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Abstract

The adjustment of fixed structure controllers becomes a major
issue in the development of complex control systems. Indeed,
for long term project, the controller structure is often fixed at
an early stage while the tuning of controller parameters remains
possible all along the project. It is also a key point whenever
multi-objective design problems are tackled.

The objective of the fixed structure controllersH2 adjustment
is to adjust selected gains of a given control law in order to re-
duce theH2 norm of a transfer function representative of some
performance criterium while minimizing all other changes in
the closed loop behavior.

This paper deals with methodological aspects ofH2 adjust-
ment. We present the development of a Lyapunov approach
based on the classical Lyapunov computation ofH2 norms.
An analytic sensitivity analysis is carried out that leads to an
efficient gradient like search. Furthermore we show that fast
and accurate numerical procedures may be derived allowing to
work with large scale models often encountered in adjustment
aeronautical applications.

1 Introduction

1.1 Motivation

Our main concern is in flight control system applications for
large passenger transportation aircraft. The aircraft control law
design is seldom a direct operation. Generally multiple stages
are necessary to obtain a satisfactory result. When the design
conditions are modified, to start again the work since the be-
ginning is not necessarily the most effective way. Thus the
need for a retuning of the control laws may arise all along the
development of an aircraft, each time the design model or the
specifications evolve.

Obviously the availability of efficient adjustment tools is of
particular importance in the end of the project where delays
may have highly negative economic consequences on the over-
all project. At this stage the structure of the controller is frozen,
and the adjustment procedures only intend to adapt some con-
troller parameter so that every control law requirements are sat-
isfied. Thus the development of adjustment tools dedicated to

fixed structure controllers becomes a major issue in the devel-
opment of flight control systems.

Among various objectives, adjustment ofH2 norms is often re-
quired because a lot of design objectives express asH2 criteria.
Adjustment tools allow to compensate for differences between
the aircraft design model and the actual aircraft model that in-
cludes all the more recent knowledge of the aircraft behavior.
This later model often includes a lot of modes neglected at the
design step, but may also differ because of new available flight
test identification results.

Another need forH2 adjustment tools results from the fact that
a lot of H2 constraints are just roughly taken into account for
when designing the control law, or even not at all. For example
an accurate evaluation of the aircraft behavior in the presence
of turbulence wind in terms of servomechanisms fatigue, me-
chanical loads undergone by the aircraft structure or passengers
comfort may leads to the adjustment of the control law gains.

1.2 Methodological aspects

We begin to show in section2 that the adjustment problem
may be seen has a decentralized static output feedback design
problem. Fixed order and fixed structure design problems are
known to be generally nonconvex. For example existence and
uniqueness of stabilizing controllers of a given order or struc-
ture is still an open question [1].

Several heuristic procedures have been proposed to solve fixed
order design problems. They mostly rely on numerical opti-
mization [2] and thus may be used in the adjustment context.
Indeed, even if our objective is not to find anH2 optimal solu-
tion, iterative techniques dedicated to the minimization ofH2

norms provide a good basis for the development ofH2 adjust-
ment procedures.

Proposed approaches are often based on a two-stage optimiza-
tion process:V −K iterations [2], alternating convex projec-
tion methods [3] [4], dual iterations [5]. Each stage is a (quasi)
convex optimization problem set up within the linear matrix
inequality (LMI) framework. However optimization problems
that involve large scale models are not currently tractable by
LMI solvers.

We deal here with such large scale problems. The question of
stabilization is bypassed assuming that an initial feasible point
has been yet found. We just have to preserve stability. Thus our
objective is to develop efficient numerical procedures allowing



to adjust selected gains of a given control law in order to
- reduce theH2 norm of a transfer function representative of
some performance criterium or constraint,
- preserve stability,
- and also minimize all other changes in the closed loop behav-
ior.
The satisfaction of this two later points simply results here
from the fact that we develop iterative small gain corrections
methods. At each step the adjustment can be stopped if unex-
pected changes appear. A more accurate processing of these
constraints would be interesting but is out of the scope of the
present paper.

One approach to controllerH2 adjustment for such high dimen-
sional systems is through the use of Lyapunov solvers. This is
the way followed in this paper.

In the first section we develop a sensitivity analysis ofH2 cri-
terium based on Lyapunov theory. We show that the sensitiv-
ity with respect to controller gains expresses as a function of
the matrix solutions of a set of coupled Lyapunov equations.
This analytic expression of the sensitivity is then used in sec-
tion 3 where anH2 adjustment procedure is proposed. Such
ideas may be seen as a reminiscence of [6] [7] where more
complex mixedH2/H∞ design problems are studied. The main
advantage of this Lyapunov approach is that numerically effi-
cient Lyapunov solvers exist. This lead us to show by numer-
ical experiments that, for each adjustment iteration, a linearly
increasing CPU time with respect to the model order may be
achieved (section4).

It is worth to be pointed out that another Lyapunov based ap-
proach may be followed. As a matter of fact theH2 optimal
static output feedback may be characterized by a set of bilinear
matrix equations. Alternating projection methods may be then
applied. This yields to an iterated resolution of Lyapunov equa-
tion sets. In this spirit, the Kleinman algorithm [8] dedicated to
theH2 optimal state feedback case is known to converge. The
extension to the static output feedback case is under study.

As an alternative strategy for addressingH2 optimal problems
subject to architecture constraints, homotopic technique have
been also proposed. Related works may be found in [9] [10]
[11] where homotopic and descent algorithms are discussed.
Such techniques might be also very interesting within the ad-
justment context.

Finally, note that direct synthesis approaches is out off the
scope of the present paper, since we follow here a multiple
steps design approach.

2 H2 norm sensitivity analysis

2.1 Modeling dedicated to adjustment

We consider anM−∆ representation of a closed system model
as depicted on figure (1). The matrix∆ = K involves the con-
troller gains. Some of them are to be adjust in order to decrease
theH2 norm of the closed-loop transferG from w to e. Such a
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Figure 1:M−∆ representation of a closed system

structured gain is often calleddecentralized static output feed-
backand captures a large class of controller architectures [12].

The closed-loop state space representation writes as:

ẋ = (A+BKCy)x+Bww
e = (Ce+DeuKCy)x

(1)

TheA matrix includes the open loop system dynamic, the con-
troller dynamic and the perturbation model dynamic. Thusu
andy on figure (1) are not the true system input and output, but
fictitious signals that are equivalent to control and measurement
signals for theM−∆ representation.

We assume that theH2 norm betweenw ande is finite whatever
is the feedback gainK. This implies thatDew, Dyw andDyu are
all zero matrices.

2.2 Computation of theH2 sensitivity

We denote byJ the squaredH2 norm ofG: J = ‖G‖2
2. The clas-

sical computation ofJ within the Lyapunov approach is first
recalled.

J = trace
{
(Ce+DeuKCy)X(Ce+DeuKCy)T}

(2)

whereX satisfies the Lyapunov equation

(A+BKCy)X +X(A+BKCy)T +BwBT
w = 0 (3)

Within the stochastic framework, ifw is a white noise process
with power spectral density equal to 1, then the definite non
negative matrixX is the covariance of the state variablex.

Since all closed loop matrices are linear functions of the matrix
gain K it is always possible to shift them towards zero. Thus
we can assume that the initial value ofK is zero.

The sensitivity matrix ofJ with respect toK is a matrix denoted
S= ∂J/∂K with the same dimensions asK. It depends onK.
Its value at the initial pointK = K0 = 0 is given by the fol-
lowing lemma (2.1). However it must be pointed out that this
lemma only applies to non zero terms ofS. Since we consider
structured feedback, ifKi, j is fixed then obviouslySi, j = 0.



Lemma 2.1 The general term of the sensitivity matrix S is
given by:

Si, j = tr
{
CeWi, j C

T
e +DiCj X CT

e +CeX (DiCj)T}
where X≥ 0 and Wi, j satisfy the set of Lyapunov equations:

AX+XAT +BwBT
w = 0

AWi, j +Wi, jAT +BiCj X +X (BiCj)T = 0
(4)

and where Bi (resp. Di) stands for the ith column of B (resp.
Deu) and Cj stands for the jth row of C.

Proof 2.2 The dimension of K is m× p. We denote by ei,m the
ith vector of the natural basis ofIRm. We consider a variation
of K with normρ and which is zero everywhere except at row i
and column j. This means that K writes:

K = ρei,meT
j,p (5)

We have:
Bi = Buei,m

Cj = eT
j,pCy

Di = Deuei,m

Then, from equations (2) and (3), J expresses as a function of
ρ:

(A+ρBiCj)X +X (A+ρBiCj)T +BwBT
w = 0

J(ρ) = tr
{
(Ce+ρDiCj)X (Ce+ρDiCj)T

}
The derivative of J with respect to this parameterρ = Ki, j is
the general term of the sensitivity matrix:

Si, j = dJ/dρ
= tr

{
DiCj X (Ce+ρDiCj)T

+(Ce+ρDiCj)Wi, j (Ce+ρDiCj)T

+(Ce+ρDiCj)X (DiCj)T
}

where Wi, j is the matrix defined by Wi, j = dX/dρ.

In order to evaluate this later matrix we compute the deriva-
tive of the Lyapunov equation satisfied par X (equation3). Its
derivative with respect toρ writes as:

BiCj X +(A+ρBiCj)Wi, j

+Wi, j (A+ρBiCj)T +X (BiCj)T = 0

Finally takingρ = 0 yields to the expected lemma result.

3 An H2 adjustment procedure

3.1 Maximal sensitivity descent

The behavior ofJ about the initial pointK0 = 0 is described at
the first order by:

J≈ J0 + tr
{

ST(K−K0)
}

(6)

whereJ0 is the value whenK = K0 = 0. If a gradient algorithm
were used to decreaseJ, with lengthρ, then on should take :

K = K0−ρ
S

tr
{

STS
} (7)

However our objective is to reduceJ but without any other im-
portant change. This constraint led us not to use a gradient
search algorithm but a descent algorithm along the direction of
maximal sensitivity.

Let us consider a Singular Value Decomposition ofS : S=
UΣVT . We can write :

K = K0 +URVT

Then we have :

J−J0 = tr
{
VΣTUTURVT

}
= tr

{
VΣTRVT

}
= tr

{
VTVΣTR

}
= tr

{
ΣTR

}
= tr

{
RΣT

}
= ∑i Rii σi

Let us remark that‖K−K0‖2 = ‖URVT‖2 = ‖R‖2. Thus if this
norm is fixed and equal toρ, the maximal decrease ofJ is then
achieved with

K = K0−ρ
u1vT

1

σ1
(8)

whereu1 andv1 are the left and right singular vectors associ-
ated to the largest singular valueσ1 of S.

The first order variation ofJ is J = J0−ρ. This suggests the
H2 adjustment procedure described hereafter:

Procedure
(i) Compute the current closed loop model in order to shift K
towards K0 = 0.
(ii) Compute dK∗ = u1vT

1 /σ1, the direction of variation for K
maximizing the sensitivity of S about K0.
(iii) Search for an optimalρ so that the gain variation−ρdK∗

yields to a minimal J value, while keeping the closed loop sta-
ble.
(iv) Iterate if required.

Before each step of the algorithm, the previously computedK
matrix is included in the system closed loop model. Then the
sensitivity is estimated, and aK-variation is proposed along
the maximal sensitivity direction. A priori a one dimensional
search algorithm may be used to solve step(iii) . Furthermore,
in order to ensure that the iterations stay inside the stability
domain, a logarithmic barrier functional may be used in the
spirit of interior point methods. However this is a theoretical
solution. Simpler and more intuitive processes, as proposed
below, may be as efficient and far less time consuming.

3.2 Optimization over an adaptive mesh

The above procedure involves a constraint one dimensional op-
timization that may be tackled from different angles. We first
note that with : ρ = αJ0, the new algorithm stepα is just
equal to the expected relative decrease ofJ. Within the ad-
justment context a typical maximal value for the relative cri-
terium decrease isαmax= 10%. And a typical minimal value is
αmin = 1%, which corresponds to the minimal criterium de-
crease that is worth to do. Thus it seems to be reasonable
to constraint the one dimensionalρ-optimization to the range
J0× [αmin, αmax].



In order to speed up the procedure we propose to just test sev-
eralρ values over the previously defined range and to jump to
the best stable point. We currently use the following mesh for
α:

α ∈ αmax×{0.1, 0.3, 0.7, 1} (9)

Such a very simple algorithm works quite well when applied to
our physical aeronautical problems. When iterated, the adjust-
ment steps produce a sequence of decreasing criterium values.
It stops when the relative variation of the criterium is less than
αmin.

However in some cases it stops prematurely. As a matter of
fact, since no continuous penalty function is used to prevent
from instability, the current point may converge towards the
stability domain barrier. Then it may happens that none of the
tested points of the mesh satisfy the stability constraint, and the
procedure stops even if the current value ofK is far from being
locally optimal.

To prevent from such a behavior, the range of the mesh (pa-
rameterαmax) is adapted. At the beginning of each iteration the
value ofαmax is initialized at 10%. Then it is reduced (multi-
plication by 0.9) until there exists at least one stable point in
the mesh.

One can thinks that the procedure may be used to minimize a
H2 criterium under fixed structure constraints and stability con-
straint. However it is worth to be pointed out that even if the
proposed procedure always converges, it may not always lead
to a local optimum. As a matter of fact, even with an adap-
tive mesh, the descent directionK∗ may not be admissible with
respect to the stability constraint. Thus we do not really solve
the fixed structureH2 optimization problem under stability con-
straint.

4 Numerical aspects

4.1 Accuracy

From a numerical point of view, our procedure mainly relies
on the resolution of a set of Lyapunov equation, and a singu-
lar value decomposition. At each step the number of Lyapunov
equations to be solved is equal to the number of free parameters
in K plus the number of points of the mesh. Since an important
characteristic of the state space models involved in our aero-
nautical applications is their high dimension, then a lot of care
must be paid to the choice of the Lyapunov solver. Indeed even
the criterium calculus may be ill-conditioned. And accurate so-
lutions of all the involved Lyapunov equations are not easy to
found.

Within such large systems it is recommended to use efficient
numerical routines such as the ones of the SLICOT package
(http://www.win.tue.nl/niconet/niconet.html). That is what we
do. The adjustment procedure was thus first developed under
MATLAB, with an embedded SLICOT Lyapunov solver. This
led us to verify the good behavior of the proposed adjustment
procedure.

As regards the SVD, it must be pointed out that it only applies
to a matrix whose dimension is equal to that ofK. An accurate
solution is thus easy to found.

4.2 Computation cost

As regards the computation cost, the first adjustment routine
was developed without any special attention dedicated to the
computation cost. The average step duration was less than 1.4
s on a SPARC station IV, when a 25 dimensional model was
used. In order to increase the size of the models to which the
procedure applies a more adapted MATLAB routine has then
been developed.

It relies on the fact that at each step, all the Lyapunov equations
to be solved involve the sameA matrix. Classical Lyapunov
solvers use a schur factorization followed by a Gauss pivoting
method applied to solve a set of linear triangular equations.
Consequently the computational cost of the schur factorization
needs not to be repeated. Such a routine yields to an average
step duration which is equal to 0.3 s.

With this new algorithm, numerical experiments show that the
average CPU time duration of each adjustment iteration in-
creases linearly when the size of the aircraft state space model
is greater than about 130 (figures2). Above this limit each it-
eration increases of about 0.1s per state. These results were
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Figure 2: One iteration average CPU time v.s model order

obtained with reduced state space models computed from a
unique initial aircraft structural model. For that purpose a re-
duction procedure dedicated to aircraft structural model reduc-
tion has been developed.

5 Application

5.1 An academic example

A first order system has been used to check the behavior of
the adjustment algorithm. It is described on figure (3). The



corresponding system matrices are the following:

A =−1 Bw = 1 Bu = 1

Ce =
(

1
0

)
Dew =

(
0
0

)
Deu =

(
0
1

)
Cy = 1 Dyw = 0 Dyu = 0

+
+

K

e

w

yu
p+1
1

Figure 3: Academic example

For such a simple system, it is quite easy to found the optimal
value of the gainK by solving the Riccati equation associated
the quadratic criterium. One findK = 1−

√
2 = −0.4142 and

the optimal criterium value isJopt =
√

2−1 = 0.4142.

Table (1) shows that, when iterated, the adjustment procedure
converge to the optimal gain.N is the number of iterations
required for the algorithm to converge. Obviously this num-
ber increases when the initialization moves away from the op-
timum, because at each step the criterium decrease is restricted
to a maximal value of 10%.

Kinit Jinit K f inal Jf inal N
0 0.50 -0.414 0.414 4

-10 4.59 -0.438 0.414 25
-100 49.51 -0.438 0.414 48

Table 1:H2 optimization for a first order system

This example shows that the proposed adjustment procedure,
when iterated, is able to deliver results that are coherent with
the known optimal value.

5.2 Adjustment dedicated to load alleviation

We now consider a realistic model that is well representative of
the vertical behavior of a large four engine civil aircraft, with
conventional control surfaces. It is a linear aero-elastic model
based on a modal description. The overall aircraft model with
its control law involves more than 250 states. Such a high di-
mension modeling is the price to be paid for an accurate rep-
resentation of the structural dynamic behavior of the aircraft in
turbulent wind and over a rather large frequency range.

The mechanical load outputs we dealt with here are:
1. the vertical bending moment at the wing root,
2. the vertical bending moment at the tail root,
3. the torsion moment at a forward fuselage point,
4. the torsion moment at a rear fuselage point.
This preliminary study uses a Dryden turbulent wind model.

The Lyapunov analysis introduced above allows us to compute
the mechanical load power without carrying on any simulation.

The current control law is based on five measurement outputs:
the pitch rateq, and the normal acceleration at four points (crew
station, forward and rear fuselage, left and right external en-
gines). The five components of the input vector correspond to
rudder and aileron deflections. The controller involves five se-
lected gains to be adjust in order to lower the mechanical loads.
Gains 1 to 3 correspond to the classical control of pitch rate and
normal acceleration responses. Gains 4 and 5 are intended to
reduce the vibration level by aileron and elevator actuation re-
spectively.

For each of the four mechanical load outputs an iterated ad-
justment of the current control law has been carried out that is
intended to minimize the power of the output under considera-
tion (cases 1 to 4). The Lyapunov analysis of these results are
summarized in the following table (2):

Moment Adjustment case
1 2 3 4

Bending Wing root -10 34 46 10
Bending Tail root 20 -60 500 1398
Torsion Forward fuselage 9 78 -40 48
Torsion Rear fuselage -2 66 -4 -64

Table 2: Load power variations (%)

This table (2) brings to the fore the balance between the two
bending moments. If the bending moment at the wing root is
reduced by 10 percent (first column), the bending moment at
the tail root is increased by 20 %. On the other hand (second
column) if this later moment is minimized down to 60 %, then
the former increases by 34 %. As regards the torsion fuselage
moments, the table depicts the fact that the minimization of
these moments may result in a very large increase of the bend-
ing moments (columns 3 and 4). Thus, in order to achieve a
reasonable adjustment, these two criteria must be completed
with wing and tail bending terms.

The adjustment algorithm is obviously not aimed to minimize
anH2 criterium. It is a tool that may help an engineer to tune
a given control law, in a multi-objective and highly constraint
framework. This example demonstrates that the proposed pro-
cedure is able to deal with high dimensional models as far as
adjustment ofH2 norms is concerned.

6 Conclusion

In this paper, we propose to use a gradient-like algorithm to
solve the iterativeH2 adjustment problem. An analytical ex-
pression of the sensitivity function is first derived, and an ad-
justment algorithm based on a maximal sensitivity descent is
then described. Numerical experiments show that the proce-
dure is well suited to solveH2 adjustment for large scale sys-
tems.



Many other tools may be used to tackle the adjustment prob-
lem. We must emphasis on the LMI approach, which provides
us with a very interesting framework for the iterative design,
as illustrated in the references hereafter. For example a method
based on LMI computation of theH2 norm is developed in [13].
However, at the time being, none of these approaches is numer-
ically accurate and efficient enough to be applied within the
context of high dimension models.
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