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Abstract

We present new characterizations of integral Input-Output-
to-State Stability. This is a notion of dectectability formu-
lated in the Input-to-State Stability framework. Equivalent
properties are discussed in terms Lyapunov dissipation in-
equalities and asymptotic estimates of the state variables on
the basis of external information provided by input and out-
put signals.

1 Introduction

Detectability is a central notion in control theory. It plays a
major role both in static state-feedback design (Lasalle’s in-
variance principle, Jurdjevic-Quinn control, see [9]) as well
as stabilization by means of dynamic output feedback or
observers design. Several possibilities are available when
formulating such a notion in the context of nonlinear con-
trol. According to the specific problem under considera-
tion, they capture some or most of the useful features of
its linear counterpart. One way of addressing the problem,
which has proved to be especially powerful for systems sub-
ject to exogenous disturbances, is to define �-detectability
in terms of estimates involving (possibly nonlinear) gains of
input and output norms. This is the so called input-output-
to-state stability (IOSS), [10], and integral input-output-to-
state-stability.Such notions not only allows one to extend
Lasalle’s type stability results to the case of non-autonomous
systems, [1], it also provides a machinery, fully compatible
with the small-gain and ISS formalisms, in order to under-
stand relevant questions such as minimum-phase behaviour
or certainty equivalence [11, 6].

Although general nonlinear systems may often exhibit an
overwhelming variety of behaviours, it turns out that many
of of the “reasonable” formulations, (meaning at least com-
patible with the linear notion of detectability), for such a
property are in the end equivalent to each other. Hereby we
discuss characterizations of IOSS in terms of asymptotic be-
haviour of systems solutions. This leads to several useful de-
compositions of the property in terms of seemingly weaker
notions.

2 Basic definitions

Consider systems in the following general form:

����� � ������� ������ ���� � �������� (1)

where, for each � � �, ���� � �
� , ���� � �, a subset of

�
� . We assume that the maps � � �� � �� � �

� and � �
�
� � �

� are locally Lipschitz continuous, with ���� �� � �
and ���� � �. The symbol ��� denotes the Euclidean norms
in �� ��� and �� .

By an input we mean a measurable and locally essentially
bounded function � � � � �, where � is a subinterval of
� which contains the origin. Whenever the domain � of an
input � is not specified, it will be understood that � � ��� .
The ���-norm (possibly infinite) of an input � is denoted by
���, i.e.,��� � ����� ��	������� � � � �	.

Given any input � and any � � �
� , the unique maximal

solution of the initial value problem �� � ���� ��, ���� � �
(defined on some maximal open subinterval of �) is denoted
by ���� �� ��. When � � ��� , this maximal subinterval has
the form 
�� 	����. The system is said to be forward complete
if for every initial state � and for every input � defined on
��� , 	��� � �
. The corresponding output is denoted by
���� �� ��, that is, ���� �� �� � ������ �� ��� on the domain of
definition of the solution.

We use standard terminology: � is the class of of con-
tinuous, increasing functions from 
��
� to 
��
�; � is
the subset of � functions that are zero at zero and strictly
increasing; �� is the subset of � functions that are un-
bounded;  is the set of functions 
���
� � 
���
�
which are continuous, decreasing, and converging to � as
their argument tends to �
; � is the class of functions

��
�� � 
��
� which are class � on the first argument
and class  on the second argument. A positive definite
function 
��
�� 
��
� is one that is zero at � and positive
otherwise.

The following notion was introduced in [12]:

Definition 2.1 The system (1) satisfies the unboundedness
observability (UO) property if, for each state � and control �
such that 	��� 

, it follows that

�� ��	
������

����� �� ��� � �
�



The detectability notion that will be investigated throughout
this note was introduced in [2].

Definition 2.2 The system (1) is integral input-output-to-
state stable (iIOSS) if there exist some � � �, �� � and
� � �� such that

������� �� ���� � ����� � �� �

� �

�

��������� � ��������� ��

(2)
for all � � 
�� 	����, all � � �� and all �. �

In order to provide asymptotic characterizations of iIOSS
we will show that the property is equivalent to a differ-
ent detectability notion, the so called Input-Output-to-State
Stability, of a suitably augmented system. For the sake of
completeness we recall the following definition (see for in-
stance [15] and [10] ).

Definition 2.3 The system (1) is input-output-to-state sta-
ble (IOSS) if there exist some � � �, �� � � and �� � �
such that

����� �� ��� � ����� � �� � �������� � ��
������������ (3)

for all � � 
�� 	����, all � � �� and all �. �

Clearly, the IOSS property implies the UO property.

3 A preliminary result on iIOSS

The following result of independent interest will be needed
in order to prove the asymptotic characterizations in Theo-
rem 2. The proof is only sketched and deferred to a forth-
coming paper.

Proposition 3.1 Assume that system (1) satisfies, for some
� � �, �� ��� � and � � �� the estimate

������� �� ���� � ����� � �� �

� �

�

��������� �

�

� �

�

��������� ��� ������������� (4)

for all � � 
�� 	����, all � � �
� and all inputs �. Then the

system is integral IOSS. �

Proof. Let us assume without loss of generality that � � ��
in (4) (if this is not the case just consider � �� ������ ��	
). Choose any smooth� � �� with the property that �Æ� �
���. We first look at trajectories of the following auxiliary
system:

�� � ���� ��������� � � ���� (5)

where the input signal � is assumed to take values in the unit
ball of �� . Let us denote by �	��� �� �� the solution of (5).

Since trajectories of (5) can be interpreted as solutions of (1)
corresponding to the input � � ����	���, we have by virtue
of (4):

����	��� �� ����

� ����� � �� �

� �

�

��������� � ������
	������ ��

�������������

� ����� � �� �

� �

�

��������� � ������
	������ ��

�� Æ ����	��������

� ����� � �� �

� �

�

��������� � ������
	������ ��

�����	���������� (6)

Now taking supremums over � � 
�� � �, � 
 	��
 yields

����	���� ���� � ����� � �� � ����	���� ������ �

�

� �

�

��������� � ������
	������ ��� (7)

Thus, subtracting����	���� ������ in both sides of (7) we can
conclude

����	��� �� ������ � ����	���� ������ (8)

� ����� � �� �

� �

�

��������� � ������
	������ ���

Let us denote by

���� �� �� �� ����	��� �� ������

� �

� �

�

�������	����� � ������
	������ ��� (9)

Then, consider the following definition of ���� � �� � �

���� �� ��	 ����� �� �� � � � �� � � ����	 (10)

Thanks to (8) we are able to show that the ���� is well de-
fined; in fact it is radially unbounded and decrescent:

�������� � ���� � ������ ��� (11)

Local Lipschitzianity of � can be shown along the same lines
as in [3]. The next step in the proof is to show that � cannot
increase too fast along trajectories. This follows by a tech-
nique similar to [2] by exploiting the definition of �. We
now follow an argument as in [2] in order to show that a
suitable locally Lipschitz iIOSS function � ��� exists and,
consequently, that the system is iIOSS as claimed. Notice
that an estimate as in (4) implies, for � � �, the so called in-
tegral Output-to-State Stability. We already know that this
is equivalent (see Lemma 3.3 in [7] ) to the existence of
a smooth function �����, positive definite and radially un-
bounded, such that:

���������� �� � ������� � ��������� �� � �� �
(12)



where � is positive definite and � � ��. By using a sim-
ilar argument as in [2], Proposition 2.5, we can show that it
is possible to rescale �� (and relaxing properness to semi-
properness) in order to satisfy the following dissipation in-
equality

� ������� �� � �������� � ���������� � ������� (13)

with �� positive definite and �� of class ��. Then, it is
straightforward following the same lines as in [2] to show
that � ��� �� ������ � ���� is an iIOSS-Lyapunov function.
Then a system satisfying (4) is iIOSS.

The proof of Proposition 3.1 relies on a (locally Lipschitz)
converse Lyapunov Theorem for integral Input-Output to
State Stability. Since the result deserves attention in itself
we state it separately :

Theorem 1 A system as in (1) is integral Input-Output to
State Stable if and only if it admits a smooth iIOSS-Lyapunov
function, viz. there exist ��� �� � ��, �� � � �, � pos-
itive definite and � ��� � �� � � such that ������� �
� ��� � ������� and for any � in �� and any � in ��

�� ������� �� � ������� � ������ � ��������� (14)

4 An IOSS formulation of integral IOSS

The main result in this section is to estabilish equivalent for-
mulations of integral IOSS in terms of asymptotic detectabil-
ity notions. We first introduce the following auxiliary sys-
tem: ������

�����

�� � ���� ��
��� � ������
��� � ���������

� � 
��� ���
�

(15)

The following Proposition is central for the proof of our
Main Result.

Proposition 4.1 A system as in (1) is integral IOSS if and
only if the auxiliary system (15) is IOSS with respect to the
output �. �

Proof. Let us first show that IOSS of (15) implies integral
IOSS. We let � � 
��� ��� ���

�. By hypotesis we know that
the following estimate holds along trajectories of (15):

����� �� ��� � ������ �� � ������������ � ������������ (16)

where � is of class � and ��� �� are of class ��. In par-
ticular, for ����� � � and ����� � �, equation (16) yields

����� �� ��� � ����� 
��� �� ���� ���

� ������ �� � ������������� � �������������

� ������ �� � ������������

� ��

�� �

�

��������� � ��������� �� ����� ��

	
(17)

Letting � � �����
�� we have

������� �� ���� � �
�
������ �� � ������������

� ��

�� �

�

��������� � ��������� �� ����� ��

		

� ��������� ��� � ����������������

� � Æ ���

�� �

�

��������� � ��������� �� ����� ��

	

� ������ � �� � �������������

�

� �

�

��������� � ��������� �� ����� �� (18)

Application of Proposition 3.1 to the estimate (18) is enough
to conclude integral IOSS of system (1).

Let us look now at the converse implication. Clearly:

������� � ���������� � ���������

������� � ���������� � ���������

Thus, in order to show IOSS of the auxiliary system (15) we
only need to find suitable estimates for the �-component of
the extended state �. Now, by virtue of integral IOSS, there
exist class �� functions �� �� � and � of class � so that

������� �� ����

� ����� � �� �

� �

�

��������� � ��������� �� ����� ��

� �������� � �� � ������� ������� ������� ������

� �������� � �� � �������� �������� �������� �������

� �������� � �� � ���������� (19)

It is straightforward from (19) and by exploiting the weak
triangular inequality to show that IOSS of the auxiliary sys-
tem holds.

5 Asymptotic characterizations of integral
IOSS

Before stating our main results we need the following defi-
nitions:

Definition 5.1 A system as in (1) is zero-input locally stable
modulo output (O-LS) if for for any � � �, there exists Æ  �
� such that for any � satisfying �������� ���������	 � Æ, it
holds that

����� �� ��� � � � � � 
�� 	������� (20)

�



Definition 5.2 A system as in (1) is zero-input locally sta-
ble modulo integral output (O-iLS) if for for any � �
�, there exists Æ � � such that for any � satisfying
��������


 �
� ��������� ��	 � Æ, it holds that

����� �� ��� � � � � � 
�� 	������� (21)

�

Definition 5.3 A system as in (1) enjoys the IO-LIM prop-
erty if for some ��� �� � �, all � � �

� and all measurable
����

��
����������

����� �� ��� � ������������� ��������	� (22)

where the � � �� norms are taken over 
�� 	���� �

It was one of the main results in [4] that:

IOSS � 
IO-LIM � zero-input O-LS��

Therefore, by means of the above equivalence and exploiting
Proposition 4.1, it is possible to derive asymptotic character-
izations of integral IOSS.

Definition 5.4 A system as in (1) enjoys the bounded input-
output energy converging state property if there exists �
and � such that for all � � �� and all measurable inputs �
the following implication holds:

� ��

�

��������� � ��������� �� 
 �


� �� ��
����

����� �� ��� � � (23)

�

Definition 5.5 A system as in (1) enjoys the bounded input-
output energy frequently bounded state property if there ex-
ists � and � such that for all � � �

� and all measurable
inputs � the following implication holds:

� ��

�

��������� � ��������� �� 
 �


� �� ��
����

����� �� ��� 
 �
 (24)

�

Our main result is as follows:

Theorem 2 Given a system as in (1), the following facts are
equivalent:

1. the system is integral IOSS

2. the system is zero-input O-iLS and BIOE-CS

3. the system is zero-input globally iOSS and BIOE-FBS

Proof. Implication �� � follows immediately from the def-
inition of iIOSS. We show next �� �.

According to Theorem 1 applied to the zero-input system,
iOSS implies the existence of a smooth function � � �� �
��� , such that ������� � � ��� � ������� for some ��� ��
of class �� and along trajectories

�� ������� �� � ������� � ���������� (25)

for some �� function �� and some positive definite �. By
exploiting the class �� function lemma in [2] it follows
from (25) that:

�� ������� ��

� �� ������� �� � ��� �������� ��� ���� ����

� ������� � ���������� � ������������� (26)

with �� of class �� and � of class � . Along the same
lines as in Lemma 4.10 of [2], equation (25) is equivalent
to the existence of a semi-proper function ���� (viz. result-
ing from the composition of a proper function � ��� with a
class � function ) which satisfies the following dissipation
inequality:

��������� �� � �������� � ������� � ����������� (27)

with �� positive definite. Let �� � ������� �	 and �� �
������� �	 where �� � are as in definition 5.5. Pick � �
�
� and � with


�
�

���������� � ���������� �� 
 �
. By
the BIOE-FBS assumption,

 �� �� ��
����

����� �� ��� 
 �
�

We want to show  � �. By contradiction, assume
 � �. For any ! � �, let "�!� � ������	� ����. By
semi-properness of ���� there exists # � � such that
"�#� � "�� � � �. We let 	 be such


 ��

� ���������� �
���������� �� 
 "�#� � "�� �. By the BIOE-FBS as-
sumption there exists � � 	 such that ����� �� ��� 
 � .
By virtue of (25), for all � � �

� ����� �� ��� � � ����� �� ���

�

� �

�

���������� � ���������� ��




� ��

�

��������� � ���������� ��


 "�#� � "�� � (28)

Hence � ����� �� ��� 
 "�#� 
 "�
� for all � � � and
hence ���� �� �� is uniformly bounded, because semi-proper
Lyapunov function have compact sublevel sets. Let �# � �



be such that ����� �� ��� 
 �# for all �. Therefore we have by
virtue of (26)

�� ������� �� � ������� � ���������� � �� �#��������

This is enough to conclude that, for the considered trajectory,
a � function � and � of class �� exist so that

������� �� ���� � ������ �� �

� �

�

��������� � ���������� ��

and therefore, along the same lines as in Proposition 6 of
[13], ����� �� ��� � �. This implies  � � which is clearly
a contradiction.

We are only left to show �� �. Let (1) enjoy the BIOE-CS
property and consider the auxiliary system (15), where �
and � are the energy supply functions, as in definition 5.4.
By virtue of BIOE-CS we have that (15) satisfies

���� 
 �
 �

� �

�

��������� � ��������� �� 
 �


� �� ��
����

����� �� ��� � �� (29)

Therefore the following asymptotic property is true for any
choice of �� and �� in ��:

�� ��
����

����� �� ��� � ������������� ��������	� (30)

for any � � �
� and any measurable ����. Since ������ �

���� for all � � � system (15) satisfies the IO-LIM prop-
erty. We show next that zero-input iO-LS of system (1) im-
plies zero-input O-LS of the augmented system (15). Before
going ahead though, we remark that this completes the proof
of Theorem 2; in fact by the main result in [4], IO-LIM and
zero-input O-LS imply Input-Output to State Stability of 15,
and this is equivalent (by virtue of Proposition 4.1 ) to inte-
gral IOSS of system (1). Let � � � be arbitrary. We define
�Æ �� Æ����, where Æ is generated as in definition 5.2.
Then we have the following implications:

�����
��� ������ ������� � ���������	 � �Æ

� �������� ������	 � �Æ and����
� �

�

��������� ��

���� � ������� ������ � ��Æ � Æ��

� ����� �� ��� � ��� � �
���� �� ���� ������� � � (31)

that is the auxiliary system (15) is zero-input locally stable
modulo output.
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