
SOLVABILITY OF NORM-TYPE DISCRETE ALGEBRAIC
RICCATI EQUATION

M. Kono∗, N. Takahashi∗, M. Sakamoto∗

∗ Department of Computer Science and System Engineering,
Faculty of Engineering, Miyazaki University,

1-1 Gakuen Kibanadai Nishi, Miyazaki, 889-2192, Japan,
takahasi@cs.miyazaki-u.ac.jp

Keywords: Discrete algebraic Riccati equation, Norm-type
upper bound, Robust control, Guaranteed cost control

Abstract

This paper proposes a norm-type discrete algebraic Riccati
Equation, which is a generalized version of the well-known
standard discrete algebraic Riccati Equation, and has additional
norm terms. Under stabilizability and assumption that the addi-
tional terms are not too large, the existence of a positive semi-
definite solution is guaranteed. Application to guaranteed cost
control is given.

1 Introduction

In this paper, we propose the following equation with an un-
known symmetric matrixP .

P = AT
0 PA0 −AT

0 PB(BT PB + R)−1BT PA0

+CT C + Υ(P ) (1)

whereA0, B andC are matrices with appropriate size andR is
positive definite. Further,

Υ(P ) = (a‖P −PB(BT PB +R)−1BT P‖+ b‖P‖) · I (2)

wherea andb are positive real numbers and‖A‖ = σmax(A)
(σmax denotes the maximum singular value). We call equation
(1) a norm-type discrete algebraic Riccati equation. In [1], for
a continuous-time system, the authors have proposed the simi-
lar algebraic equation which is called a norm-type continuous-
time algebraic Riccati equation and given a sufficient condition
for it to be solvable. The main purpose of this paper is to extend
the result of [1] to the discrete-time case.

2 Main Result

Notice that the equation (1) is equivalent to

P = CT C + (A0 −BΩ(P )A0)T P (A0 −BΩ(P )A0)
+AT

0 Ω(P )T RΩ(P )A0 + Υ(P ), (3)

Ω(P ) = (BT PB + R)−1BT P. (4)

In order to prove a main result we shall require:

(H1) (a + b) inf
Ψ
‖
∞∑

j=0

((A0 −BΨ)T )j(A0 −BΨ)j‖ < 1.

We need the following preliminary results.

Lemma 1 Suppose that (H1) holds and further

(H2) (A0, B) is stabilizable.

i) From hypotheses, there existsΨ such thatA0 − BΨ is
asymptotically stable and

(a + b)‖
∞∑

j=0

((A0 −BΨ)T )j(A0 −BΨ)j‖ < 1. (5)

For suchΨ, the equation

P = CT C + (A0 −BΨ)T P (A0 −BΨ) + ΨT RΨ
+Υ(P ) (6)

has a unique positive semi-definite solutionP and is
equivalent to

P = g(P, Ψ), (7)

where

g(P, Ψ) =
∞∑

j=0

((A0 −BΨ)T )j(ΨT RΨ

+Υ(P ) + CT C)(A0 −BΨ)j . (8)

ii) For the solutionP of the equation (6),A0 −BΩ(P )A0 is
asymptotically stable.

Lemma 2 Let K andL be positive definite matrices. IfK ≥
L, we have the following relation

‖(K−1 + Rc)−1‖ ≥ ‖(L−1 + Rc)−1‖ (9)

for any positive semi-definite matrixRc.



Proof Since λmax(K) ≥ λmax(L), it follows that
λmin(K−1 + Rc) ≤ λmin(L−1 + Rc), whereλmax denotes
the maximum eigenvalues andλmin denotes the minimum one.
Thus, we have1/λmin(K−1+Rc) ≥ 1/λmin(L−1+Rc). This
implies‖(K−1 + Rc)−1‖ ≥ ‖(L−1 + Rc)−1‖.

Q.E.D

Theorem 1 Assume that (H1) and (H2) hold. Then there exists
a positive semi-definite solutionP for equation (1).

Remark 1 Instead of solving (1),P can be determined by lim-
iting solution of the norm-type Riccati difference equation

P (k) = CT C + Υ(P (k + 1)) + AT
0 P (k + 1)A0

−AT
0 P (k + 1)B(BT P (k + 1)B + R)−1BT P (k + 1)A0

Remark 2 [12] Consider solvability of the stochastic discrete
algebraic Riccati equation (SDARE),

P = CT C + AT
0 PA0

+AT
0 PB(BT PB + R)−1BT PA0 +

p∑

i=1

AT
i PAi (10)

whereR is a positive-definite matrix. And in addition to (H1)
and (H2), it is required that(C, A0) is observable. That is, the
condition of Theorem 1 is weaker than the one of SDARE.

Proof From (H1) and (H2), there existsΨ1 such hatA0−BΨ1

is asymptotically stable and

(a + b)‖
∞∑

j=0

((A0 −BΨ1)T )j(A0 −BΨ1)j‖ < 1. (11)

Let P1 be the solution ofP = g(P, Ψ1) then define

Ψ2 = Ω(P1)A0. (12)

In virtue of Lemma 1 i),P1 is positive semi-definite and satis-
fies

P1 = CT C + (A0 −BΨ1)T P1(A0 −BΨ1)
+ΨT

1 RΨ1 + Υ(P1). (13)

SinceA0−BΨ1 is asymptotically stable in virtue of Lemma 1
ii), g(P, Ψ2) can be defined.

Now set

P
(1)
2 = 0, P

(κ+1)
2 = g(P (κ)

2 ,Ψ2), κ = 1, 2, 3, . . .

First, we shall show thatP (κ)
2 is monotonically non-decreasing.

It is clear thatP (2)
2 ≥ P

(1)
2 .

It follows from (8) that

P
(κ+1)
2 − P

(κ)
2

= g(P (κ)
2 , Ψ2)− g(P (κ−1)

2 ,Ψ2)

=
∞∑

j=0

((A0 −BΨ2)T )j(Υ(P (κ)
2 )−Υ(P (κ−1)

2 ))

· (A0 −BΨ2)j

=
∞∑

j=0

((A0 −BΨ2)T )j

·[a{‖P (κ)
2 − P

(κ)
2 B(BT P

(κ)
2 B + R)−1BT P

(κ)
2 ‖

−‖P (κ−1)
2 − P

(κ−1)
2 B(BT P

(κ−1)
2 B + R)−1BT P

(κ−1)
2 ‖}

+ b{‖P (κ)
2 ‖ − ‖P (κ−1)

2 ‖}](A0 −BΨ2)j

=
∞∑

j=0

((A0 −BΨ2)T )j [a{‖((P (κ)
2 )−1 + BR−1BT )‖

−‖((P (κ−1)
2 )−1 + BR−1BT )−1‖}

+ b{‖P (κ)
2 ‖ − ‖P (κ−1)

2 ‖}](A0 −BΨ2)j .

Assume thatP (κ)
2 ≥ P

(κ−1)
2 . Then, since‖P (κ)

2 ‖ ≥ ‖P (κ−1)
2 ‖

and, in virtue of Lemma 2,‖((P (κ)
2 )−1 + BR−1BT )−1‖ ≥

‖((P (κ−1)
2 )−1 + BR−1BT )−1‖, we haveP (κ+1)

2 ≥ P
(κ)
2 , so

that{P (κ)
2 } is monotone non-decreasing.

Next, we shall show thatP (κ)
2 ≤ P1. It is clear thatP (1)

2 ≤ P1.
For arbitraryΨ, P andΩ defined by (4), we have

(A0 −BΩA0)T P (A0 −BΩA0) + AT
0 ΩT RΩA0

= (A0 −BΨ)T P (A0 −BΨ) + ΨT RΨ
−(Ψ− ΩA0)T (BT PB + R)(Ψ− ΩA0). (14)

SubstitutingP = P1 into (4) and use (12) to obtain

ΩA0 = Ψ2. (15)

Since substitutingΩA0 = Ψ2,Ψ = Ψ1 into (14) and noting
(13) gives

(A0 −BΨ2)T P1(A0 −BΨ2) + ΨT
2 RΨ2

≤ (A0 −BΨ1)T P1(A0 −BΨ1) + ΨT
1 RΨ1

= P1 − CT C −Υ(P1). (16)

we have

ΨT
2 RΨ2 + CT C

≤ P1 − (A0 −BΨ2)T P1(A0 −BΨ2)−Υ(P1). (17)

Thus,

g(P (κ)
2 ,Ψ2)

=
∞∑

j=0

((A0 −BΨ2)T )j{ΨT
2 RΨ2 + Υ(P (κ)

2 )

+CT C}(A0 −BΨ2)j



≤
∞∑

j=0

((A0 −BΨ2)T )j(P1 − (A0 −BΨ2)T

·P1(A0 −BΨ2) + Υ(P (κ)
2 )−Υ(P1))(A0 −BΨ2)j

=
∞∑

j=0

((A0 −BΨ2)T )j [a‖((P (κ)
2 )−1 + BR−1BT )−1‖ · I

−(‖(P−1
1 + BR−1BT )−1‖ · I + b(‖P (κ)

2 ‖ − ‖P1‖) · I]
·(A0 −BΨ2)j + P1. (18)

Assume thatP (κ)
2 ≤ P1. Then, since‖P (κ)

2 ‖ ≤ ‖P1‖ and, in
virtue of Lemma 2,

‖((P (κ)
2 )−1 + BR−1BT )−1‖ ≤ ‖(P−1

1 + BR−1BT )−1‖,
we have

P
(κ+1)
2 = g(P (κ)

2 , Ψ2) ≤ P1

If P
(κ)
2 ≤ P1, P

(κ+1)
2 = g(P (κ)

2 , Ψ2) ≤ P1. SinceP
(1)
2 =

0 ≤ P1, we haveP (κ)
2 ≤ P1, that is,P (κ)

2 is bounded. Thus,

it follows that there existsP2 = lim
κ→∞

P
(κ)
2 , andP2 ≤ P1. It

is shown by repeating this procedure thatPk is monotone non-
increasing.

SincePk ≥ 0, it follows that there existsP = lim
k→∞

Pk andP

satisfies (1).

Q.E.D

3 APPLICATION TO GUARANTEED
COST CONTROL

In the sequel, we consider guaranteed cost control in the linear
quadratic case. Consider the following uncertain plant

x(t + 1) = A(ξ)x(t) + Bu(t), ξ = [ξ1, ξ2, . . . , ξp] (19)

whereξi(i = 1, 2, . . . , p) is an uncertain parameter andA(ξ)
is assumed to be expressed as

A(ξ) = A0 + ∆A(ξ) = A0 +
p∑

i=1

ξiAi, |ξi| ≤ 1. (20)

Further, the quadratic cost function to be minimized is

J(x(0), u, ξ) =
∞∑

t=0

(xT (t)CT Cx(t) + uT (t)Ru(t)), (21)

whereR is positive definite. In the following, we use a linear
feedback control law

u(t) = −Fx(t). (22)

If there exist a positive real numberV and controlu(·) such
that

J(x(0), u, ξ) ≤ V, (23)

V and u(·) are said to be a guaranteed cost and guaranteed
cost control, respectively. The following fact follows from Ap-
pendix A.2. Let

T1(P, ξ) = ∆AT P (I −BΩ(P ))A0

+AT
0 (I −BΩ(P ))T P∆A + ∆AT P∆A, (24)

whereΩ(P ) is defined by (4). WhenT1(P, ξ) ≤ U1(P ) for any
ξ(|ξi| ≤ 1), we callU1(P ) an upper bound matrix ofT1. Then,
in order to calculate the guaranteed cost control law, we have
to solve a discrete algebraic Riccati equation with the upper
bound term

P = CT C + T0(P ) + U1(P ), (25)

where

T0(P ) = AT
0 PA0 −AT

0 PB(BT PB + R)−1BT PA0. (26)

Using the solutionP of (25), we have guaranteed cost control
law

F (P ) = Ω(P )A0 (27)

The following theorem gives an upper bound.

Theorem 2 In (2), let

a = 2‖A0‖ ·
p∑

i=1

‖Ai‖, (28)

b =

(
p∑

i=1

‖Ai‖
)2

. (29)

Then, an upper bound ofT1(P, ξ) is given byΥ(P ).

Proof Since

T1(P, ξ) =
p∑

i=1

ξi[AT
i P (I −BΩ(P ))A0

+AT
0 (I −BΩ(P ))T PAi] +

1
2

p∑

i=1

p∑

j=1

ξiξjDij (30)

where
Dij = AT

i PAj + AT
j PAi,

we have

T1(P, ξ) ≤ 2
p∑

i=1

‖AT
i P (I −BΩ(P ))A0‖ · I

+
p∑

i=1

p∑

j=1

‖AT
i PAj‖ · I

≤ 2
p∑

i=1

‖AT
i ‖ · ‖P − PBΩ(P )‖ · ‖A0‖ · I

+
p∑

i=1

p∑

j=1

‖Ai‖ · ‖Aj‖ · ‖P‖ · I

= Υ(P ) (31)



Q.E.D

Remark 3 [13]The guaranteed cost control law (27) guaran-
tees robust stability of the closed-loop system for any admissi-
ble perturbationξ ∈ Ξ.

4 NUMERICAL EXAMPLE

In this section, we shall give a numerical example and show the
effectiveness of our method in contrast to the existence method.
Let

A0 =
[

0 0
0 1

]
, A1 =

[
0.1 0
0.1 0

]
,

B =
[

1
1

]
, C =

[
1 0

]
.

For this system, let us try to apply the methods of [8], [9],
which are based on the quadratic bound. Then, we have to solve
a discrete algebraic Riccati equation with additional terms.

P = AT
0 (P−1 − εDDT + BR−1B)−1A0 + Q + (1/ε)ET E,

A1 = ET D.

However, since for anyε the pair(C + (1/ε)E, A0) is not de-
tectable, there is no stabilizing positive semi-definite solution,
we cannot apply guaranteed cost control based on the quadratic
bound.

Next, We shall apply our method to this system. The Hypoth-
esis (H1) and (H2) are satisfied. By solving (1), we have the
following guaranteed cost control law.

u(t) = [ 0 0.3304 ]x(t).

Then the eigenvalues of the nominal closed-loop system be-
come0.0 and0.66960.

For the caseξ1 = 1.0, the eigenvalues of the closed-loop sys-
tem are0.165548 and0.604054. Thus for this perturbation, the
closed-loop system is asymptotically stable.

5 CONCLUSION

In this paper, we have proposed the norm-type discrete alge-
braic Riccati equation, and discussed the existence of a positive
semi-definite solution. And we have shown that this equation
appears in guaranteed cost control in discrete time systems. It
is important to develop an numerical algorithm in order to solve
the equation (1). One of the methods is extend the approach of
[10], [11].

The problem for future study is to extend our result on guaran-
teed cost control to the case of parameter variations in an input
matrix.
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A Appendix

A.1 Proof of Lemma 1

i)
Since

‖P − PB(BT PB + R)−1BT P‖
= ‖(P−1 −BR−1BT )−1‖
=

1
σmin(P−1 −BR−1BT )

≤ 1
σmin(P−1)

= σmax(P )

= ‖P‖, (32)

It follows that

‖
∞∑

j=0

((A0 −BΨ)T )j(Υ(P ))(A0 −BΨ)j‖

≤ a

∞∑

j=0

‖((A0 −BΨ)T )j‖ · ‖P − PB(BT PB

+R)−1BT P‖ · ‖(A0 −BΨ)j‖

+b

∞∑

j=0

‖((A0 −BΨ)T )j‖ · ‖P‖ · ‖(A0 −BΨ)j‖

= a‖P‖ · ‖
∞∑

j=0

((A0 −BΨ)T )j(A0 −BΨ)j‖

+b‖P‖ · ‖
∞∑

j=0

((A0 −BΨ)T )j(A0 −BΨ)j‖

= (a + b)‖P‖ · ‖
∞∑

j=0

((A0 −BΨ)T )j(A0 −BΨ)j‖.(33)

In virtue of (H1), we have

‖
∞∑

j=0

((A0 −BΨ)T )jΥ(P )(A0 −BΨ)j‖

≤ δ‖P‖, (34)

whereδ ∈ (0, 1) is independent onP . Thus, since for thisΨ
the functiong(P, Ψ) is a contraction mapping inP , (7) has a
unique solution. From (8), it is clear thatP is positive semi-
definite.
ii)
It follows from Lemma 1 of [7] that

(A0 −BΩ(P )A0)T P (A0 −BΩ(P )A0)
≤ (A0 −BΨ)T P (A0 −BΨ) + ΨT RΨ. (35)

Since in virtue of (6), the right hand side of (35) coincides with
P − CT C −Υ(P ),

(A0 −BΩ(P )A0)T P (A0 −BΩ(P )A0)− P

≤ −CT C −Υ(P ). (36)

Assume thatA0−BΩ(P )A0 is not asymptotically stable. Letλ
be unstable eigenvalue andw be the corresponding eigenvector.
Premultiplying (36) byw∗ and postmultiplying it byw shows
that the left hand side of (36) is positive semi-definite, where
w∗ denotes the conjugate transpose ofw. However, sinceΥ(P )
is positive definite, this is contradiction.

Q.E.D.

A.2 Guaranteed cost control

We consider an uncertain system described as equation (19).
For this system, we define performance index given as

J(x(t1), u, ξ) =
tf−1∑
t=t1

{xT (t)CT Cx(t) + uT (t)Ru(t)}

+xT (tf )Pfx(tf ) (37)

whereR andPf are positive definite and positive semi-definite,
respectively.t1 andtf are initial time and final time, respec-
tively.

Definition 1 If there exist a positive real numberV (x(t1), t1)
andu(·) such that

J(x(t1), u(·), ξ) ≤ V (x(t1), t1)

for any admissible perturbationξ ∈ Ξ, V (x(t1), t1) is said to
be a guaranteed cost for the system staring fromx(t1) at time
t1, andu(·) is said to be a guaranteed cost control.

Remark 4 Let

H(V, x, η, t, ξ) = xT CT Cx + uT Ru

+V (x(l + 1), l + 1)− V (x(l), l) (38)

Then, it follows from optimal principle that if there exists
a scalar functionV (x, t) and an m-vector valued function
η(x(t), t) such that

H(V, x, η, t, ξ) ≤ 0, t < tf

V (x(tf ), tf ) = xT (tf )Pfx(tf )

for anyξ ∈ Ξ, V (x(t1), t1) is a guaranteed cost for the system
starting fromx(t1) at anyt1 < tf andη(x(t), t) (t1 ≤ t < tf )
is a guaranteed cost control.

Definition 2 Let T (ξ) be ann × n matrix which depends on
an uncertaintyξ ∈ Ξ. U is said to be an upper bound matrix
of T (ξ) if U − T (ξ) is non-negative definite for allξ ∈ Ξ.

A(ξ) is assumed to be represented as

A(ξ) = A0 + ∆A(ξ)



whereA0 denotes nominal matrix,∆A(ξ) denotes their pertur-
bation matrix. We shall seek a guaranteed cost solution of the
form

V (x, t) = xT P (t)x,

whereP (t) is a positive semi-definite, and is called a guaran-
teed cost matrix. Then (38) becomes

H(V, x, u, t, ξ)
= xT CT Cx + uT Ru

+(A(ξ)x + Bu)T P (t + 1)(A(ξ)x + Bu)− xT P (t)x
= xT CT Cx + uT Ru + xT AT (ξ)P (t + 1)A(ξ)x

+2uT BT P (t + 1)A(ξ)x + uT BT P (t + 1)Bu− xT P (t)x
= xT CT Cx + uT Ru + xT (A0 + ∆A)T P (t + 1)(A0 + ∆A)x

+2uT BT P (t + 1)(A0 + ∆A)x
+uT BT P (t + 1)Bu− xT P (t)x

Some simple calculation leads to the order representation of
H(V, x, u, t, ξ) as

H(V, x, u, t, ξ)
= xT CT Cx + H0(P (t + 1), x, u)

+H1(P (t + 1), x, u, ξ)− xT P (t)x, (39)

where H0(P (t + 1), x, u) is a certain term andH1(P (t +
1), x, u, ξ) is an uncertain term represented as follows.

H0(P (t + 1), x, u)
= xT AT

0 P (t + 1)A0x + 2uT BT P (t + 1)A0x

+uT {BT P (t + 1)B + R}u
H1(P (t + 1), x, u, ξ)
= 2xT ∆AT P (t + 1)A0x

+xT ∆AT P (t + 1)∆Ax + 2uT BT P (t + 1)∆Ax

(40)

SinceH1(P (t + 1), x, u, ξ) can not be evaluated directly, we
requestu∗ which minimize onlyH0(P (t + 1), x, u).

Thus,

u∗(t) = η∗(x(t), t)
= (BT P (t + 1)B + R)−1BT P (t + 1)A0x(t)
= −Ω(P (t + 1))A0x(t) (41)

is obtained.

If H(V, x, η∗, t, ξ) is non-positive and

P (tf ) = Pf , (42)

V (x, t) = xT P (t)x is a guaranteed cost in virtue of Remark 4,
it follows from non-positivity ofH(V, x, η∗, t, ξ) that

P (t) ≥ CT C + T0(P (t + 1)) + T1(ξ, P (t + 1)) (43)

whereT0(P (t + 1)), T1(ξ, P (t + 1)) are symmetric and

T0(P (t + 1))
= AT

0 {I −BΩ(P (t + 1))}T P (t + 1)
·{I −BΩ(P (t + 1))}A0

+AT
0 Ω(P (t + 1))T RΩ(P (t + 1))A0

T1(ξ, P (t + 1))
= ∆AT P (t + 1){I −BΩ(P (t + 1))}A0

+AT
0 {I −BΩ(P (t + 1))}T P (t + 1)∆A

+∆AT P (t + 1)∆A (44)

Let the upper bound matrix ofT1(ξ, P (t+1)) beU1(P (t+1)).
Then if

P (t) = CT C + T0(P (t + 1)) + U1(P (t + 1)) (45)

the condition (43) is satisfied, that is, if there existsP (t) which
satisfies (42) and (45),V (x, t) = xT P (t)x becomes a guar-
anteed cost. Furthermore, if the difference equation (45) has
a stationary solutionP , P satisfies the following Riccati-like
equation

P = CT C + T0(P ) + U1(P ) (46)

Provided thatP is nonsingular, in virtue of matrix inversion
lemma, equation (46) can be transformed into

P = CT C + AT
0 (P−1 + Rc)−1A0 + U(P ) (47)

whereRc = BR−1BT .

Remark 5 For the caseU(P ) = 0, (46) coincides with the
standard discrete-time Algebraic Riccati Equation.
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