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Abstract

In this paper it is proposed a solution to the regulation problem
of a second order system with delayed input. The delay which
affects the input is assumed to be bounded but uncertain. The
behaviour of the system, under the action of the proposed con-
trol strategy, results to be a persisting oscillating one due to the
delay of the input.

1 Introduction

The analysis and control of systems with time delays (TDS) are
currently receiving much attention from both the engineering
and mathematical communities. The increasing interest in this
research area is motivated by several factors. As technologi-
cal progress brings the need to steadily enhance performances,
there grows the requirement to increase the precision of math-
ematical models of the system dynamics. The introduction in
the system modeling of previously neglected delays is just an
example of this trend. Another major motivation is related to
the rapidly spreading of communication networks and informa-
tion technologies, in which delays play an important role.
On the control side, delays operate in two main forms. Indeed,
apart from the need to control systems in which the evolution is
governed by equations of retarded type (delay in the state vari-
able), in practice it usually happens that time delays are also
introduced through the same control channel (delay in the in-
put variable). This second kind of delay is caused either by the
actuators (e.g. in [1]) or the measurement devices (e.g. in [3])
or both (see also [10]). In this paper we focus our attention on
this type of time lag, in the framework of the control of second
order systems.
Classical control methods performances can be substantially
deteriorated by the delays action, thus specific controllers have
to be designed to overcome these problems (for a survey see
e.g. [13]).
Important requirements such as robustness with respect to ex-

ternal disturbances have to be taken into account. Sliding mode
control (SMC) extension to TDS has been studied in view of
exploiting its robustness properties (surveys about this topic
can be found in [13, 14, 9]). Many of these results only con-
sider delays in the state: here the SMC philosophy does not
change, one just has to carefully choose the “right” sliding sur-
face.
The nature of the problem is instead completely altered if we
consider the combination of an input delay in a relay-type con-
troller. In this case the delay induces oscillations around the
sliding surface and also causes complex bifurcation phenom-
ena [8, 6, 4, 5, 7]. The same authors in [4] also considered sec-
ond order relay control with time delay. The resulting motions
acquire an oscillating behaviour and it is shown that every tra-
jectory has a finite limit frequency. Also, the property of zero
limit frequency is a stable one and the stability properties of
steady modes and oscillatory solutions are investigated..
In this paper we analyse the effect of an input time-delay on a
particular second order sliding mode control approach [2]. This
algorithm, which is related to time optimal bang-bang controls,
assures a faster transient and lower control bounds when com-
pared to other strategies of the same kind. This of course can
be very useful when delays affect the system, since in this case
the closed loop behaviour is for example strictly connected to
the amplitude of the feedback gain (see e.g. [9] in the SMC
case). The aim is to understand the impact of input time delays
on the control scheme, in the view of using this knowledge to
adapt the algorithm to the control of TDS. In this paper, the
analysis is carried out in the case of an unperturbed double in-
tegrator. This choice allows one to directly find the relevant
terms governing the evolution of the closed loop and thus to
study the asymptotic properties of the system trajectories. It is
shown that whatever the choice of the control parameters, for
any fixed constant input delay, the limit state evolution is peri-
odic. The dependence of the amplitude of the limit cycle in the
phase plane on the delay, the control modulus and the control
parameters is also presented. In Section 2 we briefly describe
the structure of the existent control algorithm, while in Section
3 we state our problem and study the effect of the input delay
on the system evolution. Section 4 is devoted to the applica-



tion of the obtained results to the control of a double integrator
subject to an unknown bounded input delay.

2 Second order control systems

In this section we consider, from a general point of view, the
behaviour of second order systems and introduce the control
algorithm in [2].
To highlight the ideas behind this control method, we start with
an observation about first and second order differential inequal-
ities .
When a system satisfies a differential inequality of the first or-
der (e.g.ẏ1y1≤−h2|y1|), either when a Lyapunov like inequal-
ity holds (e.g. V̇ ≤ −K

√
V), the qualitative behaviour of the

worst case solution, that is the solution corresponding to the
equality sign, is inherited by all the solutions satisfying the in-
equality. Indeed, when a second order differential inequality is
involved, different evolutions are possible.
It is easy to show that the trajectories of a system which sat-
isfies a differential inequality of the typëy1y1 ≤ −h2|y1| are
characterized by a focus in the origin of the phase plane. A
sequence of singular points{y1(tMi ), tMi : ẏ1(tMi ) = 0} is gen-
erated and the related behaviour can range from either explo-
sive or persistently oscillating to the desired stable one. The
control objective of steering bothy1 and ẏ1 to zero can be
stated in terms of the convergence property of the sequence
of {y1(tMi )} and the associated sequence

{
∆tMi = tMi − tMi−1

}
.

Indeed if the two sequences are strictly contractive, that is
|y1(tMi )|
|y1(tMi−1)| ≤ ρ < 1 and

∆tMi
∆tMi−1

≤ q < 1 limi→∞ y1(tMi ) = 0 and

∑∞
i=1(tMi − tMi−1) = T < ∞, at t = T bothy1 andẏ1 are steered

to zero.
The following control algorithm [2] can be successfully applied
to the perturbed double integratorż1 = z2, ż2 = h(z)+d(z)w af-
fected by uncertain terms for which constant bounds are known
|h(z)|< H, 0 < d1 < d(z) < d2.

Algorithm 1:

Whent = 0, setz1M = z1(0), i = 0, tMi = 0.

During the control interval, that is∀t ∈ [0,∞), the following
steps are performed:

If z2(t) = 0 then setz1M = z1(t), i = i +1, andtMi = t.

It is applied the control

w(t) =−W(t)sign

[
z1(t)− 1

2
z1M

]
(1)

W(t) =
{

WM z1M

[
z1(t)− 1

2z1M

]
> 0

αWM z1M

[
z1(t)− 1

2z1M

]
< 0

WM > max
(

H
d1

, 4H
3αd1−d2

)
α > 1, α 6= d2

3d1

It can be proved [2] that, despite of the uncertainties, if the
control amplitude is sufficiently high, the application of the
control strategy (1) generates a sequence of successive singular

points{z1(tMi ), tMi : z2(tMi ) = 0}, and this sequence is strictly

contractive, that is

∣∣∣z1(tMi+1)
∣∣∣

|z1(tMi )| ≤ q < 1. Moreover, the reach-

ing time is a series of positive elements upper-bounded by a
geometric series with ratio strictly less than one. Therefore,
∑∞

i=1(tMi − tMi−1) = T < ∞.

3 Control of a double integrator with delayed
input

The control system we are going to study is the following
{

ẋ1 = x2

ẋ2 = u(t− τ), u(θ) = u0(θ) θ ∈ [−τ,0] (2)

which is a simple double integrator with scalar controlu, where
we assume that the input is subject to a fixed delayτ ∈ (0,τM]
with known upper boundτM. This delay can be interpreted
as either a delay in the actuators or in the sensors in the case
of feedback control. Our goal is to study the behaviour of the
second order sliding algorithm presented in Section 2 when ap-
plied to the retarded system (2).

3.1 Control algorithm

We slightly modify the notation of the previous section in the
definition of the control law. For simplicity we choose to fix the
control modulus to a positive constantU , while we introduce
a new parameterγ ∈ (0,1) to analyse the effect of anticipating
or retarding the control switching (the situation described in
Section 2 corresponds to the choiceγ = 1/2). Thus we define
the following control law for the system (2).

Algorithm 2: Whent = 0, setx1M = x1(0).

For t ∈ [0,∞), we do the following:

if x2(t) = 0 we update the valuex1M by settingx1M = x1(t);

next we apply the control

u(θ) =−U sign(x1(θ)− γx1M ). (3)

3.2 Closed loop analysis

In this section we analyse the effects of our control law on the
system trajectories. In particular, since the system is of retarded
type, we show that in the limit the system trajectory is periodic.
Thus in the phase space its graph draws a loop, which in this
case is an ellipse centered at the origin. We prove the conver-
gence to this limit cycle and evaluate its amplitude, showing
how it depends on the control parameters and the delayτ.
The evolution of the closed loop system is closely related to
that of the trajectory’s intercepts with thex1 axis, on which the
structure of the control is based. Therefore let us suppose that
at the initial time the position isx0 and the velocity is zero; to
fix ideas assumex0 > 0. We apply our control algorithm and
find the next intersection between the trajectory and thex1 axis.



The control is set tou0(θ) =−U if θ ∈ [−τ,0) and

u(θ) =−U sign(x1(θ)− γ x0) , θ ≥ 0.

Would there be no delay, the control sign would change once
the trajectory reaches a point(γ x0,x∗2), for somex∗2 < 0. Since
the control law acts with delay, the switching will take placeτ
instants later. Using the equations of motion it is easy to get the
value of the positionzm at the switching time

zm = γ x0−U
2

τ2− τ
√

2Ux0(1− γ). (4)

Since the control modulus is constant, the trajectories describe
branches of symmetric parabola, therefore the next intersection
with thex1-axis will take place at the position

x̂0 = x0−2(x0−zm) = (2γ−1)x0−Uτ2−2τ
√

2Ux0(1− γ).

Now, if sign(x0x̂0) > 0, the system trajectory will produce what
we shall call acurl. In fact once the position̂x0 is reached, the
control structure changes, and so does the control sign. How-
ever, due to the input delay, this change will really affect the
system after it has acquired a little velocity. The change of sign
in the acceleration will then annihilate it and produce another
intercept, closer tox0 by a quantityUτ2 (see Figure 1). As the
behaviour of the closed loop is based on the convergence of the
sequence of intercepts, in the presence of a curl the significant
intercept is the second, so we define

x1 = x̂0 +Uτ2max{0,sign(x0x̂0)}.
Recursing the process and making the necessary changes for
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Figure 1: Due to the input delay, the system trajectory produces
a curl.

negative values of the position, we get the following sequence:
givenx0 ∈ IR, let

δ = Uτ2, α = 2γ−1, β = 2
√

δ (1−α)

and fork = 0,1,2, . . .

x̂k = αxk−sign(xk)(δ +β
√
|xk|)

xk+1 = x̂k +δ sign(xk) max{0,sign(xkx̂k)} (5)

The following Lemma proves that there can only be a finite
number of curls.

Lemma 3.1 For all choices of the control parameters and any
delayτ there existsk0 ≥ 0 such that

xkx̂k < 0 for all k≥ k0.

Moreover, for anym≥ 0 we have

l |xk0+m+1|= f (|xk0+m|) = f ( f (|xk0+m−1|)) = . . .

= f m+1(|xk0|), (6)

with f (x) =−α x+β
√

x+δ .

Proof. See [11].

The analysis of the convergence of the sequence of intercepts
is therefore based on the evolution of the discrete dynamical
system given by the iterates of the functionf in (6). Generally
speaking, sequences of this kind can show a chaotic behaviour
(see for example [12]). However it can be shown that, in our
framework, this is never the case. In fact one can prove that
the sequence{|xk|} is either definitely monotone or contractive
and thus convergent.

Proposition 3.1 For all choices of the control parameters, any
delayτ and any initial valuex0 the sequence

|xk+1|= f (|xk|) = f k+1(|x0|), (7)

with f (x) = −α x+ β
√

x+ δ , converges to the unique fixed
point of f

x̄ = δ
3−α +2

√
2(1−α)

(α +1)2 .

Proof. See [11].

From Lemma 3.1, the values of the intercepts of the system
trajectory of the closed loop (2)-(3), possibly after a transient,
evolve according to the following algorithm:

givenxk, xk+1 =−sign(xk) f (|xk|), f (x)=−α x+β
√

x+δ .

Proposition 3.1 then shows that in the limit fork tending to
infinity the sequence bounces from the pointx̄ to its symmetric
−x̄. Therefore the trajectory becomes periodic and its limit
cycle can be easily deduced from the motion equations.

Corollary 3.1 The solution of the closed loop (2)-(3) shows a
limit cycle in the phase plane. This is an ellipse centered at the
origin; if we set

g(α) =
2

(α +1)2 (3−α +2
√

2(1−α)), α = 2γ−1

the lengths of its axes onx1 andx2 are respectively

d1 = Uτ2g(α), d2 = Uτ 2
√

2g(α).
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Figure 2: Closed loop phase plot

In Figure 2 we show as an example the simulation results ob-
tained for the following choice of the parameters: the delay is
set toτ = .2, the initial condition is given byx1(0) = x0 = 5,
x2(0) = 0, u0(θ) = 0 for θ ∈ [−τ,0) and the control parameters
areγ = .65andU = 4 (thusx≈ 0.5).
Lastly, we also make this remark about the convergence to the
limit trajectory. As the sequence{xk} is absolutely convergent,
however small we chooseε > 0, after a finite number of steps
the sequence will belong to(−x̄− ε,−x̄+ ε)∪ (x̄− ε, x̄+ ε).
Consequently for anyε > 0 there exist a finite timeTε and
a boundary layer setΓε around the limit trajectory such that
(x1(t),x2(t)) ∈ Γε for t ≥ Tε (Figure 3).
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Figure 3: The boundary layerΓε

4 Control under an unknown bounded input
delay: an example

Let us suppose we are given a control system in the form
(2), affected by a constant unknown input delayτ > 0. Sup-
pose moreover that a boundτM for this delay is known, i.e.
τ ∈ (0,τM]. Then, using the analysis carried out in the previous
section, it is possible to tune the control parametersγ andU
in such a way that the sequence{xk} has a suitable behaviour
under anyτ ∈ (0,τM]. More precisely, using equation (4), one
can define a time-varying control modulusU =U(t) and an an-
ticipationγ so to obtain a suitable sequence of switching points

zm.
In Figures 4 and 5, we show some simulation results obtained
using the following technique: letτM be the delay bound. Set
the constantUM to an a priori fixed upper bound for the con-
trol modulus and choose two positive constantsr,ρ so that
r, r + 2ρ < 1. If xk is the value of the more recent intercept,
we set

U = min

{ |xk|
τ2

M

r, UM

}
, γ =

1
2
(1+ r)+ρ .

The control strategy is carried out taking into account the ne-
cessity to avoid drastic reduction of the control modulus by
verifying, at any control time interval, the reduction rate.
In Figure 4 we show the evolution of the position and the veloc-
ity and the phase plane forτM = 0.5, τ = 0.3, UM = 4, r = 0.3
andρ = 0.1, while in Figure 5 we haveτM = 1.1 andτ = 1. In
both cases these choices impose the asymptotically decreasing
nature of the sequence{|xk|}.
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Figure 4: Position, velocity and phase plane withτM = 0.5 and
τ = 0.3.
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Figure 5: Position, velocity and phase plane withτM = 1.1 and
τ = 1.

5 Conclusions

In this paper we studied the effect of an input delayτ on a
second order sliding mode control. When the system is un-
perturbed we showed that the system trajectory converges to a
limit cycle. The amplitude of the oscillations of the measured
variable is shown to beO(Uτ2) if the modulusU of the control
is constant. Based on this analysis, a control algorithm is pro-
posed for the regulation of a double integrator with unknown
bounded input delay.
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