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Abstract

In this paper we describe an approach for improving the qual-
ity of upper and lower bounds on the structured singular value
in the case of mixed real and complex uncertainty. The pro-
posed approach uses constrained non-linear optimisation to im-
prove the bounds on � generated by standard algorithms, and
is shown to be simple and computationally efficient to imple-
ment. The usefulness of the approach is demonstrated on the
problem of checking a stability margin clearance criterion for
a V/STOL aircraft flight control law.

1 Introduction

It is generally possible to arrange any linear time invariant
(LTI) closed-loop system which is subject to some unstructured
and/or structured type of norm-bounded uncertainty in the form
shown in Fig. 1, where P , K1 and K2 denote the plant, pre-
filter and feedback controller respectively. With respect to this
figure, unstructured uncertainty means that the uncertainty ma-
trix � is fully populated, while structured uncertainty means
that it has some (typically diagonal or block diagonal) struc-
ture. In the context of a flight control clearance problem, un-
structured uncertainty could correspond, for example, to un-
modelled high frequency aircraft dynamics, while structured
uncertainty is used to represent particular aircraft parameters
such as stability derivatives, inertias, etc, which are subject to
change, or known only to within a certain tolerance. Given a
model in this form, it is then straightforward to rearrange the
system into the form shown in Fig. 2, where M represents the
known part of the system (aircraft model and controller) and �
represents the uncertainty present in the system.

Partitioning M compatibly with the � matrix, the relationship
between the input and output signals of the closed-loop sys-
tem shown in Fig. 2 is then given by the upper linear fractional
transformation (LFT):

y = Fu(M;�) r = (M22 +M21�(I �M11�)�1M12) r
(1)

Now, assuming that the nominal closed-loop system M(s) in
Fig. 2 is asymptotically stable and that � is a complex un-
structured uncertainty block, the small gain theorem (SGT),
[1], gives the following result:

The closed-loop system in Fig. 2 is stable if and only if

�(�(j!)) <
1

�(M11(j!))
(2)

This result defines a test for stability (and thus a robustness
measure) for a closed-loop system subject to unstructured un-
certainty in terms of the maximum singular value of the matrix
M11.

For aerospace systems it is often the case that uncertainty can
be related to variations in specific aircraft parameters, such as
centre of gravity, inertias, stability derivatives etc. In such
cases, it is possible to generate models of uncertainty which
have a particular structure, and thus reduce the level of conser-
vatism in the robustness analysis. The generation of a struc-
tured LFT-based uncertainty model means that we have been
able to place all of the uncertainty affecting the system into an
uncertainty matrix � which has a diagonal or block diagonal
structure, i.e.,

�(j!) = diag(�1(j!); :::::;�p(j!)); �(�i(j!)) � k (3)

where k defines an upper bound on the size of the maximum
singular value of any uncertainty block � i. Now again as-
sume that the nominal closed-loop system is stable, and con-
sider the question: What is the maximum value of k for which
the closed-loop system will remain stable? We can still apply
the SGT to the above problem, but the result will be conserva-
tive, since the structure of the matrix � will not be taken into
account. The SGT will in effect assume that all of the elements
of the matrix � are allowed to be non-zero, when we know
that most of the elements are in fact zero. Thus the SGT will
consider a larger set of uncertainty than is in fact possible, and
the resulting robustness measure will be conservative, i.e. pes-
simistic.

In order to get a non-conservative solution, Doyle [2], intro-
duced the structured singular value �:

��(M11) =
1

min(k s.t. det(I �M11�) = 0)
(4)

The above result defines a test for stability (robustness mea-
sure) of a closed-loop system subject to structured uncertainty
in terms of the maximum structured singular value of the ma-
trix M11. Since it is always possible to introduce scalings to
make k equal to 1, the test for robust stability reduces to check-
ing that ��(M11) is less than one at all frequencies of interest.
A problematic issue in applying the structured singular value



theory is that its exact computation is NP hard [3], so that the
computational burden of the algorithms, which compute the ex-
act value of �, is necessarily an exponential function of the
size of the problem. It is consequently impossible to compute
the exact value of � for large dimensional problems associated
with complex industrial systems. A usual solution in this case
is to compute upper and lower bounds on � - if these are suf-
ficiently tight, then little information is lost. Note that to fully
exploit the power of the structured singular value theory, tight
upper and lower bounds on � are required. The upper bound
provides only a sufficient condition for stability in the presence
of a specified level of structured uncertainty. The lower bound
provides a sufficient condition for instability, and also returns
a worst-case �, i.e. a worst-case combination of uncertain pa-
rameters for the problem, [4].

The degree of difficulty involved in computing good bounds on
� depends on (a) the size of the � matrix, and (b) whether � is
complex, real or mixed. For systems whose uncertain dynam-
ics give rise to purely complex � matrices, polynomial time
algorithms are available to compute upper and lower bounds,
[5]. Both bounds converge to exact � for low order prob-
lems and extensive computational experience, [6], has shown
that the bounds remain quite tight even for complex high order
problems.

For purely real � problems, examples appear in the literature
which show that � can even be a discontinuous function of the
problem data, [8]. For real � problems with a physical engi-
neering motivation, however, it is shown in [7] that discontinu-
ity problems do not arise, and convergent upper, [9], and lower,
[10], bound algorithms for � exist. Unfortunately both of these
algorithms are exponential time, and thus in practice this limits
the size of the � matrix to about 11, which is much too small
for many practical problems. Various approaches have been
proposed to address this problem - see for example, [11, 4, 12],

For mixed real and complex uncertainty, polynomial time al-
gorithms are available for calculating both upper and lower
bounds on �. The upper bound algorithms use LMI based
optimisation, [13], while the lower bounds are generated via
power algorithms, [15, 16]. The upper bound is generally quite
tight, but the quality of the lower bound depends heavily on the
amount of complex versus real uncertainty present in �. If the
real uncertainty dominates, the lower bound will often be quite
poor, and thus the true worst-case uncertainty combination can
not be calculated. Another problem with standard algorithms
for computing � is that they employ a frequency gridding, so
that for problems which give rise to sharp peaks in the � plot,
the true worst case can easily be missed. In this paper we pro-
pose an approach based on constrained non-linear optimisation
to address both of the above problems.

2 Worst-Case Stability Margin Criterion

A basic requirement of the flight clearance process is to prove
that the aircraft is stable over the entire flight envelope with
sufficient margin against instability for all known uncertainties

(worst-case combinations). The process consists of calculating
linear stability margins for the open-loop frequency response in
pitch, roll and yaw. These frequency responses are obtained by
breaking the loop at the input of each actuator or of each sensor
and are then plotted in Nichols diagrams where the required
phase and gain margins are shown as exclusion regions which
must not be violated by the plot.

In this paper, we consider single loop analysis, where the open-
loop frequency response is obtained by breaking the loop at the
input of each actuator or sensor, one at a time, while leaving the
other loops closed. For the nominal case, these Nichols plots
should not violate the outer exclusion region shown in Figure 3,
which corresponds to a minimum gain margin of �6 dB and a
minimum phase margin of�35o. When uncertainties are taken
into account, a boundary corresponding to �4.5 dB is used, as
shown by the inner exclusion region in the figure. For details
of the corresponding multi loop analysis, see [18].

In order to cast the above clearance criterion as a � problem,
the original Nichols exclusion regions shown in Figure 3 are
replaced with elliptical regions of the form shown in Figure 4,
[20, 21]. These elliptical regions are centered around the criti-
cal point (-180,0) and satisfy the equation

j L(j!) j2dB
G 2
m

+
(\L(j!) + 180)2

P 2
m

= 1 (5)

where L(j!) is the open-loop frequency response, Gm is the
desired gain margin and Pm is the desired phase margin.

Thus for example, any feedback system whose open-loop fre-
quency response avoids the regions A and B in Figure 4
provides gain and phase margins of �6dB= � 36:87Æ and
�4:5dB=�28:44Æ respectively (note that these values are very
close to those required under the classical exclusion regions
defined in Section 2). A key point is that for these particular
choices of gain and phase margins the corresponding exclusion
regions in the Nyquist plane are circles with (centre,radius)
given by (-1.25,0.75) for region A, and (-1.14,0.54) for region
B - see Figure 5. Thus, as shown in [20], we can represent
the Nichols exclusion region as a ‘fictitious’ multiplicative in-
put uncertainty for the scaled nominal plant. This uncertainty
can then be pulled out of the closed loop system along with
all the other uncertainties to form an LFT-based representation
of the uncertain system in the usual way - see [21] for a sim-
ple example. For single-loop analysis, the ‘fictitious’ uncer-
tainty representing the Nichols exclusion region is inserted in
one loop at a time, while in the multi-loop case it is applied
to all loops simultaneously. Note that this approach allows si-
multaneous variations of the uncertainty in all the loops of the
system and thus every possible combination of the phase/gain
offset is considered. In contrast, the classical approach assumes
the same phase and gain margin variation in each loop and also
checks for only a few points (usually the corners) in the exclu-
sion region. For a complete discussion of the flight control law
clearance problem the reader is referred to [19].



3 HWEM Aircraft and CL002 Control Law

The Harrier Wide-Envelope Model (HWEM) is a full non-
linear model of the Vectored-thrust Aircraft Advanced flight
Control (VAAC) Harrier, developed by QinetiQ Ltd. for re-
search on various aspects of flight control that are relevant to
Short Take-Off and Vertical Landing (STOVL) operations. The
flight control law for the HWEM analysed in this study is based
on VAAC Control Law 002 (CL002). It is a full three-axis
(pitch, roll and yaw) control law designed using classical meth-
ods. The study reported in this paper considers the pitch axis
only - for more details of the lateral/directional control laws
the reader is referred to [17]. Points in the flight envelope of
the HWEM from 200 knots to hover were to be analysed in the
clearance task. All flight conditions are defined for 1g straight
and level flight at an altitude of 200 ft AMSL. The angle of
attack range for all flight conditions is [�4o,+16o].

Five Category 1 (most significant) uncertain parameters are
specified for the longitudinal axis analysis and are shown in
Table 1. Further information about the uncertain aircraft pa-
rameters can be found in [17]. A “physical modelling” ap-
proach was used to generate an LFT-based uncertainty model to
represent the uncertain aircraft dynamics at a particular flight
condition, see [18] for details. Further details of the aircraft

Variable name [Min,Max] value Units
U Xcg [-1.72,-11.7] %MAC
U Iyy [56887,69529] kgm2

U Cmtail
[-20,+20] %

U Cmq [-20,+20] %
U Cm� [-20,+20] %

Table 1: Most relevant longitudinal uncertainties

model, control law and flight clearance process can be found in
[17, 18, 19].

4 Improving Mixed � Lower Bounds

Using the approach described in Section 2, the stability margin
clearance criterion was formulated as a mixed �-analysis prob-
lem for the HWEM aircraft model. The complex part of the un-
certainty matrix � represents the “fictitious” uncertainty asso-
ciated with the elliptical Nichols plane exclusion regions, while
the real part represents the uncertain aircraft parameters. Using
the standard algorithms in the MATLAB �-Analysis and Syn-
thesis Toolbox, [5], upper and lower bounds on � were com-
puted for this problem, and are shown in Figure 6. Clearly, the
standard lower bound algorithm is performing very poorly, due
to the fact that the real uncertainty in the � matrix is dominant.

In order to improve the lower bound returned by the standard
algorithm, we formulate the problem of computing a lower
bound for � as a search for the worst case (i.e. smallest) desta-
bilising uncertainty matrix �. Denote the real � i entries of �
by the vector p, and the complex � i entries by q. Thus, for an

n� n � matrix, define the vector x as

[x] = [p; q]T p 2 Rl; q 2 Cm; l +m = n (6)

For real scalar uncertainty this search can be formulated as an
equivalent constrained minimisation problem, f(x), over a fre-
quency range 
:

min f(x) = min
�i=1::l2R; �i=l+1::n2C; !2


��(�) (7)

subject to �(I �M11�) � � (8)

� in the above constraint is a user defined parameter (typical
values are in the range 10�6 to 10�9) which allows the set of
admissable �’s to be expanded or contracted as required. To
locate the minimising x, it is common for optimisation algo-
rithms to consider the first two terms of the Taylor approxima-
tion of f at a candidate x. This recasts the minimisation as the
well known quadratic programming problem:

f(x) �
1

2
xTHx + xT g (9)

where H is the symmetric matrix of second derivatives of f
and g is the direction of the gradient of f . There is a com-
prehensive literature relating to the solution of this problem
[22, 23]. In this paper, commercially available optimisation
software, [24, 25], has been used to solve eqn. (9). Here, f(x)
is minimised on a two dimensional subspace S = < s1; s2 >.
s1 is a vector in the steepest descent direction g so that the al-
gorithm demonstrates fast convergence, while s2 considers the
approximate Newton direction, i.e., H:s2 = �g, in an attempt
to locate a global minimum. f is minimised using a line search
on S:

min
�2[0;:::;1]

f : < �s1; (1� �)s2 > (10)

where a golden section approach is used on � to force fast con-
vergence of the line search. A feature of this approach is that a
destabilising � of appropriate structure is computed after each
iteration of the line search algorithm. Exit criteria can easily
be chosen for a particular problem so that at each frequency a
good estimate of the worst case destabilising � will be com-
puted. As the search for a worst case destabilising � is non-
convex, local minima can occur. A key issue with this approach
is therefore the selection of a good initial guess for the worst-
case � at each frequency. In fact, for the example considered
in this paper, application of the above approach with a random
initial guess for the worst-case � at each frequency produced
results that were generally not much better than those produced
by the standard algorithms. If the � computed by the standard
algorithms was used as the starting point for the optimisation,
however, dramatic improvements in the quality of the lower
bound can be achieved. As shown in Figure 7, for example,
the gap between the peak values of the upper and lower bounds
has been reduced from 0.2147 (with the standard algorithms)
to 0.0901 (using the proposed approach with � = 10�6) - an
improvement of almost 60%.

Computing times for the numerical optimisations involved in
the above approach are a function of the problem size, �, the



number of optimisation restarts, and also depend on internal
algorithm settings. For the example considered in this paper,
computing times to generate the improved lower bounds were
comparable to those required by the standard algorithms.

Extensive computational experience suggests that existing
mixed � upper bound software, [5], generally yields tight up-
per bounds. It is therefore reasonable to conclude that where a
lower bound on � does not track the upper bound quite closely
then the optimisation algorithm is locating a local minimum.
A number of additions to the basic algorithm can be tried in
an attempt to improve the lower bound on � at the expense of
some increase in computing times: (a) Reduce � in eqn. (7). A
smaller � reduces the gap between the upper and lower bounds
on � as the set of local minima satisfying eqn. (7) will now
be smaller. (b) Consider frequencies that are ‘close’ to a local
minimum. It is a straightforward extra step to consider a re-
gion very close to a candidate frequency that exhibits a poor
local minimum. The maximum lower bound in this region can
be significantly better than the initial candidate lower bound.
(c) Edit internal optimisation settings.

5 Elimination of Frequency Gridding

The problem of using a frequency grid to compute bounds on
� in the case where the � plot can have narrow and high peaks
has been well documented in the literature, [4, 26]. This issue
is of particular concern for many aeronautical applications of
�-analysis, where, for example, aircraft structural modes can
cause just such fine peaks in the � plot. Two standard solutions
to this problem are available. The first is to simply increase
the resolution of the frequency grid. The second is to trans-
form the original �-analysis problem into a so-called “skewed
�” problem, where the frequency is introduced as an uncer-
tainty into the � matrix of the LFT-based uncertainty model.
The maximum value of � over frequency can then be com-
puted directly, as shown in [26]. Although useful, both of the
above approaches have some serious drawbacks. Increasing
the number of points in the frequency grid is computationally
expensive, and (as we shall demonstrate) provides no guaran-
tee of improving the accuracy of the � bounds. Incorporation
of frequency into the LFT-based uncertainty model requires a
repeated real scalar uncertain parameter to be included in the
� matrix. The number of times this parameter is repeated is
equal to the number of states in the plant, therefore for high
order systems the result is often a huge increase in the size
of the � matrix. More importantly, the existence of repeated
real uncertainties is known to produce conservatism (and some-
times convergence problems) for the standard mixed � upper
bound algorithm, [5]. In this section we propose a new ap-
proach, based on constrained non-linear optimisation, which
allows “safer” computation of both upper and lower � bounds
without any extra conservatism being introduced.

We illustrate our approach using the same stability margin
clearance criterion for the HWEM aircraft model, formulated
as a mixed �-analysis problem, that was described in the pre-

vious section. For a frequency grid of 50 points over the
frequency range 0.01 rads/sec to 1 rad/sec, upper and lower
bounds were computed as shown in Figure 8. Note that in-
creasing the number of points in the frequency grid to 100 ac-
tually results in decreased (i.e. less accurate) bounds, as shown
in Figure 9. This somewhat surprising result can be explained
by noting that, due to the logarithmic spacing between 10�2

and 100, these 100 points will not include the original 50 points
as a subset. This therefore allows the theoretically possibility
that some point in the original 50 points could be nearer to the
� peak than any point in the subsequent 100. This seemingly
unlikely result is exactly what is observed to occur for our ex-
ample in Figures 8 and 9. To address this issue, we formulate
an optimisation problem

max
!2R

�(!) ; (11)

where the cost function is a � upper bound calculation using
standard � algorithms for a single frequency. Maximising this
cost function with respect to frequency is then expected to con-
verge to the frequency of the maximum � value. The same
approach is applied to the lower bound optimisation problem
simply by including ! in the search vector x defined in Sec-
tion 3. Solving the above optimisation problems using stan-
dard software and an initial grid of 50 frequency points led to
the results shown in Figure 10. Note that extremely tight up-
per and lower bounds have been computed (0.86026981 and
0.86026913 respectively). In addition, the peak value of � has
now been correctly identified, in stark contrast to the results
obtained using a frequency gridding approach.

6 Conclusions

This paper has described a new approach to computing bounds
on the value of the structured singular value �, in the case of
mixed real and complex uncertainties. Improved lower bounds
on � are obtained by using the worst-case uncertainties found
by standard algorithms as initial guesses for a constrained non-
linear optimisation problem. This optimisation problem can be
solved using standard software and has been found to be simple
and computationally efficient to implement. A new approach
to computing upper and lower bounds on � without the need
for a frequency grid was also described, which again makes
use of constrained non-linear optimisation. When applied to
a realistic aircraft control law analysis problem, the proposed
approach was shown to give much more reliable results, with-
out introducing any additional conservatism into the � bound
computation.
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Figure 2: Upper LFT uncertainty description
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Figure 3: Nichols stability margin boundaries (single loop anal-
ysis)
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Figure 4: Elliptical Nichols plane exclusion regions
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Figure 5: Corresponding circular Nyquist plane exclusion re-
gions
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Figure 6: � upper and lower bounds (standard mixed � algo-
rithms)
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Figure 7: Improved mixed � lower bound
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Figure 8: Standard and improved � bounds for 50 frequency
points
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Figure 9: Standard and improved � bounds for 100 frequency
points
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Figure 10: Optimisation based � bounds for an initial 50 point
frequency grid
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