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Abstract  
 
In this paper an overview on polynomial based analysis 
methods for application to robust stability of linear systems 
subject to uncertain parameters is presented. A comparison 
among the most important Kharitonov type approaches 
proposed in literature and their applicability to the flight 
control law clearance problem of highly augmented aircraft is 
also discussed. A novel algorithm is then proposed, which can 
deal with high order uncertain dynamic aircraft models within 
reasonable computation time by introducing some degree of 
approximation in determining the clearance region's shape. 
Application to robustness analysis of an augmented small 
scale unmanned aircraft is finally presented, whose uncertain 
high order open loop dynamic model has been tuned with in-
flight experimental data. 

1 Introduction 
The proposed clearance analysis technique is mainly based on 
some theoretical results that allow verification of whether the 
eigenvalues of an uncertain (linear) dynamic system belong to 
a predetermined region D of the complex plane (Robust D-
stability problem). This allows a direct application of the 
proposed method for clearance of the unstable eigenvalue 
criterion [11]. The proposed method might also be used for 
any linear clearance criteria that can, in some way, be mapped 
in a test on system eigenvalue locations in the complex plane. 

In the past, a large effort has been spent to deal with the 
robust stability problem of linear systems subject to uncertain 
parameters. A strong impulse to the research has been given 
by the paper of Kharitonov [12], where a necessary and 
sufficient condition for robust stability of a family of 
polynomials with uncertain coefficients has been provided. 
Although an elegant mathematical result, Kharitonov’s 
theorem is not suited to engineering applications since it 
assumes uncorrelated polynomial coefficients. Indeed, in 
practical situations, the coefficients of the characteristic 
polynomial of a given system depend on the same physical 
parameters which implies that the coefficients themselves are 
related to each other. Kharitonov’s result has been introduced 
in the western literature by Barmish [5]. Since then many 
papers have been published on this topic, trying to extend the 
original result to cope with more general parameter 
dependencies and/or to take into account also performance as 
well as stability. We recall the work by Petersen [14], which 
extends Kharitonov’s theorem to deal with the so-called 

robust D-stability problem (see definition 1), with D a given 
domain in the complex plane (see for example Figure 1); the 
fundamental result by Bartlett et al [6], which states that to 
check stability of an uncertain polynomial with coefficients 
ranging into a given polytope it is necessary and sufficient to 
check the edges of the polytope; the works by Sariderely and 
Kern [16], Tesi and Vicino [17], Cavallo et al [7], all dealing 
with robust stability analysis of uncertain polynomials with 
coefficients depending affinely on parameters ranging in a 
given box. These results together with further insights on the 
topic can be found in [11]. Unfortunately the above results are 
not useful when: a) the characteristic polynomial depends on 
parameters in a nonlinear way (this is the case of many flight 
control applications as shown in [8]), and/or b) we are 
interested in the more general problem of determining the 
region shape in the parameter space where the system is 
robustly D-Stable. 

In this context an algorithm will be described which allows to 
deal with the two issues mentioned above. This algorithm is 
based on the results provided in [7] and on a method for 
adaptive grid generation. More precisely, in [7] a necessary 
and sufficient condition for the D-stability of an uncertain 
polynomial depending affinely on parameters is given, while 
here a procedure to approximate a nonlinear vector function 
with a minimal set of affine ones is proposed. 

Roughly speaking, this algorithm uses these results to: 

1) determine a set of boxes whose union includes the initial 
uncertain parameter region and such that, in each box, the 
uncertain polynomial coefficients can be considered to be 
affinely dependant on parameters, 

2) compute the actual D-stability region in the parameter 
space by applying the algorithm proposed in [4,9] to each 
box of the above step. 

In this way the D-stability region is approximated up to the 
desired resolution by the union of the final resulting boxes 
which satisfy the condition given in [7]. 

The key point to guarantee that the stability region found via 
this way converges to the true stability region, is that the 
errors due to the use of a set of affine functions instead of the 
actual non linear vector function (which gives the 
characteristic polynomial coefficients of the uncertain system) 
can be neglected if the boxes are sufficiently small. This is 
always true when the mapping of the parameter space into the 
polynomial coefficient space is continuous. 
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Fig. 1 - Typical D-Stability domain in the complex plane 

2 Theoretical Background 
Let us consider an uncertain linear system described by the 
differential equations: 

)()()( tt xπAx =&           (1)  

where ( ) nRt ∈x  and ( )ππ AA →→ × ,: nnk RR , is a 
continuous matrix-valued function of the parameter vector π, 
Rn is the model state space (of dimension n) and Rk is the 
uncertain parameter space (of dimension k). In this context, 
we need the following definition. 

Robust D-Stability: 

Given the compact set kR⊂Γ  (i.e. a region in the parameter 
space) and the open domain D in the complex plane, system 
(5.1) is said to be robustly D-stable in Γ if 

( )( ) niDi ,..,1 , =∈πλ A , for all Γ∈π , where λι(Α) denotes 
the i-th eigenvalue of the matrix A. 

In other words, system (1) is defined to be robustly D-stable if 
its poles all belong to a given region D of the complex plane 
(see Figure 1 for an example), for each point π in the 
uncertain parameter region Γ. Note that, when D coincides 
with the left half of complex plane, we simply talk to about 
robust stability. 

Now let us refer to the system described by Eq.(1) and let 
( ) ( )ππ aa →→  , : . nk RR , the vector-valued function 

containing the coefficients of the characteristic polynomial of 
the matrix ( )πA . We denote by: 

( ) ( )aa ,,..., ,  : 1 spaaPRL T
n

nn →=→  

where 

n
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the linear operator mapping a vector of Rn into Pn, the set of 
monic polynomials of degree n. Finally, define the compound 
operator aoLLa =: . From a robust D-stability point of view, 

the complete behaviour of system (5.1) is described by the 
following family of monic polynomials: 

{ }ΓΓ ∈⋅= ππa |))(,()( pLa      (2) 

Indeed it is clear that the system described by eq. (1) is 
robustly D-stable within the given set Γ if and only if the 
roots of all polynomials belonging to the family La(Τ) are in 
the domain D. Now consider the following problem. 

Problem 1: 

Determination of the Robust D-Stability Region in the 
parameter space Rk . Determine the region Π∗

D⊂ Rk such that 
system (1) is robustly D-stable in Π∗

D. As we shall see, the 
idea behind the polynomial coefficient based approach 
proposed here is that of approximating the D-Stability Region 
Π∗

D by the union of boxes in the space Rk. To check 
robustness in the given box, it is necessary to have a 
procedure to solve the following basic problem. 

Problem 2: Basic Problem 

Given a box Π∗
D⊂V, determine if system (1) is robustly D-

stable in V. With the methods currently available in the 
literature, the above stated Basic Problem can be solved 
without conservatism when the dependence of the 
characteristic polynomial on parameters is affine (see 
[6,7,16,17]). 

The nonlinear dependence has been considered in [15] and 
[10] (multiaffine dependence), while in [13] a multivariate 
dependence has been assumed. In these last papers the 
stability analysis is performed by introducing fictitious 
parameters which allow the multivariate dependence to be 
transformed into a multiaffine one. Then the test is performed 
(at the price of some conservatism) on the fictitious 
multiaffine characteristic polynomial by using one of the 
approaches proposed in the literature. Another algorithm 
dealing with nonlinear dependency on parameters, 
implements the idea proposed in [3]. In this approach, known 
as the Polytopic Covering approach, the image of the given 
nonlinear function is “immersed” into that of an affine 
function. In [2] it is shown that the polytopic covering 
approach leads to less conservative results than those 
obtainable with other methods. 

The main drawback of these "polytopic set covering" based 
methods is that the dimension of the parameter space in which 
the D-stability analysis algorithm needs to be applied, can 
dramatically increase. 

In [4] it has been shown that good results can be achieved 
when the augmented parameter space dimension is at least the 
same as the polynomial order. For the aeronautical 
application under investigation and, specifically, in flight 
control law clearance problems, the order of the closed loop 
polynomial is too high to allow these methods to work well 
and to obtain results in reasonable time. 



 

3 The Proposed Algorithm 
Let us come back to the solution of Problem 1; here we 
consider a slight variation of the problem, taking into account 
the fact that in flight control problems the range of parameter 
variations or parameter uncertainties can be estimated. Thus, 
let us consider that: 

iii πππ ≤≤        ∀ i=1.. K   (3) 

where the underline is used to indicate the minimum value of 
a parameter while the overlain stands for the maximum value. 

Hence we have that π∈Π (i.e. a box in the parameter 
space), where 

[ ] [ ] [ ]kk ππππππ ,,, 2211 ×××=Π L     (4) 

Therefore, our goal is to determine the setΠD:= Π∗
D∩Π , 

where Π∗
D is the robust D-stability region defined in 

Problem1. 
The nonlinear mapping a(Π) can be approximated by a set of 
affine mappings, each of them suitably defined on a partition 
of Π. In other words, let us consider instead of a(Π), the 
following mapping: 
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where a*
i(Π)  is an affine approximation of a(Πι),  calculated 

by linear regression methods, and N is the number of subsets 
in which the initial box Π has been divided. It is expected that 
the D-stability region DΠ̂  corresponding to the polynomial 
coefficient mapping defined in (2) will approach the true 
stability region ΠD provided that the linear regression 
approximation error tends to zero as the volumes of boxes 
tend to zero. In this respect, the following procedure gives an 
approximate solution to Problem 1. It computes the boundary 
of the stability region DΠ∂  up to a desired resolution 
(actually an estimation DΠ̂∂  will be evaluated instead of 

DΠ∂ ). Any dependence of the system matrix on uncertain 
parameters can be covered. 
As said, the procedure is made up of two main steps: 
a. Compute an optimal partition {Πi} of Π (trying to 

minimise N, the number of subsets Πi) where the 
generic nonlinear map a(.) can be approximated by an 
affine map a*

i(.) in each Πi with a maximum estimated 
error of deps. The algorithm also stops when subsets Πi 
become smaller than a pre-defined grid size eps1. 

b. Compute (up to a desired resolution eps2) the D-stable 
region in the uncertain parameter space for each 
partition Πi by using the approximated affine vector 
function a*

i(.). 
Specifically, we can schematically describe the first 
procedure as follows: 

Procedure 1 – Adaptive Grid Generation 

Put the box Π in the List 

For each box of the List 

   Evaluate coefficients in the box vertices and in the       centre; 
   Compute an affine function approximation in the box (linear 
regression fitting); 
   Compute error derr (from linear regression algorithm); 
   If derr<deps or box <eps1 then add box to the final list; 

       Else divide box in sub-boxes and update List; 
    End 

End 

End of Procedure 1 – Adaptive Grid Generation 
In this procedure and in the second one, given a generic box 
V, the operation V  is defined as follows: 

ii lV k2,,1max
K==     (6) 

where li is the i-th side of the box V. In other words the size of 
the box is given by the length of the longest side of the box. A 
more sophisticated algorithm for adaptive grid generation (i.e. 
a grid where the number of partitions is not a priori defined) 
could be investigated and implemented to increase the 
reliability of the error fitting, but this work is beyond the 
scope of this chapter. 

The above procedure can treat points where the nonlinear 
vector function a(.) is not defined during the Evaluate 
statement. It should also be noted that by using mathematical 
manipulations, only dot products between matrixes and 
vectors (no matrix pseudo-inversion) are required, thus 
leading to a very fast algorithm. The only time consuming 
task is actually the evaluation of the nonlinear vector function 
in 2k+1 points for each examined box. More precisely, 
because 2k smaller boxes are generated each time we divide a 
box and the algorithm used for the Evaluate statement does 
not allow multiple evaluations of the same point in the 
uncertainty space, the maximum total number of polynomial 
coefficient evaluations after j steps (i.e. the number of 
evaluations required in case no boxes are below the maximum 
error deps) is: (2(j-1)+1)k+2(j-1)k. In other words, the maximum 
number of trimming and linearisations is equivalent to the 
number of evaluations performed with a grid of 2(j-1)+1 points 
for each uncertainty, plus all centre points of boxes generated 
at step j. Thus, the effectiveness of the proposed technique 
can be also assessed by comparing it with a grid of the same 
size. Furthermore, by putting j=1 in the above relation, the 
minimum number of characteristic polynomial coefficient 
evaluations is obtained, which is actually equivalent to only 
evaluate the polynomial coefficients in the vertices of Π (i.e. 
min/max combinations of the uncertainties), plus its centre 
point. 
The output of this first procedure is a list of boxes {Πi} where 
the initial nonlinear vector function can be considered affinely 
dependent on the uncertain parameters. 

The main steps of the second procedure are schematically 
listed below (see [4,9] for details). 



 

Procedure 2 – Computation of D-Stable Region 

Put the box set { }iΠ  in the List 

 For each box of the List 

  If cond(box) then 
    Compute eigenvalues of the system in the centre 
 point of box; 
    If all the eigenvalues belong to domain D then box is D-
stable; 
    Else box is D-unstable 
   Elseif box <eps2 then box is not D-stable 

   Else divide box in sub-boxes and update List 
  End 

 End 

End of Procedure 2 - Computation of D-Stable Region 
Given a generic box V, the logical operation cond(V) gives a 
necessary and sufficient condition that guarantees the box V is 
entirely included in the D-stable or D-unstable regions of 
parameter space. For the sake of brevity, we do not detail the 
procedure here, but only highlight that it is based on the 
simple knowledge of the polynomials coefficients in the 
vertices of the considered parameter space box (see [7] for 
details). Because in this procedure we use the affine vector 
functions {ai

*(.)} computed in procedure 1, evaluation of such 
vertex polynomial coefficients can be implemented with 
simple matrix and vector dot products, thus leading to a very 
fast execution time. Finally, it should be noted that 
eigenvalues of the system are only computed in the centre 
point of each box when cond(V) is true, so dramatically 
reducing the number of eigenvalue evaluations. 

4 System Description and Numerical Set-up 
The methods discussed so far have been used for checking 
stability of the control augmentation laws developed for a 
remotely piloted small scale aircraft. The latter is a 
commercial, one-third replica of a Piper PA-18 Super Cub, 
whose main features are given in Table 1. 

Aircraft’s main characteristics 

Wingspan 3.85 m 

Length 2.53 m 

Wing area 2.21 m2 

Take-off weight 30 kg 

Engine Two-stroke, 10 kW 

Cruise speed 25 m/s 

Table 1 
The aircraft is equipped with a full set of navigation sensors, 
including an AHRS and a GPS system operating in 
differential mode. The stability and control laws are 
implemented onto the on-board, real-time flight control 
computer. The radio control commands can be switched 
during the flight between normal ‘RC modeler’ direct link 
mode and the augmented one.  

A 6DOF, rigid-body, non-linear simulation model of the 
aircraft, sensors and control laws has been developed under 

Matlab/Simulink to be used during the control laws design 
process. The aerodynamic database fitted into the model has 
been built either by numerical (CFD) and standard literature 
methods (ie. DATCOM), and it has been subsequently refined 
by in-flight testing. Both numerical and experimental data 
have been gathered to model the engine/propeller 
performances, and mass and inertia properties. 

The analysis tool implementing the two procedures described 
above has been developed under Matlab/Simulink. It allows a 
user to easily specify algorithm parameters. The main steps of 
the analysis cycle based on the use of this tool are: trimming 
and linearisation routine of the aircraft model, stability 
domain and uncertainty range specification, algorithm 
parameter setting and procedure running and result 
visualization. These steps have been performed to check 
system stability under variation of several couple of uncertain 
parameters. The dimension of the model state space for the 
linearized closed-loop system is 34. The minimum grid size 
(eps1) and the maximum estimated error (deps) set in the 
adaptive grid generation procedure (AGP) are 0.0313 and 
0.04 while the region shape resolution (eps2) in the D-
stability region shape computation procedure (RSC) is 
0.0156. Because all these parameters refer to a unity 
uncertainty interval, to obtain the right values in the treated 
cases it is necessary to multiply eps1  and eps2 per the range 
of the uncertain parameters.  

5 Results 
The analyses performed has been oriented mainly to clear the 
closed-loop controller robustness with respect to the 
uncertainties of the inertial and aerodynamic databases used 
for the simulation model. In the following, selected results of 
several analysis performed are presented. The left-half region 
of the imaginary plane has been selected as the D-stability 
domain. Since the on-board mass distribution can vary with 
changes of the installed equipments, some of the ‘inertial’ 
analysis’ results can also be interpreted as ‘allowed loading 
limits’. The aircraft is always trimmed in straight-and-level 
flight. Among the inertial parameters, the centre of gravity 
position and the moments of inertia have been considered. 
The longitudinal stability of an aircraft is strongly influenced 
by the longitudinal position of the aircraft’s centre of gravity, 
XCG. Figure 2 shows the cleared area for the closed-loop 
airplane, where Airspeed and XCG are considered as uncertain 
parameters, ranging respectively in [10, 40] m/s and [26, 56] 
percent of the mean aerodynamic chord. Since the controller‘s 
design point is at an airspeed of 25 m/s, and no speed 
scheduling has been implemented here, the cleared region is 
reduced at higher flight speed. The small not-cleared area on 
the left side is where the aircraft stalls. 

Results from an open-loop analysis with the same two 
parameters as above are shown in Figure 3, in order to 
evaluate the overall effect of the controller’s action, 
especially on the allowable c.g. range. 
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Fig. 2 

Two not cleared regions are present, which an additional 
analysis has shown to be caused by an unstable lateral-
directional spiral mode at low speed (trapezoidal dark area on 
the left side) and by the longitudinal instability  which occurs 
when the c.g. moves near and aft of the aircraft’s neutral point 
(upper dark area). The bound between the cleared region and 
the upper dark region marks the neutral point position. 
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Fig. 3 

The effect on the closed-loop stability of the c.g. position in 
the aircraft plane of simmetry at cruise airspeed is shown in 
Figure 4. Once again, the stability is strongly dependent by 
the longitudinal position, while the vertical position has only 
a negligible effect. The closed-loop controller’s robustness 
has been checked against the aerodynamic uncertainties 
which can affect the simulation model, especially if 
aerodynamic data are built from computational fluid 
dynamics codes.   
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A selected result from this analysis is shown in Figure 5, 
where variations in the ±50% range  have been considered for 
the wing-body pitching moment vs. angle of attack curve 
slope, and for the slope of the curve which gives the elevator 
contribution to the horizontal tail lift coefficient (the 
controller acts on the elevator to stabilize the aircraft). Since 
the former contribution is destabilizing, the “worst case” is 
given in the right lower corner of the parameters’ plane, for 
percentual uncertainties of +12% and –15% respectively.     
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Fig. 5 

Other than the type and quality of results, computational 
effort is another important aspect for evaluation of this 
method compared to conventional gridding methods. The 
most time consuming task is trimming and linearization of the 
aircraft model in a given point of the uncertain parameter 
space (this took typically more than 80% of total 
computational effort). For example, the completed analysis in 
the case of  Figure 5 has required 483 evaluated points while 
a conventional gridding method would obtain results of the 
same accuracy by evaluating 4225 points. These figures 



 

clearly demonstrate the capability of the proposed clearance 
methods to reduce computational effort up to 10 times less 
than conventional gridding ones, provided that the same 
resolution is used in determining region boundaries. This is 
obviously obtained at the expense of a much more 
complicated algorithm and of some degree of inaccuracy. 

6 Conclusions 
In this paper we illustrated the clearance results for the 
eigenvalue criterion obtained with the polynomial based 
approach proposed in [5]. This method basically determines 
the region(s) in the uncertainty space where all eigenvalues of 
a (linear) uncertain dynamic system belong to a pre-defined 
domain D in the complex plane. This technique can be used 
for analysing all clearance criteria which can be mapped in 
the locations of a system's eigenvalue. Also, any kind of 
dependence between the characteristic polynomial coefficient 
and the uncertain parameters can be taken into account. 

A key advantage with respect to classical methods, where 
analysis is conducted on simple discrete points, is that this 
technique allows the shape of cleared, not-cleared and 
trimmable regions in the uncertain parameter space to be 
determined. Because no assumption has been undertaken 
when choosing the kind of uncertain parameter to be 
investigated, this technique also allows the parameter space to 
be investigated continuously to determine the cleared regions 
in order to discover hidden weaknesses in this space and/or to 
gather information about further analysis to be conducted. 

Some further developments could also improve the results 
and applicability of this technique. For example, the adaptive 
grid generation algorithm can be improved to identify the 
parameters that are mostly not linear (this will give the 
possibility to reduce complexity to ~2l where l is less than the 
number of uncertain parameters). Also, some techniques can 
be investigated for extending applicability to other linear 
clearance criteria (like, for example, stability margins) which 
do not map directly in a condition on the location of the 
eigenvalues. For example, it is possible to map the stability 
margin criterion to a problem of robust stability which can be 
analysed with the proposed method. Extending the 
applicability of this method to other criteria gives, in 
principle, the opportunity to perform the analysis by using the 
same trim and linearization points evaluated by the adaptive 
grid generation algorithm (i.e. the adaptive grid is generated 
only once), thus leading to a computational effort only 
slightly higher than required for analysis of only one criterion. 

Finally, the results can be very easily interpreted: one can 
directly look at the regions in the uncertain parameter space 
where a clearance criteria is fulfilled. However, this image 
can be very difficult to plot and interpret when the number of 
uncertain parameters under consideration is more than three. 
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