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Abstract

The port-Hamiltonian formalism is a very powerful tool for de-
scribing dynamical systems and their interconnections and for
designing control laws with specified energetic properties. In
this paper, in particular, it is shown how a variable structure
control can be designed in this general framework in order to
achieve a passive systems with, additionally, the robust prop-
erties obtainable with variable structure systems. Simulation
results obtained with a 2-dof manipulator are reported and dis-
cussed in order to validate the proposed approach.

1 Introduction

Output regulation is one of the main challenges in controlling
nonlinear dynamical systems, and several different methodolo-
gies have been proposed in the literature to tackle this problem,
among many others see [3, 4]. Very often, control techniques
validity depends on the kind of dynamical system to be con-
trolled, and various model structures have been studied, e.g.
Lagrangian models [7] and models affine in the input [3].

A powerful modeling language is the port Hamiltonian formal-
ism, [13], that allows to model any physical system explic-
itly showing both energetic properties and dynamical invari-
ants (Casimir functions). Moreover, a port Hamiltonian model
of a system immediately reveals its passivity properties. There-
fore, from the control point of view, global stability can be eas-
ily achieved by means of passivity-based control techniques,
such as damping injection, [13, 9], and intrinsically stable con-
trol schemes both for telemanipulation,[10], and for haptic de-
vices, [11, 2] have been developed. Furthermore, the port
Hamiltonian formalism has been recently extended to infinite-
dimensional systems, [6].

A useful control technique for the output regulation of port
Hamiltonian systems is the so-called energy shaping. This
technique can be fruitfully applied to systems described in
this form since their energy properties appear explicitly in the
model expression. It is well known that any physical system,
with no forcing action, assumes a configuration in which its to-
tal energy function assumes a (possibly local) minimum value.
Unfortunately, very rarely the minimum of the potential energy
coincides with the desired configuration. The energy shaping

control technique overcomes this limitation: loosely speaking,
it consists of two steps. In the first one, the total energy of
the plant is shaped by means of a proper state feedback law
in order to assign a minimum in the desired configuration (en-
ergy shaping), then dissipation effects are introduced in order
to to have a (globally) asymptotically stable equilibrium point
(damping injection).

A possible drawback of the energy shaping technique is that an
exact knowledge of the system physical parameters is needed
to correctly shape the energy function: this is not always true in
practical applications. A consequence is that the energy func-
tion does not assume its minimum in the desired configuration
and some regulation errors are introduced. The aim of this pa-
per is to overcome this drawback by using variable structure
control techniques [12], which are intrinsically robust with re-
spect to model uncertainties. Furthermore, the passivity (and
therefore the stable behavior) of the overall system will be pre-
served and a possible saturation of the actuators will be taken
into account by properly designing the controller.

This paper is organized as follows: in Sec. 2, a background
on energy shaping techniques for port Hamiltonian systems is
introduced and applied to an n-dof, fully actuated mechanical
system. The well known PD + gravity compensation (PD + g)
controller results to be a particular case of this control tech-
nique. In Sec. 3, it is shown how the saturation of the actu-
ators can be taken into account without loosing the passivity
property of the proposed control scheme. Then, in Sec. 4, a
variable structure algorithm that properly shapes the energy of
the closed-loop systems and assures optimal regulation perfor-
mances even in presence of model errors is presented. Simula-
tion results are presented in Sec. 5 in order to prove the validity
of the proposed control scheme, while comments and indica-
tions about future work are discussed in Sec. 6.

2 Background

Consider a port Hamiltonian system with dissipation (PHD sys-
tem)

{

ẋ = [J(x) − R(x)]
∂H

∂x
+ G(x)u

y = GT(x)∂H
∂x

(1)

with x ∈ X , u ∈ U ⊂ R
m, y ∈ Y ≡ U∗, being U∗

the dual of U , and H : X → R the Hamiltonian (energy)
function. Moreover, suppose that J(x) = −JT(x) and that
R(x) = RT(x) ≥ 0, ∀x ∈ X ; J(x) and R(x) are, respec-
tively, the interconnection and the damping matrices.



Let xd ∈ X be a desired configuration in the state space. It is
well known that, if it is possible to find a state feedback law
u = β(x) such that the dynamics of the resulting closed-loop
system is given by

ẋ = [Jd(x) − Rd(x)]
∂Hd

∂x

where Jd(x) and Rd(x) > 0 are desired interconnection and
damping matrices, then the system can be (globally) regulated
to xd in a passive way if the desired energy function Hd(x)
assumes a (global) minimum on X . This procedure is called
Interconnection and Damping Assignment (IDA); more details
can be found in [8].

Consider an n-dof fully-actuated mechanical system with gen-
eralized coordinates q ∈ Q. If p = M(q)q̇ ∈ T ∗Q are the
generalized momenta, with M(q) the inertia matrix, a PHD
representation of this system can be obtained by assuming in
(1) dim(X ) = 2n and m = n, then defining x := [ q p ]

T,
H(q, p) := 1

2
pTM−1(q)p + V (q), where V (q) is the potential

energy, and, finally,

J =

[

0 In

−In 0

]

R =

[

0 0
0 D(q, p)

]

G =

[

0
B(q)

]

with D(q, p) = DT(q, p) ≥ 0 taking into account the dissi-
pation effects. Moreover, assume rank(G) = n, since the me-
chanical system is fully actuated. These considerations lead to
the following model










[

q̇

ṗ

]

=

[

0 In

−In −D

] [

∂qH

∂pH

]

+

[

0
B

]

u

y = BT∂pH

(2)

Suppose that qd ∈ Q is a desired configuration in the joint
space. If the IDA control technique is applied, one of the possi-
ble feedback law that allows to regulate the mechanical system
in qd assumes the following form:

u = B−1

[

∂V

∂q
−

∂Ha

∂q
− KD

∂H

∂p

]

(3)

where Ha : Q → R is chosen in order to have a (global) mini-
mum in qd and KD = KT

D ≥ 0 in order to have D + KD > 0.
Then, the closed-loop dynamics of (2) with input given by (3)
becomes

[

q̇

ṗ

]

=

[

0 In

−In −(D + KD)

] [

∂qHd

∂pHd

]

(4)

with

Hd(q, p) =
1

2
pTM−1(q)p + Ha(q) (5)

The state feedback law (3) shapes the total energy by compen-
sating the effect of the potential V (q) and by introducing a new
potential Ha(q) with a minimum in the desired configuration;
then, some damping is added in order to dissipate energy so that
the new minimum can be reached. The most critical point in the

implementation of this control technique is that a perfect com-
pensation of the original potential contribution is necessary in
order to have a steady state regulation error equal to zero. This
compensation requires a perfect knowledge of all the robot’s
parameters; if this is not the case, the mechanical system stops,
but not in the desired configuration, as discussed in Sec. 4.

If in (3) it is assumed

Ha(q) =
1

2
(q − qd)

T
KP (q − qd) (6)

with KP = KT

P > 0, then

u(q, p) = B−1

[

∂V

∂q
− KP (q − qd) − KD q̇

]

that is the well-known PD + g controller, [1, 5]. Its action can
be interpreted as the effect of a set of n linear springs acting in
the joint space with center of stiffness in qd.

3 Saturated springs

As already pointed out at the end of Sec. 2, the PD + g con-
troller can be interpreted as a set on n linear springs with center
of stiffness in qd. In order to extend this controller to take into
account the saturation of each actuator, some non-linearity in
the energy function of the springs can be introduced.

It is well known that a spring is an element storing potential
energy whose behavior can be described by Fig. 1. The input
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Figure 1: Energy storing element behavior

u is the deformation rate of the extremum of the spring, x is
the state associated to the spring and E(x) is a lower bounded
function representing the stored energy. The output y is the
force applied by the spring.

The simplest springs are the linear ones, i.e. springs whose
energy function are quadratic:

E(x) =
1

2
xTKx (7)

where K = KT > 0 represents the stiffness. The force applied
by the springs turns out to be:

f =
∂E

∂x
= Kx

In the case of mechanical systems (e.g. robots), each compo-
nent of the force is applied to the plant by means of an actuator.
Intuitively speaking, if the amount of stored energy increases
too much, then the force generated by the springs, that is the
force that the actuators have to apply, can be greater than the



physical limits of the actuators themselves. If the robot is con-
trolled by means of the PD + g controller, this situation can
happen e.g. if the initial error is sufficiently high.

For simplicity, assume that K = diag(k1, . . . , kn), that is the
spring energy in (7) can be written as

E(x) =

n
∑

i=1

Ei(xi) =
1

2

n
∑

i=1

kix
2

i

Then, suppose that each actuator is limited, i.e. fi,m ≤ fi ≤
fi,M , i = 1, . . . , n. Consider xM = (x1,M , . . . , xn,M )
and xm = (x1,m, . . . , xn,m) such that fi,M = kixi,M and
fi,m = kixi,m. The saturation of each actuator can be taken
into account if the following energy function is introduced:

Es(x) = E1,s + · · · + En,s (8)

where

Ei,s(xi) =







fi,m

[

xi −
1

2
xi,m

]

, if xi < xi,m
1

2
kix

2

i , if xi,m ≤ xi ≤ xi,M

fi,M

[

xi −
1

2
xi,M

]

, if xi > xi,M

(9)

The passivity properties of the spring are preserved since the
proposed energy function is C1 and bounded from below.

The energy function of a 1–dimensional spring and the rela-
tive force in function of the state are represented in Fig. 2 both
for the non-saturated and saturated case. Clearly, the energy
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Figure 2: Energy and force of non saturated (continuous) and
saturated (dashed) spring.

functions start to differ in the saturation zone. When the stored
energy becomes infinite, the force generated by a non-saturated
spring increases to infinity, while it remains limited for the sat-
urated case.

The saturation of each actuator can be taken into account in the
(passive) control of a robot if in (3) it is assumed

Ha(q) =

n
∑

i=1

Ei,s(qi − qi,d) (10)

where Ei,s(·) is defined as in (9), ki > 0 can be freely as-
signed, and fi,m, fi,M depend on the characteristics of the i-th
actuator. Since Ha(·) is characterized by a (global) minimum
in qd, the control action (3) still assures the (global) stability of
this configuration.

4 A variable structure algorithm for energy
shaping

As already pointed out in Sec. 2, the closed loop dynamics of
system (2) with input (3) is given by (4), where Hd is a function
bounded from below. It is well known that

dHd

dt
= −

∂THd

∂p
(D + KD)

∂Hd

∂p
< 0 (11)

until ∂Hd

∂p
= q̇ 6= 0. Since Hd is bounded from below, nec-

essarily q̇(t) = 0 for some t = t̄; moreover, the possible con-
figurations in which the robot stops are clearly given by the
solutions of the following equation:

∂Hd

∂q
(q, p)

∣

∣

∣

∣

p=0

= 0 (12)

or, in the case of perfect compensation of the potential V (q),
by:

∂Ha

∂q
(q) = 0 (13)

If Ha is characterized by a global minimum in q = qd, e.g. as in
(6) or in (10), then the robot reaches the desired configuration
qd.

The key point is that a perfect compensation of the original po-
tential energy of the robot has to be implemented. If this is not
the case, then some regulation errors will be present. Suppose
that V̂ (q) is an estimate of the potential term in H(q, p); then,
(3) becomes

u = B−1

[

∂V̂

∂q
−

∂Ha

∂q
− KD

∂H

∂p

]

(14)

and the resulting closed loop dynamics is still given by (4), but
with Hd now given by

Hd(q, p) =
1

2
pTM−1(q)p + Ha(q) − ∆V (q) (15)

where ∆V (q) = V̂ (q) − V (q). Since (11) holds, the final
configurations the robot can assume are still solutions of (12),
or, equivalently, of

∂Ha

∂q
=

∂∆V

∂q
(16)

Even if Ha is characterized by a (global) minimum in qd, it is
not sure that this configuration can be reached.

In order to make the control law (3∼14) robust also in terms of
performances with respect to unknown parameters, Ha, which
is freely assignable, can be chosen with a variable structure.
For example, assume

Ha(q) =
1

2

n
∑

i=1

ki[qi − qi,d + sign(qi − qi,d)q̄i]
2 (17)

where ki > 0 and q̄i > 0, with i = 1, . . . , n. It is possible to
prove that, if

∣

∣

∣

∣

∂∆V

∂q

∣

∣

∣

∣

≤ M < ∞ (18)



and if q̄i, i = 1, . . . , n, are properly chosen, then the control
law (14) with Ha given by (17), can drive the system in q = qd.
The proof is immediate in the case that a perfect compensation
of the potential V (q) is possible, that is if ∆V (q) = 0: in fact,
in this situation, Hd is characterized by a global minimum in
(qd, 0).

Suppose, then, that ∆V (q) 6= 0 and, in particular, that (18)
holds and consider a generic initial condition (q0, p0). Define
σ := [σ1, . . . , σn], where

σi =

{

1 if qi,0 − qi,d ≥ 0
−1 if qi,0 − qi,d < 0

only depends on the initial condition. Then, assume that the
control input u is given by (14), but with Ha given by:

Ha(q) =
1

2

n
∑

i=1

ki(qi − qi,d + σiq̄i)
2 (19)

If, with a proper choice of q̄, this continuum control input can
drive the robot in a final configuration q∗ such that

{

q∗ − qi,d < 0 if qi,0 − qi,d > 0 (σi = 1)
q∗ − qi,d > 0 if qi,0 − qi,d < 0 (σi = −1)

(20)

then an instant t̄ such that q(t̄) − qd = 0 has to exists. Con-
sequently, the variable structure controller resulting from (14)
and (17) makes the configuration q = qd globally attractive
and, clearly, globally stable.

The final configuration q∗ assumed if u is given by (14∼19)
are solution of (16), that is

q∗i − qi,d + σiq̄i =
1

ki

∂∆V

∂q
(q∗) (21)

Since the values q̄i, i = 1, . . . , n have to be chosen according
to (20), it can be deduced that

q̄i >
M

ki

, with i = 1, . . . , n (22)

With this choice, the configuration q = qd is globally attractive
and stable. In Fig. 3, the behavior of the proposed controller is
presented.

The actuator saturation can be taken into account by introduc-
ing the saturated springs of Sec. 3. If Ei,s is the energy function
of a saturated spring as reported in (9), suppose that

Ha(q) =
n

∑

i=1

Ei,s[qi − qi,d + sign(qi − qi,d)q̄i] (23)

Then, the final configurations the robot can assume if u is given
by (14) are the solutions of (16). If

|max(fi,m, fi,M )| > M

(

≥
∂∆V

∂q

)

(24)

i = 1, . . . , n, then in the steady state configuration none of
the actuators is in saturation. A consequence is that, if q̄i, i =

PSfrag replacements

qi − qi,d

Ha(·)

qi,0

q∗i

0−q̄i q̄i
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Figure 3: Behavior of the proposed controller. The initial error
qi,0 − qi,d is greater than 0, but q̄i is chosen in such a way that
all the possible steady state configurations q∗, if Ha is given
by (19), satisfy q∗i − qi,d < 0. If the variable structure of the
controller deriving from (17) is adopted, then the system is con-
strained in qd.

L1 = L2 = 1 m Links lengths
Lg1 = Lg2 = 0.5 m Center of mass
M1 = M2 = 20 Kg Links mass
I1 = I2 = 5 Kg m2 Links inertia
D1 = D2 = 0 N m s Viscous friction

g = 9.81 m / s2 Gravity acceleration

Table 1: Parameters of the considered manipulator.

1, . . . , n, are chosen according to (22), then the controller is
able to regulate the robot in qd that will be an asymptotically
stable configuration.

In conclusion, even in presence of modeling uncertainties, a
variable structure passive controller (14), with Ha given by
(17) or (23), if the saturation of the actuators is taken into ac-
count, is able to drive the system in the desired configuration.

5 Case study

In order to test the control algorithm presented in Sec. 3 and
in Sec. 4, a 2 dof planar manipulator has been considered.
The main parameters of the manipulator are reported in Tab. 1.
The manipulator is subject to gravity force active in the nega-
tive y direction. In the following, some simulation results are
reported in order to show the features of the proposed con-
troller in comparison with the classical PD + gravity com-
pensation regulator. As a reference case, a simulation with
the PD + g compensation controller is reported. A fixed set-
point p = (1.75, 0.1) has been assigned as desired goal for
the tip of the manipulator, corresponding to joint positions
q1 = −0.4453 rad and q2 = 1.0048 rad. In this case, the
dynamic parameters are supposed to be perfectly known. As
expected, the errors nicely tend to zero, as shown in Fig. 4. In
this case, the control parameters are Kp = diag(6000, 6000),
Kd = diag(1100, 1100). The final errors are ex = −0.0001,
ey = 0.000064 (m) corresponding to eq1

= 0.0047 and



0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Norm of cartesian errors; ex (dot), ey (dash)

[m
]

time    [s]

0 0.5 1 1.5
−60

−40

−20

0

20

40

60

80
Norm of joint errors; eq1 (dot), eq2 (dash)

[d
eg

]

time    [s]

0 0.5 1 1.5
−2500

−2000

−1500

−1000

−500

0

500

T
au

1

Torques

0 0.5 1 1.5
−2000

0

2000

4000

6000

8000

T
au

2

time    [s]

Figure 4: Simulation results with PD+g(q): errors and torques.

eq2
= −0.0141 (deg).

Results obtained with the proposed controller are reported
in Fig. 5, with the same control parameters as in the pre-
vious case for the PD part, i.e. Kp = diag(6000, 6000),
Kd = diag(1100, 1100) while q̄ = diag(0.1, 0.1). Also in
this case, the desired configuration is reached without errors.
Note the behavior of the torques: after a transient, when the
errors are null, a switching behavior takes place in order to
constrain the state on the desired configuration (correspond-
ing to the minimum of Ha). The final errors in this case are
ex = 1.1433e − 005 and ey = −1.9248e − 006 (m), corre-
sponding to eq1

= −0.0006 and eq2
= 0.0013 (deg).

If the robot parameters are not perfectly known, the PD + grav-
ity compensation scheme is not able to reach the desired con-
figuration. This case is shown in Fig. 6, where, as limit case, it
is assumed that the parameters m1 and m2 are not known at all
(i.e. the values m1 = m2 = 0 are assumed). As expected, the
robot reaches a different final configuration and the final errors
are not null: ex = −0.0098, ey = 0.1134 (m), eq1

= −3.2861
and eq2

= −0.84212 (deg). The corresponding simulation with
the proposed controller is shown in Fig. 6. Note that in this case
the desired configuration is reached without errors. In this case,
the final errors are ex = −1.2406e− 006, ey = 0.000017 (m),
q1 = −0.0005 and q2 = −0.00003 (deg).

Finally, the case of saturation has been considered. A saturation
value of 800 Nm has been considered for the actuators. Results
obtained with the proposed controller (and no knowledge of
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Figure 5: Simulation results with the proposed control scheme:
errors and joint torques.
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Figure 6: Simulation results with partial knowledge of mass
parameters: PD + g controller (top) and proposed controller
(bottom).



the parameters m1 and m2) are reported in Fig. 7. Errors in
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Figure 7: Simulation results with partial knowledge of mass
parameters and saturation: torques and errors.

this case are ex = −9.0561e − 006, ey = 1.2897e − 005 (m),
q1 = 0.000056 and q2 = −0.00098 (deg).

6 Conclusions and future work

In this paper, a variable structure control based on passivity
and energy shaping considerations has been presented. Simula-
tion results, obtained with a two-dof planar manipulator, show
the validity of the proposed approach. Future work, besides a
comparison with existing VS control law, will address the ex-
perimental verification of the proposed control technique on an
industrial robot, as well as the application to the tracking prob-
lem.
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