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Abstract

This paper is concerned with the mixed H,/ H, control prob-
lem. The purpose of this paper isto give an iterative algorithm
for finding a sub-optimal static state feedback controller for the
mixed Hs/ H », control problem. The key idea of our algorithm
is to construct two “controller sets’: oneisaset of controllers
that improve the H, norm of the closed loop map for a given
controller and the other is a set of controllers whose elements
satisfy the H., norm constraint. Using two controller sets, we
propose an iterative algorithm. The obtained controller is ei-
ther the global optimal solution if the H., norm constraint is
satisfied until the H> norm of the objective closed loop map
convergesto the H, optimal value or a sub-optimal solution on
the boundary of the H, norm constraint.

1 Introduction

Recently, multiobjective control problems have received agreat
deal of attention [1, 2], [4]-[7], [9]-[14]. In particular, the so-
caled mixed Hy/H,, control problem for linear time invari-
ant (LTI) systems has been studied by many researchers. In
this problem, the Hy and H., norms are measures for opti-
mal performance and robustness, respectively. The purpose
of the mixed H,/H, control problem is to find a controller
which minimizes the H, norm of one closed-loop map with an
H, norm constraint of another closed-loop map. That is, this
problem is to find the best performance controller among the
robustly stabilizing controllers. Both the H, and H,, control
theories have almost been established. However the mixed Hs/
H, control problem have not completely been solved. This
is because the mixed H,/H, control problem is quite diffi-
cult to be solved theoretically, and it is known that the order
of the optimal mixed H2/H ., controller is not finite in some
cases. Even for a fixed order controller the problem is till
very difficult, because it is a non-convex problem. For this
non-convex problem, various approaches to find a sub-optimal
solution have been explored. However, there is no method to
obtain the global optimal solution except some special cases.

Standard technique to get a sub-optimal solution is to use a
common LMI solution at the expense of conservatism [2, 4].
Recently, new methods using uncommon LMI solutions have
been proposed [1], [9]-[14]. However, al of them except that in
[14] do not show what kind of solutions are obtained, although
it isimportant for sub-optima methods to show the properties
of the obtained solutions.

The purpose of this paper is to give a new iterative algorithm
for finding asub-optimal static state feedback controller for the
mixed H»/ H ., control problem. The key ideaof our algorithm
isto introduce two “controller sets’: oneis a set of controllers
that improve the Hy norm of the closed loop map for a given
controller and the other is a set of controllers whose elements
satisfy the H,, norm constraint. Using these sets, we propose
an iterative algorithm which produces a controller that satis-
fies a necessary condition for global optimality. That is, the
obtained controller is either the global optimal solution of the
unconstraint objective function or a solution on the boundary
of the H,, norm constraint. Numerical examples show the ef-
fectiveness of our algorithm.

2 Problem Formulation

In this paper, consider the following LTI system:

(t) = Axz(t) + Bu(t)+ Biwi(t) + Bowa(t), (1)
z1(t) = Cyz(t) + Diu(t), 2
z9(t) Cox(t) + Dau(t), (3)

y(t) = x(t), 4

where x isthe plant state, w; (i = 1, 2) are any exogenous in-
puts, u isthe control input and z; (¢ = 1, 2) are the performance
outputs. Throughout this paper, the following assumptions are
made;

1. (A, B) iscontrollable.

2. (A, B;,C;)(i = 1,2) are controllable and observable.

3. DI'D;=1(i =1,2).

4. By hasfull column rank.

5 { A—jw B

o Dy ] has full column rank for all w € R.
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Figure 1. System model for the mixed H2/H ., control

Let us consider the static feedback controller:
u(t) = Kz(t). (5)

Viathe static feedback controller the closed loop system is de-
scribed by

x(t) Adx(t) + Biwy (t) + Bows (t), (6)
z1 (t) = C’cllx(t), (7)
zo(t) = Cepox(t), (8)
where
Ay =A+BK,Cy; =C; + D;K(i = 1,2). 9)

Let T’,,.,, (K) denote the closed-loop transfer function from w;
to z;. For this system the mixed H,/H, control problem is
defined asfollows.

Themixed Hs/H . control problem (OP): Given an achiev-
able H,, normbound ~, find a controller that satisfies

m;én [ T250, (K|l subject to [ T%, ., (K)o, <7, (10)
where ||-||, and [-|| ., denote the H, and H., norms, respec-
tively.

3 Theglobal optimal solution of the mixed H,/
H, control problem

In this section, we show the property of the global optimal so-
[ution of the mixed Hs/H ., control problem. In general, a
global optimal solution of an optimization problem is either a
stationary point of the objective function or a feasible solution
on the boundary of a constraint. However, such property of the
problem (OP) cannot be discussed, because the H, norm con-
straint in (10) has no boundary. Hence, we modify the problem
(OP) into the following problem.

The modified mixed Hs/H,, control problem (MP): Given
an achievable H, norm bound -~ and sufficiently small ¢, find
a controller that satisfies

min [Tz, (K) | subject to [|Tzyw, (K)o < v —e. (11)

To state the property of the stationary point of the objective
function let

J(K) = ||Tepuy (K)||3 = traceBY G By (12)

where G isthe observability Gramian that isthe solution of the
following Lyapnov equation:

GAy + ALG 4 CT,Cup = 0. (13)

The global optimal H, state feedback controller without the
H, horm constraint is given by

K=K} :=-B"Z, - DIC, (14

where Z, isthe stabilizing solution of the Riccati equation

Z5(A— BDICs) + (A— BDICy)T Z,
—ZQBBTZQ + Cg([ — Dng)CQ =0. (15)
Lemmal [14] J(K) hasthe unique stationary point at K =
K3 over all internally stabilizing controllers.

Now, we can state the property of the global solution of the
modified mixed Hy/H ., control problem.

Proposition 1 Let K, be the global optimal solution of
the modified mixed Hy/H, control problem (MP). If
I Tow (K3)|l.e < v — e then K, = K. Otherwise
K, exists on the boundary of the H., norm constraint, i.e.,
1Tz, (K)o =7 — €.

Remark 1 From Proposition 1it isa necessary condition for a
controller K to bethe global optimal controller of the problem
(MP) that K = K3 or K ison the boundary of the H., norm
constraint.

4 Controller Sets

In this section, we define a“ controller set” Sy (K;) whose ele-
ment achievesthe better H, norm than K;. After then, we show
that a “controller sequence” chosen from Sy (K;) achieves a
monoatonically non-increasing H, norm which convergesto the
unconstraint Hy optimal value. Similarly, we define a “con-
troller set” S, (K;) viawhose element the closed loop satisfies
the H,, norm constraint.

For agiven controller K; let G; = GT > 0 be the observability
Gramian, i.e., the solution of

GiA; + AT Gy + CL.0% =0 (16)

where
A; = A+ BK;,Cy = Cy + Do K, (17)

and define acontroller set S5 (K;) as

Sy(K;) == {K|LS (K) <0} — {K,} (18)

where

LS{(K) = G;(A+ BK) + (A+ BK)TG;

+(Cy + DoK)" (Cy + D2 K). (19

This controller set S3(K;) has the next property.



Lemma2 If K; # K thenevery K € S>(K;) isaninternally
stabilizing controller.

Using the controller set S;(K;) a controller sequence IT =
{K;,i=0,1,2,---} isdefined asfollows:

Algorithm 1; Construction of a controller sequenceII.

STEP 1 Give a stahilizing controller Ky(# K3) and let i :=
0.

STEP 2 Get G; > 0 which isthe solution of (16).

STEP 3 Choose any controller from S;(K;) and let it be
and go to STEP 2.

This controller sequence has the next properties.

Lemma 3 Suppose K; # K3 then thefollowing (i)-(ii) hold:

(i) Theinequality G; > G;41 holds.

(ii) The Hy norm of the closed loop via the controller K; is
monotonically non-increasing, i.e., J(K;) > J(K;t1).

Proof: From the definition of II we have

Gidipr + AL Gi+ O3 O <0, (20)
Gi+1Ai+1 + AZT+1G¢+1 + OgiJrlCQi_H =0. (21)

Subtracting (21) from (20) to get
(Gl‘ — G¢+1)Ai+1 + A;r_,'_l(Gi — Gi+1) <0. (22

Since A;4; is stable it follows that G; — G;1 > 0, which
implies (i) and hence

traceBQTGiBg > traceBgGiH Bs. (23

ThUSJ(KZ‘) > J(Kerl) a

To state that the controller sequence IT convergesto the uncon-
straint Ho optimal controller K35 we need the next lemma.

Lemma4 Theset Sy(K;) isempty (S2(K;) = ¢) if and only
if K; = K3.

Proof: (only if): Suppose So(K;) = ¢ but K; # K3. Then let
K = -BTG,; — DI C5 and using (16) to get

LS{(K) = —(K;+ BTG+ DYCy)T(K; + BTG, + DI Cy).
(24)
Since the RHS is negative semi-definite it follows that K &
Sa(K;). Thiscontradicts So(K;) = ¢.
(if): Suppose K; = K3 and let K be any controller such that
LS#(K) < 0 and G be the solution of (13) where K = K.
Then G; > G from Lemma 3-(i). On the other hand, G >
Zs(= G;) forany G and K that satisfy (13) (see [14]). Hence,
we have G; = G, which implies J(K3) = J(K;) = J(K).
FromLemmal K = K3 and it follows Sy (K;) = ¢. O

Theorem 1 The controller sequence II converges to the un-
constraint H, optimal controller K3, i.e.,

lim K; = K, (K; € 10).

11— 00

(25)

Proof: If K; = K5 for some: > 0 (25) is obvious. Hence,
suppose K; # K foral ¢ > 0. Since G; is monotonically
non-increasing and bounded below (G; > Giy1 > Zs > 0)
G, converges asi — oo. Hence, from the definition K; also
converges and let K, := ilingo K;. If So(Ko) is not empty

we can choose a new controller K., € Sa2(K ) in STEP 3 of
Algorithm 1, which contradicts the assumption that K, isthe
limit of K;. Hence S2(K ) is empty and K, = K from
Lemma4. O

Next, we construct a controller set for a given controller such
that any controller in the set satisfies the H., norm constraint.
Suppose a given controller K; satisfies the H,, norm con-
straint. Then there exists X; = X' (> 0) which satisfies

AiXi 4+ X AT +y72X,cLCuXs + BIBY <0 (26)
where
A; =A+ BK;, Cy, =C1 + D1 K;, (27)
and acontroller set S, (K;) isdefined as
Seo(Ki) = {K|LY (K) < 0} (28)
where
LY (K):= (A4 BK)X; + X;(A + BK)T
+772X,(Cy + D1 K)'(Cy + D1 K) X, + BiBf . (29)

This controller set S, (K;) has the next property.

Lemma5 Every K € S (K;) satisfies the H,, norm con-
straint, i.e., || Ty w, (K|, < v for K € Soo(K;).

loo

Proof: Obvious from the definition of S, (K;). O

5 Iterative Algorithm

In this section, we propose an iterative algorithm for the mod-
ified mixed Ho/Ho, control problem. For a given controller
K; any contraller in S3(K;) N So(K;) achieves the better
Hy norm of the closed loop T,.,,(K) than K; while it sat-
isfies the H,, norm constraint. Hence the controller chosen in
Sa2(K;) N S (K;) is a better mixed Hy/Ho, controller than
K;.

An iterative agorithm we propose for the modified mixed Hy/
H,, control problem (MP) is described asfollows:

Algorithm 2 : Iterative algorithm for the modified mixed Hs/
H, control problem (MP).

STEP 1 Take an initia stabilizing controller Ky which satis-
fiesthe H., norm constraint and let 7 := 0.



STEP 2 Get G; and X; which satisfy (16) and (26), respec-
tively.

STEP 3 Choose any controller from So (K;) NS (K;) and let
it be KiJrl.

STEP 4 If the H, norm is not improved (i.e, J(K;) =
J(Kerl)) or~v— HTlel (Ki+1)||oo < ethenlet K* = K;
and exit. Otherwiseleti := ¢ + 1 and go to STEP 2.

Remark 2 The problemto find a new controller K;; in STEP
3 of Algorithm 2 is described as an LMI feasible problem that
can efficiently be solved numerically.

Remark 3 The controller sequence K;(i = 0,1,---) pro-
duced by Algorithm 2 approaches to the unconstraint Hs opti-
mal controller K5 until it encounters the boundary of the H
norm constraint.

Theorem 2 Let .

K = lim K;
where K, (i = 0,1, - - -) isthe controller sequence produced by
Algorithm 2. Then the following (i) and (ii) hold:

(30)

(i) 1f |T%, 0, (K)|loo < v — ethen K = K3. Inthiscase, K
is the global optimal solution of the modified mixed Hs/
H, control problem.

(i) Otherwise K exists on the boundary of the H,, normcon-
straint of the modified mixed Hs/H, control problem,
i.e, | Toyw, (K)|loo =7 — €.

Proof: Thisfollowsimmediately from construction of K;.0

6 Numerical Examples

Consider the following state-space matrices:

—0.40 —0.04 0.59
A= —011 037 -0.23 |,
1.21 039 —0.35
1.29 —1.10 [ —0.98 —0.90
B=| -002 -1.04 | ,B;=| —0.68 —0.41 |,
| 1.05  —0.91 | | 1.33  —0.50
0.80 —0.08 ] [0 0 0
By=| 004 —200|,C = 0 0 0
| —0.75 1.08 | | —0.24 136 0
0 0 0 10
Co=1| 0 0 0|, Di=D=|0 1
2.51 —0.67 0 0 0

Figure 2 shows the behavior of ||T,.,, (K;)||2 on the controller
sequence IT produced by Algorithm 1 as afunction of theitera-
tion number 7. The common LMI solutionsfor v = 5 are taken
as an initial controller K. Figure 2 shows that || 7., ., (K5)||2

is monotonically non-increasing on the controller sequence 11
and convergesto the H, optimal value.

Figure 3 and Figure 4 show the behaviors of ||, ., (K;)||2 and
|72, w, ()|l ON the controller sequence produced by Algo-
rithm 2 as a function of the iteration number ¢ for v = 5. The
common LMI solution for v = 5 istaken asan initial controller
K. Figure 3 showsthat ||T;,., (K;)||2 is monotonically non-
increasing. Figure 4 shows that the controller obtained by Al-
gorithm 2 satisfies || 1%, v, (K*)|lcc = 5 — ¢, i.e, the obtained
controller exists on the boundary of the H., norm constraint of
the modified Hy/H, control problem.

Figure 5 and Figure 6 show the behaviors of ||7%, ., (K*)]|2
and || 7%, w, (K*)||c @s afunction of the H,, norm bound -.
For each v the common LMI solutions are taken as an initial
controller K. Figure 5 and Figure 6 aso show ||, ., (K.)||2
and ||T%,w, (K.)||s, Where K, is a controller obtained by
common LMI solutions. Figure 5 shows the controllers ob-
tained by Algorithm 2 achieve lower H, norms than the con-
trollers obtained by common LMI solutions for al ~. Fur-
thermore, || 1., (K*)||2 goes to the unconstraint H, optimal
value as «y increases. Let v be the H,, norm of T ., (K)
via the unconstraint H, optimal controller K3, i.e, ~5 :=
Ty, (K3)|loo = 6.8858. Figure 5 shows the controllers
obtained by Algorithm 2 are the global optimal solutions for
~v > ~;, and Figure 6 shows they are on the boundary of the
H, norm constraint for v < ;.

7 Conclusions

In this paper, we introduced two controller sets and showed that
a controller sequence derived by the controller sets achieves
the monotonically non-increasing H, norm that converges to
the unconstraint H, optimal value. Using the two controller
sets we proposed an iterative algorithm for the modified mixed
Hy/ H control problem and show the effectiveness of our al-
gorithm by numerical examples.
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