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Abstract

We describe some new tools for the clearance of flight control
laws for highly augmented aircraft. The tools are developed
from general �-analysis methods, and are applied to the clear-
ance of a flight control law for a vertical/short take-off and
landing aircraft. Stability robustness analysis results for the
flight control law are presented in terms of the standard clear-
ance criteria currently used by the European aerospace indus-
try. Comparisons of the results obtained using �-analysis and
current approaches reveal that the new �-tools provide more
rigorous and efficient analysis of worst-case aircraft stability
characteristics in the presence of multiple sources of paramet-
ric uncertainty.

1 Introduction

Modern high performance aircraft are often designed to be nat-
urally unstable due to performance reasons and, therefore, can
only be flown by means of a controller which provides arti-
ficial stability. As the safety of the aircraft is dependent on
the controller, it must be proven to the clearance authorities
that the controller functions correctly throughout the specified
flight envelope in all normal and various failure conditions, and
in the presence of all possible parameter variations. This task
is a very lengthy and expensive process, particularly for high
performance aircraft, where many different combinations of
flight parameters (e.g. large variations in mass, inertia, centre
of gravity positions, highly non-linear aerodynamics, aerody-
namic tolerances, air data system tolerances, structural modes,
failure cases, etc.) must be investigated so that guarantees
about worst-case stability and performance can be made.

The aircraft models used for clearance purposes describe the
actual aircraft dynamics, but only within given uncertainty
bounds. One reason for this is the limited accuracy of the aero-
dynamic data set determined from theoretical calculations and
wind tunnel tests. These parameters can even differ between
two aircraft of the same type, due to production tolerances.
Moreover, the employed sensor, actuator and hydraulic models
are usually only approximations, where the nonlinear effects
are not fully modelled because they are either not known or
it would make the model unacceptably complex. The goal of
the clearance process is to demonstrate that a set of selected
criteria expressing stability and handling requirements is ful-

filled. Typically, criteria covering both linear and non-linear
stability, as well as various handling and performance require-
ments are used for the purpose of clearance. The clearance cri-
teria can be grouped into four classes: linear stability criteria,
aircraft handling/pilot induced oscillation (PIO) criteria, non-
linear stability criteria and non-linear handling criteria. This
paper focusses on the use of new analysis techniques for two
linear stability criteria - details of the other clearance criteria
can be found in [1].

To perform the clearance, for each point of the flight envelope,
for all possible configurations and for all combinations of pa-
rameter variations and uncertainties, violations of the clearance
criteria and the worst-case result for each criterion must be
found. Based on the clearance results, flight restrictions are im-
posed where necessary. Faced with limited time and resources,
the current flight clearance process employed by the European
aerospace industry uses a gridding approach, [1], whereby the
various clearance criteria are evaluated for all combinations of
the extreme points of the aircraft’s uncertain parameters. This
process is then repeated over a gridding of the aircraft’s flight
envelope. Clearly, the effort involved in the resulting clear-
ance assessment increases exponentially with the number of
uncertain parameters. Another difficulty is the fact that there is
no guarantee that the worst case uncertainty combination has
in fact been found, since (a) it is possible that the worst-case
combination of uncertain parameters does not lie on their ex-
treme points, and (b) only a few selected points in the aircraft’s
flight envelope can be checked. This paper outlines briefly a
new approach to the clearance problem based on the use of the
structured singular value analysis method. For full details of
the work described here the reader is referred to [2, 3].

2 Linear Stability Clearance Criteria

A basic requirement of the flight clearance process is to prove
that the aircraft is stable over the entire flight envelope with
sufficient margin against instability for all known uncertainties
(worst-case combinations). The process consists of calculating
linear stability margins for the open-loop frequency response in
pitch, roll and yaw. These frequency responses are obtained by
breaking the loop at the input of each actuator or of each sensor
and are then plotted in Nichols diagrams where the required
phase and gain margins are shown as exclusion regions which
must not be violated by the plot.

In single loop analysis, the open-loop frequency response is
obtained by breaking the loop at the input of each actuator or



sensor, one at a time, while leaving the other loops closed. For
the nominal case, these Nichols plots should not violate the
outer exclusion region shown in Figure 1, which corresponds
to a minimum gain margin of �6 dB and a minimum phase
margin of �35o. When uncertainties are taken into account, a
boundary corresponding to �4.5 dB is used, as shown by the
inner exclusion region in the same figure.

In multi loop analysis, the closed-loop system is required to
withstand the application of simultaneous gain and phase off-
sets, defined by the regions shown in Figure 2, at the actuators
or sensors without becoming unstable. To test for violations of

this criterion, a perturbation of the form K
�
1�Ts
1+Ts

�
is inserted

at, for example, the input of each actuator. WithK set to 1, T is
then varied simultaneously in each loop until the eigenvalues of
the closed-loop system go unstable. The phase margin is calcu-
lated as �PM = 2 � tan�1!T where ! is the frequency of the
generated undamped oscillation. K is then increased and de-
creased by 1.5 dB (corresponding to the right corner points of
the Nichols exclusion region shown in Figure 2) and T is again
varied for the new fixed gain until the eigenvalues become un-
stable. By setting T = 0 and varying K, the upper and lower
gain margins can be obtained (corresponding to the left corner
points of the Nichols diagram). These steps can be repeated for
any number of points around the required Nichols exclusion re-
gion. Due to the fact that the criterion must be evaluated over
all combinations of the aircraft’s uncertain parameters, this test
is in practice usually restricted to only a few points of the ex-
clusion regions (e.g. the four corners of each exclusion region).
In addition, the same gain and phase offsets are usually applied
simultaneously in all loops, to avoid testing over too large a
number of different combinations. Hence, it can be argued that
this method can in practice lead to optimistic results.

In addition to the stability margin criterion, the eigenvalues of
the closed-loop system must be calculated in order to identify
possible unstable (i.e. those with positive real part) eigenvalues
which do not appear in the Nichols plots. It is required to iden-
tify the flight cases where unstable eigenvalues occur and for
what tolerance combination these eigenvalues have the largest
real part. This test aims to determine the most severe cases of
divergent modes in the closed-loop system in order to allow an
assessment of their acceptability in terms of their influence on
aircraft handling. A typical boundary on the real part of the
eigenvalues is shown in Figure 3.

3 The HWEM Aircraft Model and Control Law

The Harrier Wide-Envelope Model (HWEM) is a full non-
linear model of the Vectored-thrust Aircraft Advanced flight
Control (VAAC) Harrier, developed by QinetiQ Ltd. for re-
search on various aspects of flight control that are relevant
to Short Take-Off and Vertical Landing (STOVL) operations.
For the purposes of this study, the HWEM, originally imple-
mented as a FORTRAN program, has been converted to a pure
SIMULINK model. Data for the model was derived from a
variety of sources, such as wind tunnel and flight test measure-

ments and theoretical predictions, obtained from various air-
craft [4]. The flight control surfaces comprise an all-moving
tailplane, ailerons, flaps, rudder and airbrake. With the excep-
tion of the rudder, all control surfaces are hydraulically pow-
ered. The power-plant is a Rolls-Royce Pegasus Mk. 103 tur-
bofan with four separate but coupled nozzles that allow the
direction of the thrust to be altered. High-pressure bleed air
from the engine compressor provides control at low speeds and
hover, when the aerodynamic control surfaces become ineffec-
tive. The bleed air is ejected through reaction control valves
(RCVs) in the wing tips (roll control), nose (pitch control) and
tail boom (pitch and yaw control). Since the RCVs are me-
chanically linked to the appropriate control surfaces, the need
for additional controls/actuators is avoided. Bleed air to the
RCV’s becomes progressively available as the nozzle angle is
increased, the system being fully pressurised when nozzle an-
gle exceeds 34o.

The flight control law for the HWEM analysed in this study is
based on VAAC Control Law 002 (CL002). It is a full three-
axis (pitch, roll and yaw) control law designed using classical
methods. The study reported in this paper considers the pitch
axis only - for more details of this control law and of the lat-
eral/directional control laws the reader is referred to [4].

Points in the flight envelope of the HWEM from 200 knots
to hover are to be analysed in the clearance task, [3], and all
flight conditions are defined for 1g straight and level flight at
an altitude of 200 ft AMSL. The angle of attack range for all
flight conditions is [�4o,+16o]. Five Category 1 (most sig-
nificant) uncertain parameters are specified for the longitudinal
axis analysis and are shown in Table 1. Further information
about the uncertain aircraft parameters can be found in [4].

4 LFT-based Uncertainty Modelling

In order to apply �-analysis tools to the HWEM model, the
uncertainties in the original non-linear aircraft model must be
represented in the form of linear fractional transformations
(LFT’s). In fact, it can be argued that the major difficulty
in applying �-analysis methods to real-world applications lies
in this initial modelling step. In recent years, the subject of
LFT-based uncertainty modelling has received much attention
and has been found to be a very deep problem - see [5] for
an overview. For linear systems, LFT-based uncertainty mod-
els can be derived numerically or physically from a given set
of linearised equations of motions. The method necessitates
the uncertain aircraft parameters to be explicitly defined in the
equations of motion and is generally easy to implement. For
non-linear systems, the problem of generating accurate LFT-
based uncertainty models is much more difficult. In general,
three different approaches can be identified, based on numeri-
cal methods, [6, 3], symbolic linearisation methods, [7, 3], and
physical modelling methods, [5, 3].

The approach applied in this paper is that based on physical
modelling principles. In this approach, the uncertainties are di-
rectly introduced in the non-linear SIMULINK model of the



aircraft in the form of multiplicative uncertainties, thus adding
extra ‘fictitious’ inputs and outputs, wi and zi respectively, at
the point in the system where the uncertainty �1 occurs. This
step is then repeated for each �i representing the uncertainty
in the other uncertain parameters. Now using standard block
diagram manipulation software (e.g. the function linmod in
MATLAB), the resulting non-linear model can be linearised
to calculate the transfer matrix of the system M with inputs u
= [w1, ..., wn, uc] and outputs y = [z1, ..., zn, ym], where uc
are the control inputs and ym are the measured outputs. The
LFT-based uncertainty model for the system is then given by
the relation

ym = Fu(M(s);�)uc (1)

where � = diag(�1, ..., �n)

Clearly, the approach outlined above is simple and intuitive and
allows an exact description of joint parametric dependencies in
the model. Thus, it can be used to non-conservatively model
the effect of the parametric uncertainties on the closed-loop
system. As a result, the exact worst case set of uncertain pa-
rameters can be computed. If each uncertainty is introduced in
only one location in the SIMULINK block diagram, the result-
ing LFT-based uncertainty model will also be of minimal order.
In addition, this physical modelling approach allows additional
uncertainties in the physical parameters (such as products of
the uncertainties) to be easily implemented in the model.

The main limitation of the approach is that detailed informa-
tion about the model and the uncertainties is required. Hence,
its application is restricted to those models that can be imple-
mented in a SIMULINK block diagram representation. An-
other drawback is that the dependence of the linearisations on
the uncertain parameters is ignored, and therefore it is not clear
how an LFT-based uncertainty model could be generated to
capture variations in flight parameters such as the angle of at-
tack or Mach number. Thus, unlike with numerical modelling
approaches, it is not possible to easily generate LFT-based un-
certainty descriptions that are valid over particular regions of
the flight envelope.

To determine the accuracy of the derived LFT-based uncer-
tainty model, it is vital, prior to any analysis, to validate it
against the original linearised and nonlinear model. Full details
of this process are given in [3]. Here, we give example results
for an LFT-based uncertainty model of the HWEM generated
at FC2. The five Category 1 longitudinal uncertainties from Ta-
ble 1 are considered, and responses for inputs on tailplane, noz-
zle angle and throttle were generated, [3]. Sample results for a
1 deg step input to the tailplane are shown in Figure 4. Figure 5
shows the same case when a random combination of the uncer-
tainties was used. In general, for small inputs, a good match
was obtained between the non-linear and LFT-based models,
although the match is not as good for random values of the un-
certainties (Figure 5) as it is for the nominal case (Figure 4).
This is to be expected, since the LFT-based model always uses
the same linearisation, which would, of course, be changed
by the variations in the uncertain parameters of the non-linear
model.

5 �-tools for evaluating clearance criteria

One approach for checking avoidance of Nichols exclusion re-
gions using � was proposed in [8, 9]. In this approach, the
original Nichols exclusion regions shown in Figure 1 are re-
placed with elliptical regions centered around the critical point
(-180,0) and satisfying the equation

j L(j!) j2dB
G 2
m

+
(\L(j!) + 180)2

P 2
m

= 1 (2)

where L(j!) is the open-loop frequency response, Gm is the
desired gain margin and Pm is the desired phase margin.

Note that for elliptical regions corresponding to gain and phase
margins of �6dB= � 36:87Æ and �4:5dB= � 28:44Æ, re-
spectively, the corresponding exclusion regions in the Nyquist
plane are circles with (centre,radius) given by (-1.25,0.75) and
(-1.14,0.54), [8, 3]. Now, as shown in [8], another way to
interpret the requirement for avoidance of, for example, the
circle (-1.14,0.54) in the Nyquist plane by the open-loop fre-
quency response L(j!), is to consider a plant subject to disc
uncertainty of (centre,radius) given by (+1.14,0.54) at each fre-
quency. It is then easy to see that avoidance of the (-1,0) critical
point in the Nyquist plane by L(j!) for all possible plants in
this set is exactly equivalent to avoidance of the exclusion re-
gion B by L(j!) for the original plant. The set of possible
plants can be represented as

P (s) = P1(s)(1:14 +�N ) (3)

where P1 is the original plant, �N is complex and k �N k1�
0:54. This is of course the same as writing

P (s) = 1:14P1(s)(1 +WN�N ) (4)

with WN = 0:47 and k �N k1� 1. In this way we can
represent the Nichols exclusion region as a ‘fictitious’ multi-
plicative input uncertainty for the scaled nominal plant. This
uncertainty can then be pulled out of the closed loop system
along with all the other uncertainties to form an LFT-based
representation of the uncertain system in the usual way -
see [10] for a simple example. For single-loop analysis, the
‘fictitious’ uncertainty representing the Nichols exclusion
region is inserted in one loop at a time, while in the multi-loop
case it is applied to all loops simultaneously. Note that this
approach allows simultaneous variations of the uncertainty in
all the loops of the system and thus every possible combination
of the phase/gain offset is considered. In contrast, the classical
approach assumes the same phase and gain margin variation in
each loop and also checks for only a few points (usually the
corners) in the exclusion region.

A second approach to casting Nichols plane exclusion region
specifications as a � problem was developed in [11]. This
method models the Nichols exclusion regions of Figure 1 using
a Padé approximation. The variations in the phase and gain are
represented by equations (5) and (6) respectively. The phase



offset is given by

� =

�
�max � �min

2

�
Æ2 +

�
�max + �min

2

�
(5)

The gain offset a (in dB) is represented as

a = Æ1(t�mÆ2) (6)

where Æ1 and Æ2 are normalised real uncertainties, and t and m
characterise the top limit line of the exclusion region. For in-
stance, the inner exclusion region in Figure 1 for the single loop
analysis requires that t = 3 and m = 1.5. To cast this problem
into a � framework, it is necessary to convert these equations
to the polar form ae�j�, where the negative sign denotes phase
lag. This gives

ae�j� = ecÆ1(t�mÆ2)�j(
1Æ2+
2)

= e�j
2ecÆ1(t�mÆ2)�j
1Æ2 (7)

where c = (ln10)/20, 
1 = �max��min

2 and 
2 = �max+�min

2
To generate the LFT-based uncertainty description, a first order
Padé approximation is used:

e�Ts = 1�
Ts

1 + Ts
2

(8)

where �Ts is given by

�Ts = cÆ1(t�mÆ2)� j
1Æ2 (9)

This first order approximation is adequate for phase margins of
up to 90o, and the resulting LFT model was seen to match the
exclusion region used by the classical approach very closely,
[11, 3].

For multi-loop analysis, the LFT-based uncertainty model de-
scribed above is inserted in all loops simultaneously. In this
case, however, the gain and phase margin requirements are 3
dB and 30o respectively and therefore, the parameters m and t
from equation (6) are chosen as m = 1 and t = 2. The multi-
loop criterion is then checked by scaling the exclusion region
by applying a scaling factor to m, t, 
1 and 
2 until � = 1.
At this point, the gain and phase margins can be computed by
back-substituting these values in equations (5) and (6).

Most published work on �-analysis has assumed that � is com-
puted on a frequency sweep along the s = j! axis. However,
computing � away from the imaginary axis can also provide a
lot of useful information. In particular, the worst-case eigen-
value criterion can be checked by shifting the imaginary axis
into the left and right half planes until an uncertainty combina-
tion is found which places a closed loop pole on the axis. Other
tests are also possible, for example, by sweeping s0 along a line
of constant damping, such as � = 0:4, one may find the small-
est perturbation which reduces damping below this level. Since
km is typically discontinuous as s0 moves from the real axis to
neighbouring complex points, it is also useful to check stability
along the real axis.

6 Analysis of the longitudinal HWEM dynamics

For the considered ranges of uncertainties, the worst-case
eigenvalue criterion was satisfied for all seven flight conditions,
and almost identical results were obtained using the �-analysis
and classical techniques. At a flight condition of 200 knots,
for example, the nominal, � worst-case and classical worst-
case eigenvalue positions are shown in Table 2. Also shown in
the table are the worst-case values of the uncertain parameters
found using both approaches. Note that although the results are
very similar, the � worst-case uncertainty combination places
all the eigenvalues slightly nearer the boundaries.

To compare the worst-case stability margin criterion results,
Nichols curves were plotted for (i) the worst-case obtained us-
ing � and (ii) every combination of the extreme points of the
Five Category 1 uncertain parameters. It was found that for
three flight conditions (110, 90 and 60 knots), the worst-case
uncertainties did not lie on the extreme points of the parame-
ters. Typical results are shown in Figure 6, which for clarity has
been zoomed in Figure 7. It can be seen that the classical ap-
proach produces optimistic results, i.e. the worst-case Nichols
plot found by � is closer to the exclusion regions. Note also that
the analysis at 110 knots using � (Figures 6 and 7) generated
a worst-case uncertainty of ÆCmq

= 0.9845, ÆCm�
= 0.9976,

ÆCmtail
= 1, ÆIyy = 0.0931 and ÆXDxcg

= 0.1438. When the
classical approach was used, the worst-case was found to be
ÆCmq

= 1, ÆCm�
= 1, ÆCmtail

= 1, ÆIyy = -1 and ÆXcg
= 1. The

question then arises as to how important the last two uncertain-
ties are, i.e, whether ÆIyy and ÆXcg

have a significant effect on
the stability margins. This question can be easily answered us-
ing the technique of �-sensitivities, [12], which measures the
relative importance of each uncertainty in the � set. In fact,
evaluation of the �-sensitivities for each uncertainty showed
that ÆXcg

and ÆIyy are actually the second and third most im-
portant elements in the set, [2, 3], implying that changes in the
values of these two parameters will significantly affect the sta-
bility margins. Note again that the values of these parameters
which give the true worst-case do not correspond to their max-
imum or minimum values. This phenomonon was repeated for
all three of the flight conditions, and calls into question the im-
plicit assumption made in the classical approach that the worst
case will always correspond to some combination of the ex-
trema of the uncertain parameters.

The computation times for finding the worst cases for (i) the
classical approach using only minimum and maximum val-
ues of each parameter, and (ii) � analysis with 100 frequency
points, are plotted in Figure 8. As expected, the computation
time for the classical approach increases exponentially with the
number of uncertainties, so that for a � size > 8, � is seen to
be less computationally intensive than the classical technique.
This fact becomes significant when we seek to also include Cat-
egory 2 uncertainties in the analysis, or when we seek to anal-
yse the effect of longitudinal and lateral uncertainties together.

Finally, we present sample results for the worst-case stability
margin multi-loop analysis. At a flight condition of 90 knots,



the uncertainties associated with the elliptical Nichols exclu-
sion regions were increased in each loop simultaneously until
� = 1. The corresponding gain and phase margins were found
to be 13.97 dB and 37.86o respectively. Using the classical
approach, the corner points of the trapezoidal Nichols exclu-
sion region were checked and the gain and phase margins were
computed as 15.5 dB and 41.2o respectively. It can be ob-
served that the results obtained using the classical approach are
more optimistic than those computed from �, since every pos-
sible combination of the phase/gain offsets is considered in the
�-analysis, whereas the classical approach assumes the same
phase/gain variations in each loop of the system. Furthermore,
the �-analysis imposes a slightly more stringent requirement
on the computation of the phase and gain margins (since the
elliptical exclusion regions used by � are slightly bigger than
the diamond-shaped exclusion regions used by the classical ap-
proach). A multi-loop �-analysis was also carried out using
the elliptical and trapezoidal Nichols exclusion regions at 150
knots. Both exclusion regions were scaled until the value of �
reached 1 and the resulting multivariable phase and gain mar-
gins were then computed. For the elliptical Nichols exclusion
regions, a phase margin of 41.2o and a gain margin of 4.18
dB were obtained. For the trapezoidal Nichols exclusion re-
gions, a phase margin of 44.8o and a gain margin of 4.5 dB
were obtained. Again, it can be observed that the elliptical ex-
clusion region is, as expected, slightly more conservative than
the trapezoidal exclusion region.

7 Conclusions

This paper has described new �-analysis tools for the clearance
of flight control laws for highly augmented aircraft. Compar-
isons between the �-analysis techniques and the classical in-
dustrial approach show that the new analysis tools can provide
more rigorous (i.e. more accurate identification of worst-cases)
and efficient (i.e. computationally faster) analysis of worst-
case aircraft stability characteristics in the presence of multiple
sources of parametric uncertainty.
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Variable name [Min,Max] value Units
U Xcg [-1.72,-11.7] %MAC
U Iyy [56887,69529] kgm2

U Cmtail
[-20,+20] %

U Cmq [-20,+20] %
U Cm� [-20,+20] %

Table 1: Category I longitudinal uncertainties

classical � classical w.c. � w.c.
w.c. eig. w.c. eig. uncertainties uncertainties
-0.1985 -0.1980 1 0.9682
-0.1669 -0.1660 -1 -0.9985
-0.0631 -0.0630 1 0.9771

-8.5e-5+0.0775j 7.8e-5+0.0775j -1 -0.9906
-8.5e-5-0.0775j 7.8e-5-0.0775j 1 0.9886

Table 2: Sample results for worst-case eigenvalue criterion at
FC1
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Figure 1: Nichols exclusion regions (single loop)
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Figure 2: Nichols exclusion regions (multi-loop)
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Figure 3: Boundaries for the unstable eigenvalue requirement
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Figure 4: LFT validation (nominal case)
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Figure 5: LFT validation for random values of the uncertainties
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Figure 6: � (-*-) and classical (-) worst cases
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Figure 7: Close-up of Figure 6
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Figure 8: Computation times for � and classical techniques
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