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Abstract

This paper presents a novel modelling and control algo-
rithm for systems which are governed by partial differential
equations. Different from existing distributed parameter
systems so far discussed in literature, the control input of
the system considered in this paper appears only inside the
boundary conditions. The purpose is to control the boundary
condition so as to realize the total distribution control of the
system output. For this purpose, an orthogonal B-spline neural
network model is used to approximate the solution of the
system. By substituting this B-spline model into the original
partial differential equation and letting the residual orthogonal
to all the selected basis functions, the dynamics of the weights
of the B-spline model are obtained. Such a dynamics relates
the input to the weights of the B-spline model through an
ordinary differential equation, where the controller designed
only needs to be focused on the control of the weights because
all the basis functions are fixed. This leads to the design of
an observer based controller which realizes the profile control
of the system output with guaranteed stability. The control
algorithm is applied to a winding process in the paper making
industry, where the model of the winding process is developed
and the corresponding controller is derived. Some simulations
are provided to show the effectiveness of the control algorithm.

1.Introduction

Control of infinite dimensional systems has long been re-
garded as an important area of research in control engineering
and practice([3, 5, 2]). This is simply because there are many
systems whose dynamic model can only be expressed as a set
of partial differential equations (PDE). Examples are informa-
tion flow, transmission process, power transmission systems
and 3D temperature control systems. The model of the system
is represented by a set of partial differential equations that
link dynamically the system state or output to a control input
vector. A set of boundary conditions are also required to define
the system. In most existing techniques([3, 5, 2]),control input
appears directly in the partial differential equation that de-
scribes the dynamic behaviour of the system. For such models,
techniques developed for ordinary differential equation (ODE)
systems have been used. For example, Galerkin’s method
has been used to formulate a finite-dimensional system that
describes the dominant dynamics of the original PDE system

for parabolic PDE systems ([5]), where Lyapunov design can
be directly used. Recently, �� method has been generalized
to characterize the 2-norm for both the signal in space and
signal in time for LTI spatially distributed systems ([12]),
where sensors and actuators have been treated as the part of
the controller. In this approach, the control design obtained is
similar to those used in�� design for ODE systems.

However, in some practical systems, the control input only
applies to the boundary condition. Examples are the winding
processes ([15]) in the paper, printing and film industries. For
these types of systems, it is necessary to develop effective
modelling and control strategies.
Indeed, in winding processes the roll quality depends on
variables such as winding tension of the web, the speed and
acceleration of winding. These variables influence the internal
stresses that are expressed by a 4-D variable which depends
on the 3-D position inside the roll and is also time dependent
([15]). A good roll should have a uniform distribution of the
internal stress. As can be seen in figure 1, during winding
the incoming web is added as new layers with an input
tension (i.e., the control input signal). This tension acts only
on the edge of the roll and appears inside a boundary condition.

In this study, we consider a class of distributed parameter
systems that are represented by a linear PDE with a boundary
condition that contains the control input. The model is
extracted from surface winding processes ([7, 15, 11]). The
proposed method consists of combining the physical model
and a neural network where an orthogonal B-spline neural
network ([6]) is used to provide an approximate solution to
the model. In this context, the initial model of the system
is transformed into a finite dimensional linear time-varying
model, where the boundary conditions are expressed in terms
of constraints. This is then followed by the design of an
observer based controller. The paper is organized as follows.
In section 2, the problem formulation and the theoretical
results are presented. In section 3 the design of a controller for
winding processes is addressed. In section 4, the modelling
details of winding processes are given. Also, the control
problem is derived following the methodology presented in
section 2 and 3. In section 5, a simulation case study is
proposed to show the effectiveness of the method.

2.Some preliminaries

In this paper, we consider systems which are described



by the following Partial Differential Equations (PDE):
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where � � ���� ��� is a variable (e.g., in winding processes, �
is the radius of the roll), ��, �� and �� are known continuous
nonlinear functions with respect to ��� ��, ���� �� is the output
of the system whose distribution along � is to be controlled
through the following boundary conditions:
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where ���� � IR� is the control input of the system, ����� and
����� are the known time-varying parameters, Æ�, Æ� are known
continuous functions with respect to ��� ��. It can be seen that
the system represented by (1)-(3) belongs to distributed param-
eter systems [3]. However, different from all the existing stud-
ies on the distributed parameter systems ([3, 12, 5]), the control
input ���� only appears explicitly in the boundary conditions of
the system as shown in equation (2) rather than in equation (1).
It will be shown that the winding processes to be discussed can
be represented by such systems.
This systems falls into the study of parameter nonlinear infi-
nite dimensional systems. Although linear infinite dimensional
systems have been thoroughly studied [3, 12, 5], the focus here
is on the use of a B-spline neural network as an alternative way
to model such systems. For this purpose, consider a solution to
(1) as
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where �����, �� �  � �� are the pre-specified and uniformly
bounded basis functions defined on ���� ���, the ����� are the
associated weights of the neural network. � is the number of
basis functions which, when being selected properly, can en-
sure that 
 ��� �� will represent a good approximation of ���� ��
(see also [10]). In this context, the following assumption is
made.
A1: �� � �; �� � � so that ��,
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where ���� � � is a pre-specified weighting function.
By substituting 
 ��� �� into the original system (1), a dynami-
cal relationship between ����� and ���� can be obtained. With-
out the loss of generality, it is assumed that � is large enough
and all the basis functions ����� are orthogonal. By substitut-
ing 
 ��� �� into (1), the following residual can be obtained:
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A good approximation of 
 ��� �� to ���� �� means that ���� ��
should be made as small as possible. This can be realized by
making ���� �� orthogonal to all the basis function, leading to
the following condition.� ��
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This condition is in line with the Gallerkin orthogonality prop-
erty of���� �� ([4]) in the functional space spanned by the basis
functions�����. By applying condition (6) to equation (5), the
dynamic equation for the weights ����� can be formulated to
give
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Rearranging this equation into a state space format leads to the
following system:
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where �� � ��������������� , ������ � �
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���� � � � � �� � �� � 	��. Simimarly, substituting 
 ��� �� into
the boundary conditions (2)-(3) leads to the following approx-
imations:
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In general, the boundary value of ����� �� is measurable
through ���� � ��������� ��, where ���� is the known gain of
the sensor. Replacing ����� �� by its approximate
 ���� �� leads
to
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This implies that the dynamics of the weights of the B-spline
model should satisfy����

���

	� � ��

� �

�
	 �

�
��



� � �� �

�
	 ���
���
���



� (14)



This indicates that using orthogonal basis functions and the
Gallerkin orthogonality property of ���� �� [4], equations (1)-
(3) can be transferred into an ordinary differential equation
(14), where the weights of the B-spline model are directly re-
lated to the control input. Since all the basis functions are fixed,
the weights determine the shape of ���� ��. This means that
it is possible to control the shape of ���� �� by controlling the
weights vector ����. In this context, the task is to design a
controller for system (14) so that ���� �� is made as close as
possible to a given pre-specified 
 ���� ��.

The following lemma gives the relationship between ���� ��
and the weights vector�����:

Lemma Suppose that assumption A1) holds, then the
solution ���� �� of (1) and its approximation 
 ��� �� satisfy:
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Proof To prove this lemma, we use the fact that
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The last equality is obtained by using the orthogonality of the
�����. This leads to:
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Therefore, the following inequality can be obtained
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and inequalities (15) hold.

3.Controller design

The purpose of controller design is to find ���� so that
���� �� is made to follow a pre-specified distribution 
 ���� ��.
Since the control input does not appear directly in the dynam-
ics of � in (14), an observer is needed for system (14) so
that the available measurement from the process can be used
to estimate the actual ”equivalent” weights of B-spline neural
network. This means that the adaptation of the weights of
the neural network is provided by the observer. One possible
choice of such an observer for system (14) is the following
Kalman observer [1]
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where $ is the gain of the observer (see Appendix and [1]).
If this system converges exponentially towards the approxi-
mate system (14), it remains to verify that under an appro-
priate control input ����, the observer will converge towards
the real system. Using the same group of the basis func-
tions, the target distribution 
 ���� �� can also be expressed as
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and ������ � ������� 	 	 	 � �� ����. ����� is the desired
weight vector that should satisfy:����
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Indeed, the first N target weights,� �� , can be calculated from
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where the matrix
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is invertible because the basis functions are orthogonal. Since
all the basis functions are uniformly bounded, matrices ����,
����� and ���� are also uniformly bounded. Using these
preliminaries, the main result can be summarized by the
following theorem.

Theorem Suppose assumption A1) is satisfied, then the
following controller:����
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together with the observer
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is the error of approximation given in assumption A1.

Proof In order to prove the theorem, the error vectors
are defined as (���� � ����� � ����, (���� � ����� � &���
and (���� � &��� � �����. By taking the observer gain as
$ � )�� �

� ([1]), the first order derivatives of (�, (� and (�
become:
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where ��
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is defined in equation (22) and 
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By setting *� � (�� )(��  � �� �� � and define * � *� �
*� � *� as a global Lyapunov function, it can be shown that
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where ,�� ,�� ,� � �. Similar to the above formulation, we
have
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with -� and �� being positive numbers. Using equations (30)-
(32), it can be seen that there exist .� (i = 1, 2, 3, 4) such that
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Using the fact that���� and���� are uniformly bounded, it can
be shown that [1]:
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where � is the identity matrix. As such, replacing this inequal-
ity into (33) leads to:

	

	�
�*�

.�/�
+/� � .

�� � �
+/� � .

/�
�*�

.�/�
+/� � .

�� (34)

or

���
���

�� ����� � ���
���

��(��
� � �(��

� � �(��
�� �

.�/�
�+/� � .�/�

� (35)

As a result, it can be shown that: ���
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4.Modelling and control of winding processes

In this section, the above controller is applied to a wind-
ing process in the film and paper industries. The aim here is
to find a control strategy that helps optimize the wound roll
structure. A winding process consists of a web, a continuous
flexible and thin material such as paper, plastic film, metal foil
and textile etc., which is wrapped onto a core by successive
layers as the roll rotates. The aim of such a process is to obtain
a compact roll which allows to keep the quality of the wound
material during storage, transportation and unwinding. For
instance, a roll which is wound lose will be difficult to handle
and transport. On the other hand, a roll which is wound too
tight or non-uniform will generate internal defects such as
wrinkles, buckles or local breaks due to the excess of in-roll
stress generated during winding. There are different types
of stresses taking place in such processes. Stresses that are
orthogonal to the radial direction are said to be tangential
stresses. While the focus of the study here is on both stresses,
other stresses such as shear stresses exist. The fundamental
material on elasticity used in this section can be found in [14]
and [8]. The modelling methodology starts by considering an
element of material located inside the roll being wound. After
a detailed analysis and the use of some physical principles, the
stress model of this element can be written as follows:����������
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where ���� ��, 1 and 1� are the radial, tangential and the 4-
direction stresses, respectively. 2�, 2�� and 2� are the shear
stresses. 	� � �7 and 7 is the angular speed. The above sys-
tem describes the internal stress distribution behavior in three
dimensions. In addition to the above equations, a mass balance
should be added:
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where " is the mass of roll, # the speed of the incoming web
and 8 the grammage of the web defined as the mass per meter
square. This equation allows to calculate the radial growth of
the roll with time. In this paper, only the radial description of
the process will be considered. It is assumed that the roll has
an axi-symmetric structure, with cylindrical anisothropy. This
leads to the following equation:
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where the elasticity properties of the material are related to the
stresses by the Hooke’s relations on strain and stress [14] in the
following way:
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. where �� and � are the radial and the tangential residual
strains, respectively. :� and : are the Poisson ratio in the
� and + directions, which expresses the radial (respectively
tangential) expansion due to a radial (respectively tangential)
stress. 9� (respectively 9) is the radial (respectively tangen-
tial) modulus of the material. The strains are related to the
displacement by the following relations:
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Intensive investigations have been carried out to model the
radial modulus [11, 7, 15]. In fact, the wound layers can
be regarded as a stack of material on which a pressure is
exerted where Pfeiffer has derived a pressure-strain relation
; � �$� �$�(

��� with ; being the pressure applied and �
being the resulting compression strain. $� and$� are param-
eters defined by the experiment. Therefore the radial modulus
in (26) can be defined as:
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Equation (40) was later extended to a polynomial expression by
Hakiel, [7] and Willett and Poesch [15]. However, the expres-
sion of the radial modulus is affected by friction (or the num-
ber of surfaces in contact), moisture, the creep properties of the
wound roll. For all these reasons, here we consider 9���� ��
as depending on time and radius. In a more recent work [9] it
has been shown, using a series of different stacks of paper, that
9���� �� depends not only on the pressure but also on the num-
ber of layers in the stack. By integrating equations (39) and the
strain expression in (38), it can be obtained that:
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where �� � ���

��

and �� � � � � � : � ��. The above
equation expresses the wave evolution in a resistant medium
represented by the layers. In the rest of the paper, it is assumed
that 9� depends on � and the pressure.

By using the approximation 
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Gallerkin orthogonality property of ���� ��, an equation of the
form (7) can be obtained, where
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In order to define the target distribution, equation (39) is re-
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Figure 1: Radial stress.
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Figure 2: Tangential stress.

used to obtain the equivalent displacement reference:
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where 1� and �� are the desired tangential and radial stress
profiles. Also, to avoid internal layers being damaged, the tan-
gential stress should not exceed a certain value. For example, it
can be shown using a tensile testing on a newsprint paper sam-
ple that, up to 2% of strain (elongation), there is no damage and
the characteristic can be approximated by a linear curve. In ad-
dition, the tangential stress must be maintained positive while
the roll in being wound. A negative tangential stress means
a presence of buckling: the circumference of the affected lay-
ers are longer the allocated space. A pressure profile of the
form ��<��� ([13]) has been used to avoid inter-layer slippage.
For the winding model (28), the control objective is to control
���� �� to a desired displacement profile 
 ���� ��. Simulations
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Figure 3: Tangential stress at t=100 s.

were carried out where the results are shown in Figure 1 - 3,
it can be seen that the tension of the internal layers which are
initially positive (wound with a tension of 750 psi) becomes
negative.

5.Conclusions

In this paper, a neuro-mechanical approach is proposed
for the modelling and control of a class of parameter dis-
tributed systems whose control input appears in the boundary
conditions of the system equation. This type of system
represents commonly used winding processes in the film and
paper industries. Using the physical model derived from the
process, a B-spline neural network is used to approximate the
system so that a controller can be designed. An observer-based
controller has been proposed and its stability proved. The
application to winding processes is then developed, where
some simulations are provided to show the effectiveness of the
proposed method.

Future works include the extension of the modelling and
control algorithm to a 2D and a 3D cases. Also, the imple-
mentation of the control strategy as well as its use for on-line
monitoring should be considered.
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