 such that if h ∈ H ∩ (0, hmax], then
all trajectories with initial conditions ‖x(0)‖ ≤ ∆ satisfy

|x(t)| ≤ β (|x(0)| , t) + δ for all t ≥ 0,

|xc(i)| ≤ β (|x(0)| , ih) + δ for all i ∈ {0, 1, . . .} .



4 Multirate design based on discrete-time model

In this section, we address an alternative approach to de-
sign of multi-rate sampled-data systems, which utilizes the
knowledge of some properties of the set of approximate
discrete-time models. Consider a system (1). Let the fol-
lowing discrete-time system

x(i + 1) = F (x(i), u(i)) (17)

be the exact discrete-time model of the continuous-time
system (1) corresponding to given sampling period T > 0.
Throughout this section we assume that the input sam-
pling period Ti is fixed equal to the sampling period of the
model (17), i.e. Ti = T , and any of T , Ti will be called
“sampling period”. Following the general statement of our
problem (see section 2), we assume that the measurement
sampling period Tm > 0 and the measurement delay τ ≥ 0
satisfy the constraints (3), where the corresponding lower
bounds T ∗

m > 0 and τ∗ ≥ 0 are given. Without loss of
generality we assume that both Tm and τ are multiples of
the input sampling period T , i.e.

τ = l1T, Tm = l2T, (18)

for some integers l1 ≥ 0, l2 > 0. The sequence of mea-
surements y(·) will be numbered as follows

y (j) = x(jl2 − l1), j = 0, 1, . . . . (19)

Since the measurement signal y(·) comes with delay l

steps, we understand that y(j) becomes available for con-
troller at jl2-th step.

It is worth noting (see [8]) that for the nonlinear system
of the form (1) its exact discrete-time model (17) is usu-
ally unknown. Instead, following [8], it is assumed that a
family of approximate discrete-time models of the system
(1) corresponding to sampling period T > 0 is available
parameterized by modelling parameter h > 0

x(i + 1) = Fh (x(i), u(i)) . (20)

Usually, the parameter h > 0 is the integration period of
the numerical integration scheme which is used to generate
the family of approximate discrete-time models.

In the following, we assume that the family of approximate
models Fh (·, ·) satisfies the following assumptions (which
are close to assumptions used in [8]).

Assumption 3. (Equi-global asymptotic stabilizability of
approximate models with equi-Lipschitz Lyapunov func-
tions) There exist α1, α2 ∈ K∞, α3 ∈ K, and h∗ > 0
such that for each h ∈ (0, h∗] there exist a function

Vh: Rn → R+ and a control law γh(·) with the following
properties:

i) α1 (|x|) ≤ Vh(x) ≤ α2 (|x|) for each h ∈ (0, h∗];

ii) for each D > 0 there exist M > 0 and h∗
1 ∈ (0, h∗] such

that for each x1, x2 ∈ B̄(D) and each h ∈ (0, h∗
1]

|Vh(x1) − Vh(x2)| ≤ M |x1 − x2| ;

iii) for any ∆1 > 0 there exists h∗
2 ∈ (0, h∗] such that

sup
h ∈ (0, h∗

2]
x ∈ B̄(∆1)

|γh(x)| < ∞; (21)

iiii) for each x ∈ Rn and each h ∈ (0, h∗]

Vh (Fh(x, γh(x)) − Vh(x) ≤ −α3(|x|).

Assumption 4. (uniform local Lipschitz property of the
approximate models) For any ∆1, ∆2 ≥ 0 there exist L >

0 and h∗ > 0 such that for any x, z ∈ B̄ (∆1), any u ∈
B̄(∆2), and any h ∈ (0, h∗]

|Fh(x, u) − Fh(z, u)| ≤ L |x − z| . (22)

Assumption 5. (consistency of the approximation scheme)
For any ∆1, ∆2 ≥ 0 there exists a K-class function ρ(·)
such that for any x ∈ B̄ (∆1) and any u ∈ B̄(∆2)

|F (x, u) − Fh(x, u)| ≤ ρ(h). (23)

To stabilize the system (17) subject to the measurements
(19), we will use a multi-rate control strategy similar to
one presented in section 3. The proposed multi-rate digital
controller is described as follows

xc(i + 1)

=
{

Fh (x̃(i), γh (xc(i))) for i = l2j − 1, j = 0, 1, 2, . . . ,

Fh (xc(i), γh (xc(i))) otherwise,
(24)

u(i) = γh (xc(i)) for i ∈ {0, 1, . . .} , (25)

where x̃(i) is an approximate estimate of the state x(i)
that is calculated for each i = l2j − 1, j = 0, 1, 2, . . .,
based on measurements y(j) using the following formula

x̃(i) := Fh (. . . (Fh (y(j), γh (xc(i + 1 − l1))) ,

γh (xc(i + 2 − l1))) , . . . , γh (xc(i − 1))) .
(26)

The state of the closed loop system (17), (19), (24), (25)
(26) at the i-th step is the following “lifted” signal

x(i) :=
{
[x(·)]ii−l1

, [xc(·)]i−1
i−l1

}
,



where [x(·)]i2i1 (i1 ≤ i2) is a sequence
{x(i1), x(i1 + 1), . . . , x(i2)}, and so is [xc(·)]i2i1 . Again, a
norm of the state x(i) can be defined as follows

‖x(i)‖ := max
{

max
k∈{i−l1,i}

|x(k)| , max
j∈{i−l1,i−1}

|xc(j)|
}

.

The main result of this section is given by the following
theorem.

Theorem 2. Consider a system (17) with sampling period
T > 0. Suppose a family of approximate models (20) is
available that satisfies the Assumptions 3-5. Then there
exists β ∈ KL such that the following holds. Given ∆ > 0,
δ > 0, τ = l1T , where l1 ∈ {0, 1, . . .}, and Tm = l2T ,
where l2 ∈ {1, 2, . . .}, there exists hmax > 0 such that
if h ∈ (0, hmax], then all trajectories of the closed loop
system (17), (19), (24), (25) (26) with initial conditions
‖x(0)‖ ≤ ∆ satisfy

max {|x(i)| , |xc(i)|} ≤ β (|x(0)| , iT ) + δ

for all i ∈ {0, 1, 2, . . .}.

5 Example: VTOL aircraft

A possible area of application of the multirate schemes
proposed above is visual based control of autonomous ve-
hicles. Indeed, the presence of a visual processing block
in the measurement channel usually results in essentially
larger measurement sampling period together with delay
in the measurement process. In this case, the stability and
performance of the sampled-data system may be improved
drastically using the multirate scheme proposed. To il-
lustrate this statement, consider the problem of hovering
control of the vertical take off and landing (VTOL) air-
craft. The following simplified mathematical model bor-
rowed from [5] describes the motion of VTOL aircraft in
the vertical (x,y)-plane

ẍ = −u1 sin θ + εu2 cos θ,

ÿ = u1 cos θ + εu2 sin θ − 1,

θ̈ = u2.

(27)

Here, x, y are the position coordinates of the aircraft in
the vertical-lateral plane, θ is the roll angle, and the con-
trol inputs u1, u2 are the thrust and the rolling moment
respectively. Also, ε is a small positive coefficient which
represents the coupling between the rolling moment and
the lateral acceleration of the aircraft. In the simulations
below, we put ε = 0.01.

As shown in [9], the origin (x, y, θ) = (0, 0, 0) of the system
(27) can be stabilized by the following continuous time
control law

u1 =
√

v2
1(x, ẋ) + (v2(y, ẏ) + 1)2,

u2 = −k2
(
θ − tan−1

(
−v1(x,ẋ)
v2(y,ẏ)+1

))
− kθ̇,

(28)

where
v1(x, ẋ) = −k11x − k12ẋ,

v2(y, ẏ) = −k21y − k22ẏ,

k11, k12, k21, k22 > 0. Throughout this section, we put
k = 10, k11 = k12 = k21 = k22 = 1, and assume the initial
conditions are x(0) = 5, y(0) = 0, θ(0) = 0. The corre-
sponding transient process for x-coordinate of the system
(27) with continuous time control law (28) is shown in
figure 1.
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Figure 1: Continuous-time system.

As the second step, we consider a single-rate sampled data
system obtained from (27), (28) using controller emula-
tion. Our simulation shows that, even without measure-
ment delay, this single-rate sampled-data controller sta-
bilizes the origin of the system only for small values of
sampling period T < 0.2 sec. Example of the simulations
for sampling period T = 0.2 sec is shown in figure 2; one
can see that corresponding sampled-data system is unsta-
ble.
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Figure 2: Single-rate scheme with Ts = 0.2 sec.



An example of simulations of multirate sampled-data sys-
tem is shown in figure 3. In this set of simulations, we
investigate the system with low measurement sampling
rate Tm = 1 sec and in presence of measurement delay
τ = 1 sec. We put the input sampling period Ti = 0.1
sec, and the integration step of the controller h = 0.01
sec. One can see that the proposed multirate controller
successfully stabilizes the system. Moreover, the form of
transient response curve is almost equivalent to the one
obtained using continuous time controller.
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Figure 3: Multirate scheme with Tm = 1 sec, τ = 1 sec,
Ti = 0.1 sec, and h = 0.01 sec.

6 Conclusions

In this paper we have addressed the problem of sampled-
data stabilization of a nonlinear system under “low mea-
surement rate” constraints and in presence of (not nec-
essarily small) delay in the measurement channel. Our
approach to the solution of this problem employs a multi-
rate control law. The main feature of the scheme is that
an approximate discrete-time model of the system is in-
cluded into the controller, and the control action depends
on the state of this model. The state of the model is, in
turn, corrected from time to time using the “low rate”
delayed measurements of the actual state of the plant. It
is worth noting that, for linear systems and in absence of
measurement delay, some close ideas were used in [3, 4] to
design high-performance multirate servo systems. Since
the open-loop estimator is used to obtain approximations
of state trajectories between samples, the robustness prop-
erties of the proposed scheme need further investigations.
This topic will be a subject of future research.
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