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Abstract

This paper provides a demonstration of control law clearance
analysis on an industry-scale aircraft model using a technique
based on bifurcation analysis and continuation methods.  The
approach was developed as part of the GARTEUR Flight
Mechanics Action Group 11, set up to find more efficient
means of clearing aircraft control laws.  Results are presented
for criteria based on eigenvalues and Nichols stability margin.
It is shown that the worst case combination of uncertainties
found by this analysis technique is ‘worse’  than that chosen
by the conventional (baseline) method.  Significantly, these
uncertainty combinations violated the criteria for three cases
in which the conventional method cleared the model.  The
technique offers substantial time savings over the baseline,
identifies the exact conditions at which a criterion is violated
and retains a strong link with the physics of the system.

1. Introduction

A lengthy and costly task during development of aircraft with
full-authority control laws is clearance of the closed-loop
system.  This involves assessing the behaviour of the
complete system – airframe, propulsion system, physical
control devices, control laws, actuators, sensors, etc. – against
agreed criteria.  It is a time-consuming and complex task
because it must consider the aircraft in all its configurations,
across the flight envelope, for all controller modes and
incorporating each potential failure case.  Flight Mechanics
Action Group 11, or FM(AG11), of the Group for Aero-
nautical Research and Technology in Europe (GARTEUR)
was formed in 1999 to identify and research new analysis
techniques for clearance of flight control laws.  The intention
was that these might contribute to more effective clearance,
either in terms of improved performance (relative to the
conventional gridding approach) in determining worst-case
scenarios or significant time savings, or both.

The University of Bristol, supported by QinetiQ Bedford,
developed a technique based on the numerical continuation
methods used in bifurcation analysis. This so-called
bifurcation-based analysis technique for control law clearance
was demonstrated on a theoretical model – the HIRM+
aircraft with Robust Inverse Dynamics Estimator (RIDE)

controller [1] – before being applied to the Harrier Wide
Envelope Model (WEM).

The work carried out by all participants in FM(AG11) on the
HIRM+/RIDE system is documented in [2].

2. WEM aircraft model

The Harrier WEM is a representation of the Vectored-thrust
Aircraft Advanced flight Control (VAAC) Harrier.  Its
purpose, in the context of FM(AG11), was to provide a
challenging task to the analysis technique due to the
complexity of the nonlinear model.

Part of the complexity of the model arises from the fact that
the Harrier operates over a speed range down to hover
conditions, necessitating a comprehensive aerothermo-
dynamic engine model which is itself a closed-loop system.

The control law under investigation is based on VAAC
Control Law 002 (CL002).  It emulates the standard Harrier’s
‘ three-inceptor’  control strategy but with some additional
augmentation to reduce workload.  CL002 is a classical three-
axis (pitch, roll and yaw) manual thrust-vectoring control law;
the pilot retains explicit control of thrust magnitude and
direction via the throttle and nozzle levers.  Of most concern
in this partial clearance study was longitudinal control, and
the flight conditions covered both pitch attitude (low speed)
and pitch rate (higher speed) stick command functions.

A full description of the Harrier WEM and the control law
can be found in [3].

The WEM models were supplied to the Action Group in
MATLAB/Simulink form and contained both discrete and
continuous states (66 in total for the full model with
controller).  These hybrid models caused difficulties with
linearisation – affecting not only the bifurcation-based
analysis but the baseline solutions too.  Ultimately a
continuous version was created (only for the purposes of
linearisation) [4]: the three discrete engine states, arising from
1/z blocks, were replaced with fast 1st order lags;
nonlinearities such as transport delays and deadbands were
removed; and some memory blocks were replaced.

3. Clearance task

A number of clearance criteria were provided by industry
members of FM(AG11) for application to the aircraft models.
These covered stability, response and handling issues; most



were linear and a couple nonlinear.  The three linear criteria
stipulated in [3] for use in the WEM clearance task are
discussed briefly below.

3.1  Single loop stability margin (Nichols)

This criterion involves the identification of all flight cases
where the Nichols plot stability margin boundary – a trap-
ezoidal exclusion zone defining minimum allowable phase
and gain margins – is violated.  A normalised stability
margin, ρ, is defined by scaling the boundary until it just
touches the frequency response whilst preserving its aspect
ratio; ρ is defined as the ratio by which it is scaled.  ρ=1
corresponds to the nearest point on the response just touching
the boundary; ρ > 1 means that there is no violation, and ρ <
1 means that the criterion is violated.

The single loop frequency response is obtained by breaking
the loop at the input of each actuator, one at a time while
leaving the other loops closed.  In order to be cleared, the
exclusion zone must be avoided under all combinations of
uncertainty parameter.  The task in each flight case is to
identify the combination of uncertainty parameters that give
the worst case violation (smallest ρ).

The purpose of this criterion is to assess sensitivity to changes
in the dynamics of each actuation system and ensure that it
maintains adequate stability margins; it gives an indication of
sensitivity to changes in control power [2].

In applying the criterion to the WEM, the loop between
demanded tailplane (from the CL002 control law) and the
tailplane actuator was broken.  There are no other actuators
incorporated within CL002 for longitudinal control.  A worst
case combination of the uncertainty parameters was identified
for each flight case (i.e. each angle of attack, AoA, in each
Flight Condition).

3.2  Worst case eigenvalue cr iter ion

This criterion requires identification of flight cases where
unstable closed loop eigenvalues occur, and the combination
of uncertainty parameters for which these eigenvalues have
the largest value of their real part [2].  The purpose of this test
is to determine the most severe cases of divergent closed loop
modes, allowing an assessment of aircraft handling
sensitivity.  The criterion is violated if a real or complex
eigenvalue crosses the specified boundary:

Let λ = σ + jω  be an eigenvalue of the linearised model; to
comply with the criterion, the real part of λ, σ, must satisfy:
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3.3  Average phase rate cr iter ion

This test, designed to detect pilot-induced oscillation in pitch
and roll, is defined in terms of pitch and bank attitude-to-stick
force frequency responses [2].  For the WEM it is only to be
implemented in fully wing-borne flight, which includes just
one of the Flight Conditions defined for the task (at 200 kts).
When applied, it was found to give level 1 behaviour which

was insensitive to incidence angle and uncertainty parameter
values.  Therefore this criterion is not considered further here.

The clearance task defined for the WEM specified seven
Flight Conditions (FCs) at which the criteria were to be
applied – all at a height of 200 feet above mean sea level.
Their respective flight velocities are listed in Table 1.

Table 1: Flight condition velocities for WEM clearance task.
Flt condition FC1 FC2 FC3 FC4 FC5 FC6 FC7
Airspeed (kts) 200 150 130 110 90 60 0†

† May use 0.01 knots to avoid singularities in hover.

The two linear clearance criteria were to be applied at trim
points at 2° increments in angle of attack for all FCs, over a
maximum AoA range of [–4°, +16°].  The fact that a range of
AoA in true 1g straight and level flight trim is achievable is
due to the existence of two independent longi-tudinal control
effectors: horizontal tailplane and nozzle angle.  At low
speeds the full range is obtainable but not at higher flight
velocities.

Only longitudinal uncertainty parameters were considered in
this study.  The five that were specified for the FM(AG11)
task are given in Table 2; see [4] for further details.

Table 2: WEM pitch uncertainty parameters.
Parameter Var iable

name
Longitudinal position of centre of gravity U_dxcg
Pitch moment of inertia U_Iyy
Uncert. on tailplane effectiveness in pitch U_CMTAIL
Uncertainty on pitching damping
derivative

U_CMQ

Uncertainty on pitching stiffness derivative U_CMALFA

For convenience, we refer to both the aerodynamic uncertain-
ty parameters (U_CMTAIL, U_CMQ, U_CMALFA) and the
two model variabilities (U_dxcg, U_Iyy) as ‘uncertainties’ .

When more than one aerodynamic uncertainty parameter is
applied simultaneously, a ‘ reduction factor’  is used to avoid
unduly pessimistic conditions; this is based on a probability
argument [2].  Each aerodynamic uncertainty value is
multiplied by a factor that decreases in value as more such
uncertainties are included.

The GARTEUR task requires only the vertices of uncertainty
parameter space to be considered, i.e. combinations of
minimum and maximum uncertainty values.  We adopt the
notation ‘–’  for the minimum uncertainty value of a parameter
and ‘+’  for its maximum value; a ‘0’  refers to its nominal
value (i.e. when no uncertainty is applied).

4. Bifurcation-based analysis technique

The methodology is founded upon the use of ‘continuation
methods’ , which are a fundamental tool in numerical bifur-
cation analysis.  Bifurcation analysis is a process used to
study the behaviour of nonlinear dynamical systems in terms
of the geometry of their underlying structure, as characterised
by the evolution of steady state solutions as parameters vary.
Steady states include in general stationary point equilibria and
periodic orbits (and other attractors) and nonlinear systems



can have multiple steady states for the same values of input
parameter.

One means of visualising the numerical output is the ‘one-
parameter bifurcation diagram’ : projections of the steady state
solution paths as a parameter varies, plotted as one state
component at a time versus the parameter.  The algorithms
used to generate this information are known as ‘continuation
methods’  – and it is principally this that is adapted to form the
bifurcation-based analysis technique.

Given a nonlinear dynamical system, ( )δ,xfx =
�

, where x is

the state vector, δ is a vector of parameters and f is a smooth
vector function, we choose one of the δ as the parameter to
vary (‘continuation parameter’ , µ) and fix the remaining
members of δ.  For equilibria steady states (the only type
considered in this paper), we solve for ( ) 0, == µxfx

�

 as µ
varies; the idea is to find all solutions within the required
range of µ.  The continuation method is thus a path-following
algorithm which, given a starting guess, attempts to continue
along the solution branch.  Bifurcation points are identified
along the path and often it is required to solve for the new
solution branches that arise from them.  Local stability along
the branches is indicated by use of different line types on the
bifurcation diagrams; bifurcation points are also indicated
where necessary.

When applied to aircraft flight dynamics models the state
includes the vehicle translational and rotational velocity and
orientation, while the parameters are usually the inputs to the
system (control surfaces or pilot demands).  However, for the
purposes of control law clearance analysis, the parameters
include uncertainty parameters.  The process of applying
continuation methods to clearance analysis requires first
generating the steady state solution branch, as in standard
bifurcation analysis.  The model used will be set up to
represent whatever form of ‘ trim’  is specified for the
clearance task.  For the WEM, this refers to true trims but in
some cases a form of quasi-trim is required (e.g. where a
large AoA range is to be analysed, accelerated trims with
non-zero pitch rate may be used).

Once each solution point is found, one or more clearance
criterion is evaluated at that point.  The criteria may use a
different form of the model, such as true trim with controller
command path omitted, to match the clearance requirement.
Thus the versatility of continuation methods is exploited in
the process: using one form of the model for finding the
steady state solution and one or more others for application of
criteria at each solution.  Note that the criteria are imple-
mented as in a conventional baseline clearance process, so
there is no conservatism involved.  The ‘bifurcation
diagrams’  generated during the analysis may adopt line-type
definitions corresponding to the outcome of a clearance
criterion: e.g. solid line for cleared, dashed for uncleared.

A detailed description of the analysis cycle is given in [2].  In
principle, the process is as follows: first, for each FC,
evaluate each clearance criterion along the required trim
points across the specified AoA range for the nominal model
(no uncertainties applied).  This involves a continuation run,
with an appropriate pilot input as continuation parameter (e.g.

stick position); it shows AoAs where the nominal system
violates the criteria, or values where it comes closest to doing
so.  These points may be referred to as nominal critical points
and suggest where the system should be studied further (it is
this logic that provides the majority of time saving relative to
the conventional gridded approach*).

The next step is to evaluate each criterion in the neighbour-
hood of each nominal critical point, with uncertainties
applied.  The continuation method is now run at each such
point, with AoA fixed, and the uncertainty parameters used as
continuation parameter, one at a time.  In the first iteration,
the remaining uncertainties are fixed at their nominal value.
Each of these nonlinear sensitivity bifurcation diagrams
indicates the change in clearance criterion as the variable
uncertainty ranges from its minimum to maximum value; it
reveals the value of this uncertainty that gives the worst case
(biggest degradation in criterion measure) while the others are
fixed at their nominal value.  We repeat this step of varying
one uncertainty at a time but now the others take on their
worst-case value from the first iteration.  Although this
approach allows the worst-case value of each uncertainty to
lie anywhere between its minimum and maximum values, we
follow the conventional clearance process and choose either
the minimum or the maximum value.  Iterations continue until
there is no change relative to the previous iteration.

This yields the worst-case combination of uncertainties for
that specific solution point for the criterion under consider-
ation (although it does not guarantee that this is the global
worst case).  Furthermore, since it gives a quantitative change
in criterion measure for each uncertainty, it is possible to
invoke the reduction factors for aerodynamic uncertainties.
This allows the choice of all the uncertainties to be compared
with a selection of a subset of the uncertainties – something
that the conventional baseline method does not do.

Finally, a continuation run with the pilot input as continuation
parameter is conducted again but this time using the worst-
case combination of uncertainties.  This identifies the AoA at
which the system violates the criterion under worst-case
conditions.  It is only strictly applicable local to the nominal
critical point because the worst-case combination was deter-
mined at that specific AoA.  This is repeated in the region of
each nominal critical point for each criterion at each FC,
giving the desired clearance results (cleared and uncleared
AoA regions).

The analysis cycle, whilst seemingly complicated when
described in words, is actually rather simple.  It is illustrated
by a set of sample results in the next section.

                                                
* Violation of a criterion with uncertainties applied at an AoA
far from the nominal critical points is not likely unless there is
a discontinuity in the system – e.g. a non-smooth mode
change – that occurs when uncertainties are applied but not in
the nominal case.  Such situations can be missed also in the
gridding method, and prior knowledge of the existence of
discontinuities should be obtained and acted on, whatever
clearance technique is used.



5. Results

The bifurcation-based clearance process is illustrated using
sample results for FC1, followed by a summary for all FCs.

5.1  Nominal Results

Figure 1 is a set of bifurcation diagrams for the nominal case.
The continuation parameter, longitudinal stick movement
(ALONG), is plotted on the x-axis.  Six state components  (y-
axes) have been selected to provide some information on the
physics of the solutions: angle of attack (α), angle of sideslip
(β), pitch rate (q), roll rate (p), throttle lever movement
(ATHROT) and nozzle lever movement (ANOZZ).  Each
point on the solution line is an equilibrium (trimmed) condi-
tion.  The line type in the plots represents the maximum un-
stable eigenvalue criterion, the solid line indicating that all
eigenvalues are acceptable in terms of the criterion.  Limits
on the continuation were imposed by the trimmable α range
(smallest for FC1, at [−2.2o, 3.6o]); in some cases the limits
are due to maximum throttle or nozzle angle range [0o, 98.5o].

We note from Figure 1 that the trim conditions are all
symmetric, i.e. zero values for lateral-directional variables, as
expected for this model.  We can observe the changes in
throttle and nozzle values through the trim range.  More
generally, violations of criteria can be indicated on the
diagrams, saturation of control surfaces can be detected and
certain nonlinearities identified.

Figure 2 shows the (Nichols) stability margin for the tailplane
loop.  The stability margin criterion for the tailplane loop
does not reach the exclusion zone boundary (ρ=1) but is
closest to it at α = −2.2o.

Figure 3 shows the worst case real eigenvalue for the nominal
case, as the continuation parameter is varied.  A plot of the
variation of eigenvalues in the s-plane is omitted here, in the
interests of brevity, but it reveals that no complex roots come
close to violating the criterion.  The real eigenvalues, whilst
positive, do not reach the criterion boundary (+0.099).  The
unstable eigenvalues criterion is closest to violating the
boundary at α  = −1.3o.

Thus for the nominal case, FC1 is cleared over the entire α
range.  The results are summarised in Table 3.  Note that for
this, and several other cases, numerical conditions result in a
non-smooth variation of criterion measure with α.

Table 3 – FC1 nominal clearance results.
Nominal critical α  (eigenvalues) −1.3°
Maximum real eigenvalue 0.04058
Nominal critical α  (stability margin) −2.2°
Minimum stability margin 1.257
Cleared α range [−2.2°, 3.6°]

5.2  Worst case uncer tainties applied

Figure 4 shows the nonlinear sensitivity of the stability mar-
gin criterion to one longitudinal uncertainty at a time, at the
nominal critical α.  Each uncertainty is varied from its mini-
mum to its maximum normalised value of –1 to +1 whilst the
others are fixed at 0.  Gaps in the middle of the sensitivity

analysis plots are due to an initially large choice of the con-
tinuation parameter step size (can be reduced if necessary).

The worst-case uncertainty in each case is the value for which
the change in Nichols margin is negative, i.e. margin, ρ,
closer to 1.  In the first plot (U_dxcg) nonlinearity in the
system is evident; the worst case value of U_dxcg is
approximately 0.7.  This demonstrates the ability for this
technique to pick out worst case uncertainties at values other
than the vertices.  However, to compare with the baseline
results, a value of +1 is chosen here.  The other uncertainties
yield more linear variations in the stability margin.

A 2nd iteration of the nonlinear sensitivity analysis was
performed (not shown); this time, the non-varying
uncertainties are fixed at the worst-case values picked from
Figure 4.  The predicted worst cases are unchanged from the
1st iteration – with the exception of U_CMALFA which is
now +1 rather than –1 at its worst case value.  A 3rd iteration
yields the same outcome as the 2nd and the selected worst-case
combination of uncertainties is shown in Table 4.

Table 4 – FC1 worst case uncertainties (stab. marg. criterion).
U_dxcg U_Iyy U_CMTAIL U_CMQ U_CMALFA

+1 −1 +1 −1 +1

The numerical values of the predicted stability margin under
worst case conditions are then compared for each uncertainty
and the reduction factors are applied to the aerodynamic
uncertainties: this allows a decision to be made as to whether
one, two or all three gives the smallest stability margin.  The
shaded region in Table 4 indicates the selected uncertainties
in this case.  Note that this is a fundamental difference
relative to the baseline method: in the latter, all the
aerodynamic uncertainties are used simultaneously.  The
bifurcation-based approach almost invariably suggests a
worse case with a subset of all the aerodynamic uncertainties.

Figure 5 shows the bifurcation run with the worst case
combination of uncertainties applied.  The equivalent result
from the baseline clearance is also indicated (corresponding
to those in [4]), as is the nominal situation.  We note that,
whilst the worst case detected by the baseline method shows
no violation of the criterion, the bifurcation-based result
shows that the criterion is violated for α less than –1.4o.  The
results with uncertainties applied are summarised in Table 5.

Table 5 – FC1 worst case stability margin results summary.
Min. ρ (at nominal critical α) Cleared α range

0.9341 [−1.4°, 3.6°]

When a similar process was applied for the unstable
eigenvalues criterion, the worst-case combination was as
shown in Table 6.  The results of the bifurcation run over the
entire α range with this worst case combination of
uncertainties appears in Figure 6; the baseline and nominal
results are also shown.  The case with longitudinal
uncertainties applied clearly does not violate the criterion.

Table 6 – FC1 worst case uncert’s (unstable eig. criterion).
U_dxcg U_Iyy U_CMTAIL U_CMQ U_CMALFA

−1 −1 −1 −1 −1



Note from Figure 6 (in the α=3° region) that the bifurcation-
based worst-case uncertainty combination does not necess-
arily hold throughout the trimmed range.  It is only strictly
valid local to the nominal critical α as it is at this point that
the worst case combination of uncertainties was determined.

5.3  Results summary

A summary of the nominal results and those with worst-case
uncertainties applied is given in Table 7.  The baseline
analysis, using the same model and clearance criteria
implementations, revealed no violations for any of the FCs.
The worst-case ranges shown in bold (FCs 1, 3 and 4) are
therefore those for which the bifurcation-based method has
given a materially different outcome.

These results demonstrate the effectiveness of selecting
worst-case uncertainty combinations via nonlinear
sensitivities, accounting for reduction factors.  In principle,
the bifurcation-based technique has the potential to find even
worse cases by accepting normalised uncertainty values
between –1 and +1 (although this may not always be
worthwhile, as the small improvement in predicting worst
cases may require additional iterations to be carried out).

The time taken to set up and conduct the bifurcation-based
clearance task summarised here was approximately 2.5 times
less than the equivalent time taken for the baseline analysis.
The majority of this saving derives from the insight given by
the bifurcation diagrams: this allows the search for worst
cases to be confined to a limited number of angles of attack.

The general nature of the technique presented in this paper
endows it with further potential in helping the industry to
reduce the time and cost of control law clearance.  For
example, a different means of selecting the worst-case
uncertainties at nominal worst case points could be
incorporated within the method: an optimisation approach
could be used, possibly with the nonlinear sensitivities
providing the starting guess.  If a ‘guaranteed’  worst case
were required, the baseline method could be implemented at
the points indicated from the nominal runs.  It is in principle
also possible to extend the use of the continuation methods to
trace out loci of violation points through the flight envelope.

6. Conclusions

It has been demonstrated in this paper that bifurcation
analysis is an extremely powerful tool for control law
clearance.  The clearest indicator of this in the WEM appli-
cation is that the technique reproduced the baseline results in
significantly less time and, furthermore, found that the stab-
ility margin criterion was violated for three flight conditions
whereas the baseline method found none.  This effectiveness
is due to the ability to home in on specific operating points at
which violation is most likely to occur using the nominal sys-
tem, and to the novel way in which the worst case uncertainty
combinations are determined.  The latter permits full use of
the probabilistic concept of reduction factors on aerodynamic
uncertainties; it also allows uncertainties between their mini-
mum and maximum values to be selected if desired.

The bifurcation-based method keeps the user in touch with
physical aspects of the clearance problem, particularly
through the variation of states versus parameter (bifurcation
diagrams), and gives knowledge of the relative influence of
the various uncertainty parameters.  Although implemented
here on linear criteria, the non-linear sensitivity approach can
also select worst-case uncertainties for nonlinear criteria.

The flexibility of the method, based as it is on continuation
methods, means that there is a variety of ways in which it
could be integrated with one or more other analysis tech-
niques to facilitate rapid and effective control law clearance.
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Table 7: Nominal and worst-case results FC1–FC7.
Maximum real eigenvalue Minimum stability margin Cleared α range (deg)
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Figure 1: FC1 bifurcation diagram – nominal case.
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Figure 2: FC1 worst case stability margin (tailplane loop) –
nominal case.
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Figure 3: FC1 worst case real eigenvalues – nominal case.

Figure 4: FC1 nonlinear sensitivity analysis – stability
margin criterion.
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Figure 5: FC1 worst case stability margin – worst case
combination of uncertainties applied.
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Figure 6: FC1 worst case eigenvalues – worst case
combination of uncertainties applied.
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