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In order to prove a main result we shall require:

Abstract (HD)  (a+b)inf[| > (Ao — BY)T)i(Ag — BUY| < 1.
=0

This paper proposes a norm-type discrete algebraic Riccati

Equation, which is a generalized version of the well-know¥/e need the following preliminary results.

standard discrete algebraic Riccati Equation, and has additional

norm terms. Under stabilizability and assumption that the addiemma 1 Suppose that (H1) holds and further

tional terms are not too large, the existence of a positive semi-

definite solution is guaranteed. Application to guaranteed cceﬁtz) (Ao, B) is stabilizable.

control is given.

i) From hypotheses, there exisis such that4d, — BV is

1 Introduction asymptotically stable and

(a+b)I (A — BY)TY (4 — BY)| < 1. (5)

In this paper, we propose the following equation with an un- —
=

known symmetric matrix.

— ATPAy— ATPB(BTPB + R)"'BTPA, For such¥, the equation
+C0TC +1(P) (1) P = CTC+ (Ag — BU)TP(Ay — BY) + UTRY

whereA,, B andC are matrices with appropriate size aRds +T(P) ®)

positive definite. Further, has a unique positive semi-definite solutidhand is

Y(P) = (al|P — PB(BTPB+ R)"'BTP|| +b|P|)-I (2) equivalent to

P =g(P, "), 7
wherea andb are positive real numbers afid!|| = 0,44 (A)
(0maz denotes the maximum singular value). We call equation
(1) a norm-type discrete algebraic Riccati equation. In [1], for )
a continuous-time system, the authors have proposed the simi- Z (Ag — BO)TY (VT RO
lar algebraic equation which is called a nhorm-type continuous- j=0
tim_e algebraic Riccati equat_ion and given a_suﬁicient condition +Y(P) 4+ CTC)(Ay — BT). (8)
for it to be solvable. The main purpose of this paper is to extend

the result of [1] to the discrete-time case. ii) For the solutionP of the equation (6)4, — BL(P) A, is
asymptotically stable.

where

2 Main Result

Lemma 2 Let K and L be positive definite matrices. K >

) ) ) _ L, we have the following relation
Notice that the equation (1) is equivalent to

-1 -1 —1 —1
P — CTC4 (g — BA(P) AT (A — B(P)AS) K+ R 2 IE + R (@)

+ATQ(P)T RQ(P) Ay + YT(P), (3) for any positive semi-definite matri...



Proof  Since A\a(K) > Anao(L), it follows that It follows from (8) that

Mnin (K=Y + R.) < Amin(L™" + R.), Where),,,., denotes (1) %)

the maximum eigenvalues ang},;,, denotes the minimum one. P — Py

Thus, we have /\,in (K 1+ R.) > 1/ Apin (L1 +R,). This _ (k) (k—1)

) > min c) Z— min c 7gp ’\Ij 7gP ’\Ij
implies||(K " + R) =" > (L7 + Ro)~1|. P e )
= > (4o — BU)TY (X (PY) — T (BSY))

Q.ED 3=0
- (Ag — BU,)
Theorem 1 Assume that (H1) and (H2) hold. Then there exists = T
a positive semi-definite solutidh for equation (1). - ZO((AO — BY,)7)
=

. . . [a{|[Ps™ — Py BB Py B+ R BT R
Remark 1 Instead of solving (1)P can be determined by lim- (5—1) (s—1) T (1) T (1)
iting solution of the norm-type Riccati difference equation | =R VB(B'P," 'B+R)T B P U}
+ {1 B3| = 125" VN (A — BE2)?
P(k) = CTC + T(P(k+1)) + ATP(k + 1) Ay - ’ ’
— AT P(k+1)B(B"P(k+1)B + R) ' BT P(k+ 1) Ay > (Ao = BE) Y [a{[[(P) ! + BR7'BT))|
j=0
i i ic di —I(" ™)+ BRTBT) 7}

Remark 2 ['2] Consider solvability of the stochastic discrete 2
algebraic Riccati equation (SDARE), + b{\|P2(")|| - ||P2(“’1)||}](A0 — BUy).

P = CTC+ Aj PA Assume thaP{™) > P{*~")_ Then, sincg| P\ || > ||P{" V||
and, in virtue of Lemma 2}|((P\*))~! + BR=1BT)~1|| >
(P =1 + BR1BT)=1||, we haveP{""" > P{® so
that{PQ(“)} iS monotone non-decreasing.

whereR is a positive-definite matrix. And in addition to (H1) (%) ) 1)
and (H2), it is required thatC, Ao) is observable. That is, the Next, we shall show thaf, S Pltis clear that?, " < Py.
condition of Theorem 1 is weaker than the one of SDARE. FoF arbitraryd, > and(2 defined by (4), we have

p
+AJPB(B"PB + R)"'BTPAy+ Y AT PA; (10)
=1

(Ag — BQAY)T P(Ay — BQA) + ATQT RQ A,

Proof From (H1) and (H2), there exis®, such hatd, — B¥, = (4y — BO)TP(4y — BY) + VT RU
is asymptotically stable and (v — QAO)T(BTPB T R) (U — QAy). (14)
s T i SubstitutingP = P; into (4) and use (12) to obtain
(a+b)[IY (Ao — BT (49 — BU1 V|| < 1. (L1)
=0 QA = Us. (15)
Let P be the solution of> = g(P, ¥;) then define Since substituting24, = ¥,, ¥ = ¥, into (14) and noting
(13) gives
Uy = Q(Py)Ap. (12)
(A9 — BYy)T P (Ayg — BY,) + VI RT,
In virtue of Lemma 1 i),P; is positive semi-definite and satis- < (4o — BY)T P (Ay — BY,) + TR,
fies =P —CTC-71(P). (16)
P, = CTC+ (Ag — BY,) ' Pi(Ay — BY,) we have
+UT R, + Y(Py). (13)

VIRV, +CTC
SinceAy — B¥, is asymptotically stable in virtue of Lemma 1 < P, — (Ag — BUy)T P (Ag — BUy) — Y(Py). (17)
i), g(P,¥y) can be defined.

Thus,
Now set
(%)
g(PQ 7\112)
P2(1) _ 0,P2(n+1) _ g(Pé”),‘I’z)M@ =1,2,3,... )
= 3" ((Ag — BU) Y {UT R, + T(PY)
First, we shall show tha‘t’Q("‘) is monotonically non-decreasing. j=0

Itis clear thatP{® > PV +CTCY(Ay — BU,)



< ((Ag — BU3)")/ (P — (Ag — BU3)"

I

<
Il
o

Py(Ag — BU,) + Y(P{™) = T (P))(Ag — BY,)!

= i((Ao - BU,)T ) [all(Py”) ' + BRT'BT) ! - 1
=0

~(IPT + BRT BT - 1461257 | = [P - 1)
(Ag — BUy) + Py. (18)

Assume that”\™ < Pi. Then, sincd|P{™)|| < | P1|| and, in
virtue of Lemma 2,

()~ + BRTBT)~Y|| < ||(P{ ' + BR™'BT) 7!,

we have

P = g(P,W5) < Py

it P{™ < p P = g(PY) w,) < P SinceP{V =
0< P, we havePz(”) < Py, that is, P(”) is bounded. Thus,

V andu(-) are said to be a guaranteed cost and guaranteed
cost control, respectively. The following fact follows from Ap-
pendix A.2. Let

Ti(P,¢) = AATP(I — BQ(P))A

+AY(I - BQP)TPAA+ AATPAA, (24)

whereQ(P) is defined by (4). Wheft (P, &) < U (P) forany
£(1&] < 1), we callU; (P) an upper bound matrix df; . Then,

in order to calculate the guaranteed cost control law, we have
to solve a discrete algebraic Riccati equation with the upper
bound term

rP=cCcTc+ To(P) + Uy (P), (25)
where

Ty (P)

Using the solutionP of (25), we have guaranteed cost control
law

= AlPAy — ATPB(BTPB+ R)"'BTPA,. (26)

it follows that there exist$%, = lim P2 ,andP, < Py, It _ F(]?) = Q(P)Ao @7)
is shown by repeating this procedure tiatis monotone non- The following theorem gives an upper bound.
increasing.
. ) ) Theorem 2 In (2), let
SinceP, > 0, it follows that there exist® = klim P, andP
. . — 00 P
satisfies (1). a = 2| Ao Z 4], (28)
i=1
Q.E.D p 2
b= (Z ||Ai||> (29)
=1
3 APPLICATION TO GUARANTEED Then, an upper bound @t (P, §) is given byY'(P).
COST CONTROL
Proof Since
In the sequel, we consider guaranteed cost control in the linear P
quadratic case. Consider the following uncertain plant T\ (P,¢) = Zgi [ATP(I — BQ(P))Ag
=1
a(t+1) = A©z(t) + Bult), €=[6.&,....6] (19) : PEPEE A
+Ay (I — BQ PA)+ = &iDyi (30
whereg; (1 = 1,2,...,p) is an uncertain parameter add¢) o (P) 2 z:: ;5 & (30)
is assumed to be expressed as
where
P D = ATPA; + ATPA,,
A(G) = Ao+ DA = Ao+ Y _&Ai, |G <1 (20) ! T
iz1 we have
Further, the quadratic cost function to be minimized is o
| Ti(P€) < 2 I|ATP(I — BQ(P)) Ao - 1
o) =1
=> @) CTCx(t) + u” (t)Ru(t), (21) PP
=0 +Y > AT PA| -1
whereR is positive definite. In the following, we use a linear plzl =t
feedback control law < QZ IAT|| - I[P — PBQUP)| - | Aol - T
u(t) = —Fa(t). (22) S
If there exist a positive real numbé&f and controlu(-) such +ZZ 1Al - A0 - 1P -
that i=1 j=1
J(x(0),u,&) <V, (23) = T(P) (31)



Q.ED References

Remark 3 [3]The guaranteed cost control law (27) guaran[l]
tees robust stability of the closed-loop system for any admissi-
ble perturbations € =.

(2]
4 NUMERICAL EXAMPLE

In this section, we shall give a numerical example and show 1%
effectiveness of our method in contrast to the existence method.

Let
-]

B:{H,czp 0. o

For this system, let us try to apply the methods of [8], [9],
which are based on the quadratic bound. Then, we have to solve
a discrete algebraic Riccati equation with additional terms.

0 0

01

01 0
AO_{ 0.1 o}’

(4]

. ]

Ay

AP —eDDT + BR7'B) 'A0+Q + (1/¢)ETE,
= ETD.

However, since for any the pair(C + (1/¢)E, Ap) is not de-
tectable, there is no stabilizing positive semi-definite solutioW,]
we cannot apply guaranteed cost control based on the quadratic
bound.

Next, We shall apply our method to this system. The Hypoth-
esis (H1) and (H2) are satisfied. By solving (1), we have i@l
following guaranteed cost control law.

u(t) =10 0.3304 ]z(t). [9]
Then the eigenvalues of the nominal closed-loop system be-
come0.0 and0.66960.

For the casg&; = 1.0, the eigenvalues of the closed-loop sys[-10
tem areD.165548 and0.604054. Thus for this perturbation, the ]
closed-loop system is asymptotically stable.

5 CONCLUSION [11]

In this paper, we have proposed the norm-type discrete alge-
braic Riccati equation, and discussed the existence of a positive
semi-definite solution. And we have shown that this equatid®?]
appears in guaranteed cost control in discrete time systems. It
is important to develop an numerical algorithm in order to solve

the equation (1). One of the methods is extend the approach of
[10], [11]. [13]

The problem for future study is to extend our result on guaran-
teed cost control to the case of parameter variations in an input
matrix.
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A Appendix Assume thatl, — B)(P) A, is not asymptotically stable. Lat

be unstable eigenvalue andoe the corresponding eigenvector.
Premultiplying (36) byw* and postmultiplying it byw shows
that the left hand side of (36) is positive semi-definite, where
w* denotes the conjugate transposeoHowever, sinc& (P)

A.1 Proof of Lemma 1

i)_ is positive definite, this is contradiction.
Since
|P - PB(BTPB+ R)"'BTP| Q.E.D.
= |[(P7' = BR™'BT)7|
— L A.2 Guaranteed cost control
Omin(P~1 — BR~1BT)
< % = Opmaz(P) We consider an uncertain system described as equation (19).
Tmin(P™1) For this system, we define performance index given as
= [P, (32)
ty—1
It follows that J(@(t),u,€) = > {z"(O)CTCx(t) +u” (1) Ru(t)}
[e'e] t=ty
1Y (Ao — BY)TY (Y (P))(Ag — BUY| w2 (1) Praty) 37)
=0
0 ‘ whereR andP; are positive definite and positive semi-definite,
< az 1((Ag — BY)")/|| - | P — PB(B"PB respectively.t; and¢; are initial time and final time, respec-
j=0 tively.
+R)"'BP|-|[(4 - BYY|
> , , Definition 1 If there exist a positive real numb&f(x (1), 1)
+bz ||((AO - B\IJ)T)]” ' ”P” : ||(A0 - B\If)] H andu(.) such that
j=0
s . . J(x(t1),u(-), &) < V(x(ty),t1)
= allP||- 1> _((Ag — BY)")/ (4 — BUY|
j=0 for any admissible perturbatiof € Z, V(z(t1),t1) is said to
> , , be a guaranteed cost for the system staring fref ) at time
+b|[ [ - 1) (Ao — BY)") (Ao — BUY|| t1, andu(-) is said to be a guaranteed cost control.
j=0
= (a+ )P - 1Y (4o — BU)TY (4, — BUY|.(33) Remark4 Let
7= H(V,z,n,t,6) = 27CTCx +uTRu
In virtue of (H1), we have +V(z(l+1),1+1) = V(z(l),]) (38)
HZ((AO — B\p)T)jT(P)(AO — BUY|| Then, it follows from optimal principle that if there exists
=0 a scalar functionV(z,t) and anm-vector valued function
< 5|P|, (34) n(z(t),t) such that
whereé € (0,1) is independent o®. Thus, since for this H(\V,z,n,t,§) <0, t <tf
the functiong(P, ¥) is a contraction mapping i®?, (7) has a V(x(ty), ty) = ' (t;)Pra(ty)
unique solution. From (8), it is clear th#&t is positive semi-
definite. forany¢ € =, V(x(t1),t1) is a guaranteed cost for the system
ii) starting fromz:(t1) atanyt; <ty andn(z(t),t) (t1 <t < ty)
It follows from Lemma 1 of [7] that is a guaranteed cost control.

(Ao — BQ(P)Ao)" P(Ag — BQ(P)Ao)

< (Ao — BT P(Ag — BY) + TR, (35) Definition 2 LetT'(¢) be ann x n matrix which depends on

an uncertainty¢ € =. U is said to be an upper bound matrix
Since in virtue of (6), the right hand side of (35) coincides withf 7'(€) if U — T'(€) is non-negative definite for afl € =.
P-CTC-71(P),

A()i dtob ted
(Ay — BOP)A9)T P(Ag — BO(P)Aq) — P (£) is assumed to be represented as

< =CTC -71(P). (36) A(E) = Ao + AA(E)



whereA, denotes nominal matrix( A(¢) denotes their pertur- whereTy (P (¢t + 1)), 71 (¢, P(¢t + 1)) are symmetric and
bation matrix. We shall seek a guaranteed cost solution of the
form To(P(t+1))

V(z,t) = 2T P(t)z, = AG{I - BQ(P(t+1))} P(t+1)
{1 = BQ(P(t+1))}Ao
+ATQP(t +1)TRQP(t +1)) Ay
Ty (&, P(t+1))

whereP(t) is a positive semi-definite, and is called a guaran-
teed cost matrix. Then (38) becomes

H(V,z,u,t,§) = AATP(t + 1){I — BQP(t + 1))} Ao
= 27CTCx +u' Ru +AT{T — BQP(t+1)}TP(t +1)AA
+(A(&)x + Bu)T P(t + 1)(A(€)x + Bu) — 2 P(t)x +AATP(t+1)AA

= 27CTCx +u"Ru+ 2T AT (&)P(t + 1) A()x
+2u”" BT P(t + 1)A(¢)x + u" BT P(t + 1) Bu — xTP(t)xThen i
= 27CTCx +uT Ru+ 27 (Ag + AA)TP(t +1)(Ag + AA)x
+2uT BTP(t 4+ 1)(Ag + AA)z P(t) = CTC+Ty(P(t + 1)) + U (P(t + 1))

+uBTP(t 4+ 1)Bu — 2" P(t)x

(44)

Let the upper bound matrix @, (¢, P(t+1)) beU; (P(t+1)).

(45)

the condition (43) is satisfied, that is, if there exiBtg) which

safisfies (42) and (45)/ (z,t) = 2T P(t)x becomes a guar-
Some simple calculation leads to the order representatlona?l eed cost. Furthermore, if the difference equation (45) has
H(V,z,u,t,£) as a stationary solutiorP, P satisfies the following Riccati-like
HV equation
(V. u,t,€) P=CTC+ Ty(P) + Uy(P) (46)
= 2707 Cax + Hy(P(t +1),z,u) . . . o . .
(P4 1 T p(s 39 Provided thatP is nonsingular, in virtue of matrix inversion
+H1(P(t +1),2,u,8) — 2" P(t)z, (39 lemma, equation (46) can be transformed into
where Hy(P(t + 1),z,u) is a certain term andi,(P(t + P=CTC+AY(P~' +R.) "4y +UP)  (47)
1), z,u, ) is an uncertain term represented as follows.
whereR. = BR~'BT.
Ho(P(t+1),2,u)
= 2" AT P(t+1)Aoz + 2u" BT P(t + 1) Aoz Remark 5 For the casel/(P) = 0, (46) coincides with the

+uT{BTP(t +1)B + R}u standard discrete-time Algebraic Riccati Equation.
Hi(P(t+1),z,u,§)
= 20T AATP(t + 1) Apz:
+2TAATP(t + 1)AAz 4 20" BT P(t + 1) AAx
(40)

SinceHy(P(t + 1),z,u,£) can not be evaluated directly, we
request,* which minimize onlyHy (P(t + 1), x, u).

Thus,
u*(t) =n"(z(t), 1)
= (BTP(t+1)B+ R)"'BTP(t + 1) Apz(t)
—Q(P(t+1))Aoz(t) (41)
is obtained.

If H(V,z,n*,t,&) is non-positive and
P(ty) = Py, (42)

V(x,t) = 2T P(t)z is a guaranteed cost in virtue of Remark 4,
it follows from non-positivity ofH (V, z, n*, ¢, £) that

Pt)>CTC+To(P(t+ 1)+ Ti(&P(t+1))  (43)
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