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ment tools. Aircraft control laws. opment of flight control systems.

Among various objectives, adjustmenttdf norms is often re-
Abstract quired because a lot of design objectives expresgasiteria.

The adi f fixed llers b Acgustment tools allow to compensate for differences between
e adjustment of fixed structure controllers becomes a mayQf ircraft design model and the actual aircraft model that in-

;ssm:e in the deve_lopme:]nt of com”plex control S_ySt?th'f_m(ée%ﬂxdes all the more recent knowledge of the aircraft behavior.
orlong term project, the controfler structure is often fixed i ater model often includes a lot of modes neglected at the

an early stage while the tuning of controller parameters remaw‘gsign step, but may also differ because of new available flight
possible all along the project. It is also a key point wheneV{sE[St identification results

multi-objective design problems are tackled.

The obieci  the fixed lids adi Another need foH, adjustment tools results from the fact that
e objective of the fixed structure controlléts adjustment . ¢ H, constraints are just roughly taken into account for

Is to adjust selected gains of a give.n control law in.order 10 Ihen designing the control law, or even not at all. For example
duce theH norm Of a transfer fqnph_op representative of SOM&h accurate evaluation of the aircraft behavior in the presence
performance criterium while minimizing all other changes Bt turbulence wind in terms of servomechanisms fatigue, me-

the closed loop behavior. chanical loads undergone by the aircraft structure or passengers
This paper deals with methodological aspectsHgfadjust- comfort may leads to the adjustment of the control law gains.
ment. We present the development of a Lyapunov approach

based on the classical Lyapunov computatiorHgfnorms. 1.2 Methodological aspects

An analytic sensitivity analysis is carried out that leads to an

efficient gradient like search. Furthermore we show that fadfe begin to show in sectiof that the adjustment problem
and accurate numerical procedures may be derived allowingi@y be seen has a decentralized static output feedback design

work with large scale models often encountered in adjustmédtipblem. Fixed order and fixed structure design problems are
aeronautical applications. known to be generally nonconvex. For example existence and

uniqueness of stabilizing controllers of a given order or struc-

1 Introduction ture is still an open questiod]

o Several heuristic procedures have been proposed to solve fixed
1.1 Motivation order design problems. They mostly rely on numerical opti-
mization P] and thus may be used in the adjustment context.

Our main concern is in flight control system applications fcir%ieed even if our objective is not to find bia optimal solu-

large passenger transportation aircraft. The aircraft control | . . . ; T
design is seldom a direct operation. Generally multiple sta%osn’ iterative techniques dedicated to the minimizatiorHgf

are necessary to obtain a satisfactory result. When the de ’gﬁms provide a good basis for the developmerttiphdjust-
conditions are modified, to start again the work since the b ent procedures.

ginning is not necessarily the most effective way. Thus tHRroposed approaches are often based on a two-stage optimiza-
need for a retuning of the control laws may arise all along thien processV — K iterations P], alternating convex projec-
development of an aircraft, each time the design model or thien methods §] [4], dual iterations$]. Each stage is a (quasi)
specifications evolve. convex optimization problem set up within the linear matrix

nequality (LMI) framework. However optimization problems

Obviously the availability of efficient adjustment tools is 0that involve large scale models are not currently tractable b
particular importance in the end of the project where delaﬁ/II solvers 9 y y

may have highly negative economic consequences on the over-

all project. At this stage the structure of the controller is frozeWe deal here with such large scale problems. The question of
and the adjustment procedures only intend to adapt some csiabilization is bypassed assuming that an initial feasible point
troller parameter so that every control law requirements are dads been yet found. We just have to preserve stability. Thus our
isfied. Thus the development of adjustment tools dedicatedoigiective is to develop efficient numerical procedures allowing



to adjust selected gains of a given control law in order to W | ooy e e
. . ——+— Perturbation -+ e ——
- reduce theH, norm of a transfer function representative of ' Model | system |
some performance criterium or constraint, T
- preserve stability, i el
- and also minimize all other changes in the closed loop behav- L| Parametrized jA—
or. L Controller ]

The satisfaction of this two later points simply results here
from the fact that we develop.|terat|ve small gain correpuons U | K= Structured Adjustable | Y
methods. At each step the adjustment can be stopped if unex- Matrix Gain
pected changes appear. A more accurate processing of these
constraints would be interesting but is out of the scope of the
present paper.

Figure 1:M — A representation of a closed system

One approach to controlléf, adjustment for such high dimen-

sional systems is through the use of Lyapunov solvers. This is o . .
the way followed in this paper. structured gain is often calletkcentralized static output feed-

i ) o ) _ backand captures a large class of controller architecturgs [
In the first section we develop a sensitivity analysisefcri-

terium based on Lyapunov theory. We show that the sensititd€e closed-loop state space representation writes as:

ity with respect to controller gains expresses as a function of )

the matrix solutions of a set of coupled Lyapunov equations. X = (A+BKG)x+Bww 1)
This analytic expression of the sensitivity is then used in sec- e = (CetDekCy)x

tion 3 where anH, adjustment procedure is proposed. Such o .
ideas may be seen as a reminiscence6bf 7] where more The A matrix includes the open loop system dynamic, the con-

complex mixecHs/H. design problems are studied. The maiHOHer dynamic and the perturbation model dynamic. Thus

advantage of this Lyapunov approach is that numerically e ndy on figure () are not the true system input and output, but
cient Lyapunov solvers exist. This lead us to show by num F_:titious signals that are equivalent to control and measurement

ical experiments that, for each adjustment iteration, a lineaft
increasing CPU time with respect to the model order may g assume that tHé, norm betweenv andeis finite whatever
achieved (section). is the feedback gaiK. This implies thaDey, Dyw andDy, are
| zero matrices.

pnals for theM — A representation.

It is worth to be pointed out that another Lyapunov based &
proach may be followed. As a matter of fact tHe optimal _ o
static output feedback may be characterized by a set of bilinéa# Computation of theH; sensitivity

matrix equations. Alternating projection methods may be th 2
. . . : e denote byl the squareth; norm of G: J = ||G||5. The clas-
applied. This yields to an iterated resolution of Lyapunov equg?Cal comput)gttion c?ﬂ withiﬁ the Lyapunov |<|31pu)2roach is first

tion sets. In this spirit, the Kleinman algorithi®] [dedicated to ccalled
the H, optimal state feedback case is known to converge. The '

extension to the static output feedback case is under study. J— trace{(Ce+ DedkCy)X (Ce+ D KCy)T} @
- eu eu

As an alternative strategy for addressiigoptimal problems
subject to architecture constraints, homotopic technique haviereX satisfies the Lyapunov equation
been also proposed. Related works may be foun®]ifil0]

[11] where homotopic and descent algorithms are discussed. (A+BKGy)X 4+ X(A+BKGC)" +ByBj, =0 3)
Such techniques might be also very interesting within the ad-
justment context. Within the stochastic framework, ¥ is a white noise process

) ) ) . with power spectral density equal to 1, then the definite non
Finally, note that direct synthesis approaches is out off theyative matrix is the covariance of the state variakile
scope of the present paper, since we follow here a multiple
steps design approach. Since all closed loop matrices are linear functions of the matrix

gainK it is always possible to shift them towards zero. Thus

e . . we can assume that the initial valuekofs zero.
2 H> norm sensitivity analysis

The sensitivity matrix of with respect tK is a matrix denoted
2.1 Modeling dedicated to adjustment S=0J/0K with the same dimensions &s It depends orK.
Itls value at the initial poinK = Ko = 0 is given by the fol-
?owing lemma @.1). However it must be pointed out that this
(,Iieré]ma only applies to non zero terms®fSince we consider
Structured feedback, K; ; is fixed then obviously ; = 0.

We consider aiM — A representation of a closed system mod
as depicted on figurel]. The matrixA = K involves the con-
troller gains. Some of them are to be adjust in order to decre
theHz norm of the closed-loop transf& from wto e. Such a



Lemma 2.1 The general term of the sensitivity matrix S islowever our objective is to redudebut without any other im-

given by: portant change. This constraint led us not to use a gradient
T T T search algorithm but a descent algorithm along the direction of
S =1tr {CeW jCe +DiCjXC; +CeX (DiC) " } maximal sensitivity.

where X> 0 and W ; satisfy the set of Lyapunov equations: Let us consider a Singular Value DecompositionSof S =

UZVT. We can write :
AX+XAT +B,Bl, =0

4
AW, +W AT + BC; X + X (BC;)T =0 ) K — Ko+ URVT

and where B(resp. D) stands for the ith column of B (resp.Then we have :
Deu) and G stands for the jth row of C.

J-J = Tt {VZTUTU RVT} =tr {VZTRVT}
_ T T _ T
Proof 2.2 The dimension of K is m p. We denote by; g the B :r {\éZYZ_R} _“tr.{z R}
ith vector of the natural basis &®™. We consider a variation = U { } =YiRioi

of K with normp and which is zero everywhere except at OW|i ot Us remark thatK — Koll2 = [URVT > = |R|l2. Thus if this

and column j. This means that K writes: norm is fixed and equal tp, the maximal decrease dfis then

K = pa,mejT,p (5) achieved with "
K=Ko—p—+ ®)
We have: 01
B = BT‘Ja=m whereu; andv; are the left and right singular vectors associ-
G = &G ated to the largest singular valge of S.
O = Delim The first ord iation ofl is J = J Thi ts th
: . e first order variation of is J = Jy — p. This suggests the
ghen, from equation2) and @), J expresses as a function ofH2 adjustment procedure described hereafter:
(A+pBiCj) X + X (A+pBiCj)T +B,B}, =0 Procedure
Jp)=tr {(Ce+ pDiCj) X (Ce+pDiCj)T} (i) Compute the current closed loop model in order to shift K

towards k = 0.
(i) Compute dK = ule/crl, the direction of variation for K
maximizing the sensitivity of S abou.K

The derivative of J with respect to this parameper K; ; is
the general term of the sensitivity matrix:

S; = dJ/dp (iii) Search for an optimap so that the gain variatior-pdK*
= tr {DiCj X (Ce+ pDiCj)T yields to a minimal J value, while keeping the closed loop sta-
+(Ce+PDiCj) W, (Ce + pDIC;)" ble. o
+(Ce+pDiCj) X (DiCj) " } (iv) Iterate if required.
where W; is the matrix defined by W= dX/dp. Before each step of the algorithm, the previously compisted

matrix is included in the system closed loop model. Then the
In order to evaluate this later matrix we compute the derivaensitivity is estimated, and l-variation is proposed along
tive of the Lyapunov equation satisfied par X (equaipnits  the maximal sensitivity direction. A priori a one dimensional
derivative with respect tp writes as: search algorithm may be used to solve iép. Furthermore,
B (A8 W, poner o enaure e eratons sty e e sttty
W (A4 pBIC)T + X (BiCj)T =0 main, a ‘ogarith Y .
spirit of interior point methods. However this is a theoretical

F|na||y takmgp =0 y|e|ds to the expected lemma result. solution. Slmpler and more intuitive processes, as proposed
below, may be as efficient and far less time consuming.

3 An H; adjustment procedure o _
3.2 Optimization over an adaptive mesh

3.1 Maximal sensitivity descent ) ) ] )
The above procedure involves a constraint one dimensional op-

The behavior ofl about the initial poinKo = 0 is described at timization that may be tackled from different angles. We first
the first order by: note that with : p = aJp, the new algorithm step is just
T equal to the expected relative decrease).ofWithin the ad-

JxJo+tr {S (K- KO)} (6) justment context a typical maximal value for the relative cri-
terium decrease 3max= 10%. And a typical minimal value is
Omin = 1%, which corresponds to the minimal criterium de-
crease that is worth to do. Thus it seems to be reasonable
to constraint the one dimensionaloptimization to the range
Jo [amim Gmax}-

whereJy is the value wheik = Kg = 0. If a gradient algorithm
were used to decreadewith lengthp, then on should take :

K =Ko (7)

oS
P {sTs!



In order to speed up the procedure we propose to just test ség+egards the SVD, it must be pointed out that it only applies
eralp values over the previously defined range and to jump to a matrix whose dimension is equal to thakofAn accurate
the best stable point. We currently use the following mesh feolution is thus easy to found.

a:

O € Omaxx {0.1,0.3,0.7, 1} (9) 4.2 Computation cost

Such a very simple algorithm works quite well when applied {ys regards the cqmputation cost_, the firs’F adjustment routine
our physical aeronautical problems. When iterated, the adjud@s developed without any special attention dedicated to the
ment steps produce a sequence of decreasing criterium valG@§IPutation cost. The average step duration was less than 1

It stops when the relative variation of the criterium is less than©" @ SPARC station IV, when a 25 dimensional model was
used. In order to increase the size of the models to which the

procedure applies a more adapted MATLAB routine has then
However in some cases it stops prematurely. As a matterdfen developed.

fact, since no continuous penalty function is used to preven

t . .
from instability, the current point may converge towards tHerelies on the fact that at each step, all the Lyapunov equations
stability domain barrier. Then it may happens that none of tff2 P& solved involve the samematrix. Classical Lyapunov

tested points of the mesh satisfy the stability constraint, and {#dVers use a schur factorization followed by a Gauss pivoting
procedure stops even if the current valugds far from being method applied to solve a set of linear triangular equations.
locally optimal. Consequently the computational cost of the schur factorization

needs not to be repeated. Such a routine yields to an average
To prevent from such a behavior, the range of the mesh (ggep duration which is equal to3s.

rametemnay) is adapted. At the beginning of each iteration the ) ) ) .
value ofamayis initialized at 10%. Then it is reduced (multi-W'th this new algorithm, numerical experiments show that the

plication by 09) until there exists at least one stable point i#/€rage CPU time duration of each adjustment iteration in-
the mesh. creases linearly when the size of the aircraft state space model
is greater than about 130 (figurgs Above this limit each it-

One can thinks that the procedure may be used to minimiz@rtion increases of aboutl® per state. These results were
H criterium under fixed structure constraints and stability con-

straint. However it is worth to be pointed out that even if the
proposed procedure always converges, it may not always lea
to a local optimum. As a matter of fact, even with an adap-
tive mesh, the descent directi&ri may not be admissible with
respect to the stability constraint. Thus we do not really solve
the fixed structurél, optimization problem under stability con-
straint.

Omin-

14

121

101

Average CPU time

4 Numerical aspects
4.1 Accuracy

From a numerical point of view, our procedure mainly relies 2
on the resolution of a set of Lyapunov equation, and a singu-

lar value decomposition. At each step the number of Lyapunov % 4 e s w0 10 1o 10 10 20 220
equations to be solved is equal to the number of free parametels Hosetdmenser

in K plus t.he. number of points of the mesh.. Since an ImportantFigure 2: One iteration average CPU time v.s model order
characteristic of the state space models involved in our aero-
nautical applications is their high dimension, then a lot of care

must be paid to the choice of the Lyapunov solver. Indeed eveitained with reduced state space models computed from a
the criterium calculus may be ill-conditioned. And accurate sanique initial aircraft structural model. For that purpose a re-
lutions of all the involved Lyapunov equations are not easy thuction procedure dedicated to aircraft structural model reduc-
found. tion has been developed.

Within such large systems it is recommended to use efficient o
numerical routines such as the ones of the SLICOT packdye Application
(http://www.win.tue.nl/niconet/niconet.himiThat is what we
do. The adjustment procedure was thus first developed und
MATLAB, with an embedded SLICOT Lyapunov solver. Thisy firgt order system has been used to check the behavior of

led us to verify the good behavior of the proposed adjustmetme adjustment algorithm. It is described on figugg (The
procedure.

g Anacademic example



corresponding system matrices are the following: The Lyapunov analysis introduced above allows us to compute
the mechanical load power without carrying on any simulation.

A= 11 B = 10 Bu= 10 The current control law is based on five measurement outputs:
Ce= ( 0 > Dew = ( 0 ) Deu= < 1 > the pitch rateg, and the normal acceleration at four points (crew
c=1 Do — 0 Do — 0 station, forward and rear fuselage, left and right external en-
w v gines). The five components of the input vector correspond to
rudder and aileron deflections. The controller involves five se-
w lected gains to be adjust in order to lower the mechanical loads.
Gains 1 to 3 correspond to the classical control of pitch rate and
u 1 y normal acceleration responses. Gains 4 and 5 are intended to

p+l f e reduce the vibration level by aileron and elevator actuation re-

spectively.
K For each of the four mechanical load outputs an iterated ad-

justment of the current control law has been carried out that is
intended to minimize the power of the output under considera-
tion (cases 1 to 4). The Lyapunov analysis of these results are
summarized in the following tabl&):

For such a simple system, it is quite easy to found the optimal

Figure 3: Academic example

value of the gairK by solving the Riccati equation associated Moment Adjustment case
the quadratic criterium. One find = 1— /2= —0.4142 and 1 ‘ 2 ‘ 3 ‘ 4
the optimal criterium value idopt = v2— 1 = 0.4142. Bending Wing root -101 34 | 46 | 10

. . Bending Tail root 20 | -60 | 500 | 1398
Table () shows that, when iterated, the adjustment procedure| 14rsion Forward fuselage 9 | 78 | -40 | 48
converge to the optimal gainN is the number of iterations Torsion Rear fuselage 21661 -4 | -64

required for the algorithm to converge. Obviously this num-
ber increases when the initialization moves away from the op- Table 2: Load power variations (%)
timum, because at each step the criterium decrease is restricted

to a maximal value of 10%.

Kint | It | Krinal | Jrinal | N This table @) brings to the fore the balance between the two
0 050 | -0414| 0.414| 4 bending moments. If the bending moment at the wing root is
10 | 459 | -0.438]| 0.414| 25 reduced by 10 percent (first column), the bending moment at
-100 | 4951 | -0.438| 0.414 | 48 the tail root is increased by 20 %. On the other hand (second
column) if this later moment is minimized down to 60 %, then
Table 1:H, optimization for a first order system the former increases by 34 %. As regards the torsion fuselage

moments, the table depicts the fact that the minimization of

these moments may result in a very large increase of the bend-
This example shows that the proposed adjustment proceditig, moments (columns 3 and 4). Thus, in order to achieve a
when iterated, is able to deliver results that are coherent withsonable adjustment, these two criteria must be completed
the known optimal value. with wing and tail bending terms.

The adjustment algorithm is obviously not aimed to minimize
anH, criterium. It is a tool that may help an engineer to tune

We now consider a realistic model that is well representative 3@Ven control law, in a multi-objective and highly constraint
the vertical behavior of a large four engine civil aircraft, witfifamework. This example demonstrates that the proposed pro-
conventional control surfaces. It is a linear aero-elastic mod&dure is able to deal with high dimensional models as far as
based on a modal description. The overall aircraft model wigifiustment oHz norms is concerned.

its control law involves more than 250 states. Such a high di-

mension modeling is the price to be paid for an accurate rep- Conclusion

resentation of the structural dynamic behavior of the aircraft in

turbulent wind and over a rather large frequency range.  In this paper, we propose to use a gradient-like algorithm to
solve the iterativeH, adjustment problem. An analytical ex-

pression of the sensitivity function is first derived, and an ad-
justment algorithm based on a maximal sensitivity descent is
then described. Numerical experiments show that the proce-

3. the torsion moment at a forward fuselage point, dure is well suited to solvel, adjustment for large scale sys-
4. the torsion moment at a rear fuselage point. tems.

This preliminary study uses a Dryden turbulent wind model.

5.2 Adjustment dedicated to load alleviation

The mechanical load outputs we dealt with here are:
1. the vertical bending moment at the wing root,
2. the vertical bending moment at the tail root,



Many other tools may be used to tackle the adjustment prdhh?2] R.S. Erwin, A. G. Sparks, et D. S. Bernstein. Robust fixed
lem. We must emphasis on the LMI approach, which provides structure controller synthesis via decentralized static out-
us with a very interesting framework for the iterative design,  put feedbacklInternational Journal of Robust Nonlinear
as illustrated in the references hereafter. For example a method Control, 8, 1998.

based on LMI computation of thé, norm is developed in[3]. , )

However, at the time being, none of these approaches is numhtp] Y- Losser et Ph. Mouyon. An Imi approach to fixed struc-
ically accurate and efficient enough to be applied within the  turé controller adjustmentIFAC Symposium on Robust
context of high dimension models. Control Design June 2003.
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