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Abstract

This paper is concerned with the mixed H2/H∞ control prob-
lem. The purpose of this paper is to give an iterative algorithm
for finding a sub-optimal static state feedback controller for the
mixedH2/H∞ control problem. The key idea of our algorithm
is to construct two “controller sets”: one is a set of controllers
that improve the H2 norm of the closed loop map for a given
controller and the other is a set of controllers whose elements
satisfy the H∞ norm constraint. Using two controller sets, we
propose an iterative algorithm. The obtained controller is ei-
ther the global optimal solution if the H∞ norm constraint is
satisfied until the H2 norm of the objective closed loop map
converges to theH2 optimal value or a sub-optimal solution on
the boundary of theH∞ norm constraint.

1 Introduction

Recently, multiobjective control problems have received a great
deal of attention [1, 2], [4]-[7], [9]-[14]. In particular, the so-
called mixed H2/H∞ control problem for linear time invari-
ant (LTI) systems has been studied by many researchers. In
this problem, the H2 and H∞ norms are measures for opti-
mal performance and robustness, respectively. The purpose
of the mixed H2/H∞ control problem is to find a controller
which minimizes theH2 norm of one closed-loop map with an
H∞ norm constraint of another closed-loop map. That is, this
problem is to find the best performance controller among the
robustly stabilizing controllers. Both the H2 and H∞ control
theories have almost been established. However the mixedH2/
H∞ control problem have not completely been solved. This
is because the mixed H2/H∞ control problem is quite diffi-
cult to be solved theoretically, and it is known that the order
of the optimal mixed H2/H∞ controller is not finite in some
cases. Even for a fixed order controller the problem is still
very difficult, because it is a non-convex problem. For this
non-convex problem, various approaches to find a sub-optimal
solution have been explored. However, there is no method to
obtain the global optimal solution except some special cases.

Standard technique to get a sub-optimal solution is to use a
common LMI solution at the expense of conservatism [2, 4].
Recently, new methods using uncommon LMI solutions have
been proposed [1], [9]-[14]. However, all of them except that in
[14] do not show what kind of solutions are obtained, although
it is important for sub-optimal methods to show the properties
of the obtained solutions.

The purpose of this paper is to give a new iterative algorithm
for finding a sub-optimal static state feedback controller for the
mixedH2/H∞ control problem. The key idea of our algorithm
is to introduce two “controller sets”: one is a set of controllers
that improve the H2 norm of the closed loop map for a given
controller and the other is a set of controllers whose elements
satisfy the H∞ norm constraint. Using these sets, we propose
an iterative algorithm which produces a controller that satis-
fies a necessary condition for global optimality. That is, the
obtained controller is either the global optimal solution of the
unconstraint objective function or a solution on the boundary
of the H∞ norm constraint. Numerical examples show the ef-
fectiveness of our algorithm.

2 Problem Formulation

In this paper, consider the following LTI system:

ẋ(t) = Ax(t) +Bu(t) +B1w1(t) +B2w2(t), (1)

z1(t) = C1x(t) +D1u(t), (2)

z2(t) = C2x(t) +D2u(t), (3)

y(t) = x(t), (4)

where x is the plant state, wi(i = 1, 2) are any exogenous in-
puts, u is the control input and zi(i = 1, 2) are the performance
outputs. Throughout this paper, the following assumptions are
made:

1. (A,B) is controllable.

2. (A,Bi, Ci)(i = 1, 2) are controllable and observable.

3. DT
i Di = I(i = 1, 2).

4. B2 has full column rank.

5.

[
A− jω B
C2 D2

]
has full column rank for all ω ∈ R.
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Figure 1: System model for the mixedH2/H∞ control

Let us consider the static feedback controller:

u(t) = Kx(t). (5)

Via the static feedback controller the closed loop system is de-
scribed by

ẋ(t) = Aclx(t) +B1w1(t) +B2w2(t), (6)

z1(t) = Ccl1x(t), (7)

z2(t) = Ccl2x(t), (8)

where

Acl = A+BK,Ccli = Ci +DiK(i = 1, 2). (9)

Let Tziwi(K) denote the closed-loop transfer function from wi

to zi. For this system the mixed H2/H∞ control problem is
defined as follows.

The mixedH2/H∞ control problem (OP): Given an achiev-
ableH∞ norm bound γ, find a controller that satisfies

min
K

‖Tz2w2(K)‖2 subject to ‖Tz1w1(K)‖∞ < γ, (10)

where ‖·‖2 and ‖·‖∞ denote the H2 and H∞ norms, respec-
tively.

3 The global optimal solution of the mixed H2/
H∞ control problem

In this section, we show the property of the global optimal so-
lution of the mixed H2/H∞ control problem. In general, a
global optimal solution of an optimization problem is either a
stationary point of the objective function or a feasible solution
on the boundary of a constraint. However, such property of the
problem (OP) cannot be discussed, because theH∞ norm con-
straint in (10) has no boundary. Hence, we modify the problem
(OP) into the following problem.

The modified mixed H2/H∞ control problem (MP): Given
an achievable H∞ norm bound γ and sufficiently small ε, find
a controller that satisfies

min
K

‖Tz2w2(K)‖2 subject to ‖Tz1w1(K)‖∞ ≤ γ − ε. (11)

To state the property of the stationary point of the objective
function let

J(K) := ‖Tz2w2(K)‖2
2 = traceBT

2 GB2 (12)

whereG is the observability Gramian that is the solution of the
following Lyapnov equation:

GAcl +AT
clG+ CT

cl2Ccl2 = 0. (13)

The global optimal H2 state feedback controller without the
H∞ norm constraint is given by

K = K∗
2 := −BTZ2 −DT

2 C2 (14)

where Z2 is the stabilizing solution of the Riccati equation

Z2(A−BDT
2 C2) + (A−BDT

2 C2)TZ2

−Z2BB
TZ2 + CT

2 (I −D2D
T
2 )C2 = 0. (15)

Lemma 1 [14] J(K) has the unique stationary point at K =
K∗

2 over all internally stabilizing controllers.

Now, we can state the property of the global solution of the
modified mixedH2/H∞ control problem.

Proposition 1 Let K∗
m be the global optimal solution of

the modified mixed H2/H∞ control problem (MP). If
‖Tz1w1(K∗

2 )‖∞ ≤ γ − ε then K∗
m = K∗

2 . Otherwise
K∗

m exists on the boundary of the H∞ norm constraint, i.e.,
‖Tz1w1(K∗

m)‖∞ = γ − ε.

Remark 1 From Proposition 1 it is a necessary condition for a
controllerK to be the global optimal controller of the problem
(MP) that K = K∗

2 or K is on the boundary of the H∞ norm
constraint.

4 Controller Sets

In this section, we define a “controller set” S2(Ki) whose ele-
ment achieves the betterH2 norm thanKi. After then, we show
that a “controller sequence” chosen from S2(Ki) achieves a
monotonically non-increasingH2 norm which converges to the
unconstraint H2 optimal value. Similarly, we define a “con-
troller set” S∞(Ki) via whose element the closed loop satisfies
theH∞ norm constraint.

For a given controllerKi letGi = GT
i > 0 be the observability

Gramian, i.e., the solution of

GiAi +AT
i Gi + CT

2iC2i = 0 (16)

where
Ai = A+BKi, C2i = C2 +D2Ki, (17)

and define a controller set S2(Ki) as

S2(Ki) := {K |LGi
2 (K) ≤ 0} − {Ki} (18)

where

LGi
2 (K) := Gi(A+BK) + (A+BK)TGi

+(C2 +D2K)T (C2 +D2K). (19)

This controller set S2(Ki) has the next property.



Lemma 2 IfKi 
= K∗
2 then everyK ∈ S2(Ki) is an internally

stabilizing controller.

Using the controller set S2(Ki) a controller sequence Π =
{Ki, i = 0, 1, 2, · · ·} is defined as follows:

Algorithm 1: Construction of a controller sequence Π.

STEP 1 Give a stabilizing controller K0(
= K∗
2 ) and let i :=

0.

STEP 2 Get Gi > 0 which is the solution of (16).

STEP 3 Choose any controller from S2(Ki) and let it be
Ki+1. If Ki+1 = K∗

2 then exit. Otherwise i := i + 1
and go to STEP 2.

This controller sequence has the next properties.

Lemma 3 SupposeKi 
= K∗
2 then the following (i)-(ii) hold:

(i) The inequality Gi ≥ Gi+1 holds.

(ii) The H2 norm of the closed loop via the controller Ki is
monotonically non-increasing, i.e., J(Ki) ≥ J(Ki+1).

Proof: From the definition of Π we have

GiAi+1 +AT
i+1Gi + CT

2i+1C2i+1 ≤ 0, (20)

Gi+1Ai+1 +AT
i+1Gi+1 + CT

2i+1C2i+1 = 0. (21)

Subtracting (21) from (20) to get

(Gi −Gi+1)Ai+1 +AT
i+1(Gi −Gi+1) ≤ 0. (22)

Since Ai+1 is stable it follows that Gi − Gi+1 ≥ 0, which
implies (i) and hence

traceBT
2 GiB2 ≥ traceBT

2 Gi+1B2. (23)

Thus J(Ki) ≥ J(Ki+1). ✷

To state that the controller sequence Π converges to the uncon-
straintH2 optimal controllerK∗

2 we need the next lemma.

Lemma 4 The set S2(Ki) is empty (S2(Ki) = φ) if and only
ifKi = K∗

2 .

Proof: (only if): Suppose S2(Ki) = φ butKi 
= K∗
2 . Then let

K̃ = −BTGi −DT
2 C2 and using (16) to get

LGi
2 (K̃) = −(Ki +BTGi +DT

2 C2)T (Ki +BTGi +DT
2 C2).

(24)
Since the RHS is negative semi-definite it follows that K̃ ∈
S2(Ki). This contradicts S2(Ki) = φ.
(if): Suppose Ki = K∗

2 and let K̂ be any controller such that
LGi

2 (K̂) ≤ 0 and Ĝ be the solution of (13) where K = K̂ .
Then Gi ≥ Ĝ from Lemma 3-(i). On the other hand, G ≥
Z2(= Gi) for any G andK that satisfy (13) (see [14]). Hence,
we have Gi = Ĝ, which implies J(K∗

2 ) = J(Ki) = J(K̂).
From Lemma 1 K̂ = K∗

2 and it follows S2(Ki) = φ. ✷

Theorem 1 The controller sequence Π converges to the un-
constraintH2 optimal controllerK∗

2 , i.e.,

lim
i→∞

Ki = K∗
2 , (Ki ∈ Π). (25)

Proof: If Ki = K∗
2 for some i > 0 (25) is obvious. Hence,

suppose Ki 
= K∗
2 for all i ≥ 0. Since Gi is monotonically

non-increasing and bounded below (Gi ≥ Gi+1 ≥ Z2 > 0)
Gi converges as i → ∞. Hence, from the definition Ki also
converges and let K∞ := lim

i→∞
Ki. If S2(K∞) is not empty

we can choose a new controller K̃∞ ∈ S2(K∞) in STEP 3 of
Algorithm 1, which contradicts the assumption that K∞ is the
limit of Ki. Hence S2(K∞) is empty and K∞ = K∗

2 from
Lemma 4. ✷

Next, we construct a controller set for a given controller such
that any controller in the set satisfies the H∞ norm constraint.
Suppose a given controller Ki satisfies the H∞ norm con-
straint. Then there exists Xi = XT

i (> 0) which satisfies

AiXi +XiA
T
i + γ−2XiC

T
1iC1iXi +B1B

T
1 < 0 (26)

where
Ai = A+BKi, C1i = C1 +D1Ki, (27)

and a controller set S∞(Ki) is defined as

S∞(Ki) = {K |LXi∞ (K) < 0} (28)

where

LXi∞ (K) := (A+BK)Xi +Xi(A+BK)T

+γ−2Xi(C1 +D1K)T (C1 +D1K)Xi +B1B
T
1 . (29)

This controller set S∞(Ki) has the next property.

Lemma 5 Every K ∈ S∞(Ki) satisfies the H∞ norm con-
straint, i.e., ‖Tz1w1(K)‖∞ < γ forK ∈ S∞(Ki).

Proof: Obvious from the definition of S∞(Ki). ✷

5 Iterative Algorithm

In this section, we propose an iterative algorithm for the mod-
ified mixed H2/H∞ control problem. For a given controller
Ki any controller in S2(Ki) ∩ S∞(Ki) achieves the better
H2 norm of the closed loop Tz2w2(K) than Ki while it sat-
isfies the H∞ norm constraint. Hence the controller chosen in
S2(Ki) ∩ S∞(Ki) is a better mixed H2/H∞ controller than
Ki.

An iterative algorithm we propose for the modified mixedH2/
H∞ control problem (MP) is described as follows:

Algorithm 2 : Iterative algorithm for the modified mixed H2/
H∞ control problem (MP).

STEP 1 Take an initial stabilizing controller K0 which satis-
fies theH∞ norm constraint and let i := 0.



STEP 2 Get Gi and Xi which satisfy (16) and (26), respec-
tively.

STEP 3 Choose any controller from S2(Ki)∩S∞(Ki) and let
it beKi+1.

STEP 4 If the H2 norm is not improved (i.e., J(Ki) =
J(Ki+1)) or γ−‖Tz1w1(Ki+1)‖∞ < ε then letK∗ = Ki

and exit. Otherwise let i := i+ 1 and go to STEP 2.

Remark 2 The problem to find a new controllerKi+1 in STEP
3 of Algorithm 2 is described as an LMI feasible problem that
can efficiently be solved numerically.

Remark 3 The controller sequence Ki(i = 0, 1, · · ·) pro-
duced by Algorithm 2 approaches to the unconstraint H2 opti-
mal controller K∗

2 until it encounters the boundary of the H∞
norm constraint.

Theorem 2 Let
K̃ := lim

i→∞
Ki (30)

whereKi(i = 0, 1, · · ·) is the controller sequence produced by
Algorithm 2. Then the following (i) and (ii) hold:

(i) If ‖Tz1w1(K̃)‖∞ < γ − ε then K̃ = K∗
2 . In this case, K̃

is the global optimal solution of the modified mixed H2/
H∞ control problem.

(ii) Otherwise K̃ exists on the boundary of theH∞ norm con-
straint of the modified mixed H2/H∞ control problem,
i.e., ‖Tz1w1(K̃)‖∞ = γ − ε.

Proof: This follows immediately from construction ofKi.✷

6 Numerical Examples

Consider the following state-space matrices:

A =


 −0.40 −0.04 0.59

−0.11 0.37 −0.23
1.21 0.39 −0.35


 ,

B =


 1.29 −1.10

−0.02 −1.04
1.05 −0.91


 , B1 =


 −0.98 −0.90

−0.68 −0.41
1.33 −0.50


 ,

B2 =


 0.80 −0.08

0.04 −2.00
−0.75 1.08


 , C1 =


 0 0 0

0 0 0
−0.24 1.36 0




C2 =


 0 0 0

0 0 0
2.51 −0.67 0


 , D1 = D2 =


 1 0

0 1
0 0


 .

Figure 2 shows the behavior of ‖Tz2w2(Ki)‖2 on the controller
sequence Π produced by Algorithm 1 as a function of the itera-
tion number i. The common LMI solutions for γ = 5 are taken
as an initial controller K0. Figure 2 shows that ‖Tz2w2(Ki)‖2

is monotonically non-increasing on the controller sequence Π
and converges to theH2 optimal value.

Figure 3 and Figure 4 show the behaviors of ‖Tz2w2(Ki)‖2 and
‖Tz1w1(Ki)‖∞ on the controller sequence produced by Algo-
rithm 2 as a function of the iteration number i for γ = 5. The
common LMI solution for γ = 5 is taken as an initial controller
K0. Figure 3 shows that ‖Tz2w2(Ki)‖2 is monotonically non-
increasing. Figure 4 shows that the controller obtained by Al-
gorithm 2 satisfies ‖Tz1w1(K∗)‖∞ = 5 − ε, i.e., the obtained
controller exists on the boundary of theH∞ norm constraint of
the modified H2/H∞ control problem.

Figure 5 and Figure 6 show the behaviors of ‖Tz2w2(K∗)‖2

and ‖Tz1w1(K∗)‖∞ as a function of the H∞ norm bound γ.
For each γ the common LMI solutions are taken as an initial
controller K0. Figure 5 and Figure 6 also show ‖Tz2w2(Kc)‖2

and ‖Tz1w1(Kc)‖∞, where Kc is a controller obtained by
common LMI solutions. Figure 5 shows the controllers ob-
tained by Algorithm 2 achieve lower H2 norms than the con-
trollers obtained by common LMI solutions for all γ. Fur-
thermore, ‖Tz2w2(K

∗)‖2 goes to the unconstraint H2 optimal
value as γ increases. Let γ∗2 be the H∞ norm of Tz1w1(K)
via the unconstraint H2 optimal controller K∗

2 , i.e., γ∗2 :=
‖Tz1w1(K∗

2 )‖∞ = 6.8858. Figure 5 shows the controllers
obtained by Algorithm 2 are the global optimal solutions for
γ ≥ γ∗2 , and Figure 6 shows they are on the boundary of the
H∞ norm constraint for γ < γ∗2 .

7 Conclusions

In this paper, we introduced two controller sets and showed that
a controller sequence derived by the controller sets achieves
the monotonically non-increasing H2 norm that converges to
the unconstraint H2 optimal value. Using the two controller
sets we proposed an iterative algorithm for the modified mixed
H2/H∞ control problem and show the effectiveness of our al-
gorithm by numerical examples.
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