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Near—optimal controlz—independent controller; Kleinman al-Firstly, the unique and bounded solution of the ARE and its

gorithm asymptotic structure are established using the different man-
ner compared with the existing result [1]. That is, the proof
Abstract is done by using the implicit function theorem [2]. Using the

asymptotic structure, a new near—optinial controller which
In this paper H, state feedback control for large—scale systeng®es not depend on the values of the small weak parameter is
is studied in a different approach from the existing methodgbtained. This is done by eliminating the parameteisr the
The attention is focused on the design of a near—optifal optimal controller. Secondly, it is newly shown that the result-
controller which does not depend on the values of the sm#l controller achieve®(¢*) approximation of the optimalt/,
unknown weak coupling parameter. It is newly shown that tig@st. It should be noted that there exists no result of the loss of
resulting controller in fact achieves(<?) approximation of the the cost performance via the near—optimal control so far. Even
optimal H, cost. if the parameter is unknown, when the parameter is sufficiently
small, the new near—optimal, controller can be used reliably

1 Introduction for the large scale systems.

. ) Notation: The superscripf” denotes matrix transposé&race
The stability analysis and control for large—scale systems haygotes the trace for any square mateixt denotes the deter-
been investigated extensively (see e.g., [5]). These contt@hant for any square matrixl,, denotes the: x n identity
problem situations in practice are illustrated by the mqltiarqﬁatrix_ | - |2 denotes its 2—norm for any matrik: | denotes its
power system [6]. In order to obtain the optimal solution t@yclidean norm for any matrixeec denotes the column vector
the Linear Quadratic Regulator (LQR) problem, the Algebrajg, any square matrixblock — diag denotes the block diago-

Riccati Equation (ARE), which is parameterized by the small matrix.® denotes the Kronecker product.
positive weak coupling parametermust be solved. Various

reliable approaches for solving the ARE have been well dog- | f lati
umented in literatures (see e.g., [3]). However, a limitation Problem formulation
these approaches are that the small parameter is assumed {8 her

X | , ider the linear time—invariant large—scale systems
known. In practice, the small perturbation parametés of-

ten not known. Thus, it is not applicable to a large class of the ;.. (t) = Auwi(t) + Bhw;(t) + B2u;(t)
control problem when the weak coupling parameter represents R Ty
small unknown perturbation whose value is not known exactly. te Z Agjzi(t) + ¢ Z B}j w; (t)

Moreover, in case where the Schur method is used, the comput- Pl 99 Pl 99
ing need two times dimension of the ARE. Therefore, the re- N ’
duction of the algebraic manipulation must be needed because 1 Z nguj (1), (1a)

the large—scale systems include numerous subsystems.

J=1, j#i

Recently, the optimal control problem for the large—scale sys- z;(t) = Cyx;i(t) + Dyui(t), (1b)
tems vi.a the recursive approach has been invgstigqted [4]. yit) = z(t), i=1,2, - N (1c)
Whene is small or known the previously used technique is very
efficient. However, when the small weak coupling parameter is
unknown, the recursive algorithm approach cannot also apply. o
Furthermore, so far, the loss of performance between the opfere #; € R™, ¢ = 1,2, ..., N are the state vec-
mal control and the resulting controller which is based on th@'S: wi € R, j =1, 2, ..., N are the disturbance in-
recursive technique has not been investigated. puts,u; € R™, j = 1, 2, ---,N are the control in-

puts,z; € R% 4 =1, 2, ---, N are the controlled inputs,
In this paper,H, state feedback control for large—scale Sys;, e R™, j =1, 2, ---, N are the outputs; denotes a small

tems is investigated. The considered large-scale systemsj&itive weak coupling parameter which connect the other sub-
connected by the small weak coupling parameter for the othgistems.



Let us introduce the partitioned matrices

It is well-known from the existing results (see e.g., [8]) that
such controller that minimizes thid.—norm (3) is given by

Uopt (1) = Kopte(t) = —(B2' P. + DT C)x(t), (4)

whereP. is the positive semidefinite stabilizing solution which
satisfies the ARE

Ae
[ An A1z A3 EA1(N—1) eAin
€A Agz €Aas3 EAQ(N—l) eAan
— | €Az €Az Az eAz(n-1) edsn |
| eAn1 €An2 €Ans eAnv—1) AnnN
B;
[ B}, B, eBi, EB%(N_D eBly ]
eBy By eBy 535(1\/-1) By
.— | eBsy eBy Bl 533%(1\/-1) eBjy ,
I eByy By, €Bpy 53}\/(1\/-1) Byn i
B?
[ B% eB%, eB% eByn_ 1) €Bin ]
eB3, B3, eB3 533(1\/-1) eBly
.— | eB% eB% B EBg(z\/—l) eBiy ,
eBY, eBY, By EBJQ\/'(N—l) Bin
C := block — diag( Ch1 CnN ) ,
D := block — diag ( D1 Dyn ) .
Using the state feedback control
u(t) = Kea(t), ()

P.A.+ATP. —- P.S.P. +Q =0, (5)
with
A. = A, - B2DTC
[ A}1 51412 5/113 541(1\/—1) EglN
5421 Agz 51423 542(1\/—1) 542N
— | A3 ez Az eAyn-1) EAsn |
L eAn1 £An2 EANB EAN(N—l) AnN
S. = BZB¥
[ Sy S S o cSuwen Sy
eSly Sy £Sa3 eSan-1) €SN
—_ ES% 5353 333 ESg(N_l) ESgN ,
| eSiy eS3y €Siy ES(TN—l)N SNN
Q:=Cc"(1; - bD"C
= block — diag ( Q11 QNN ),

N
q:= Z%’a Sii = 85, Qi
i=1

=C} (I, — Dy D))y,

i

N
u(t)T = [ ul(t)T u]v(t)T ]T cER™, m = Zmi,

1
N

i=1,2 ---,N.
Moreover, the minimum value of thH,—norm (3) is given by
min |G(s)|5 = Trace[B P.B]. (6)

SinceA., B! and B? include the term of the small weak cou-
pling parametee, a solutionP. of the ARE (5), if it exists,
must contain terms of order. Taking this fact into account,
the solutionP. of the ARE (5) with the following structure is

z(t)" = w1 ()" - an ()T ]T eR", n:= Zm,

the Ho—norm of the closed—loop transfer function maitixs)
is given by

1 oo
G = o Trace[G(—jw)" G (jw)]dw
™ —0o0
= Trace[B!TL.B!], 3
where

G(s) = (C + DK.)(sl — A. — B’K.)"'Bl,
L.(A. + B?’K.) + (A. + B?K.)"L.
+(C + DK.)"(C + DK.) = 0.
Without loss of generalityD” D = I,;, is assumedH,, control

problemis to find a contral(¢) which minimizes thef,—norm
of the closed—loop transfer function matrix (3).

considered [4]

P,
P11 ePa ePi3 ePyn-1) €PN
ePL, Py Py ePyn_1) €PN
ePl, ePl ePsy

P33

T T T
ePiy ePsn ePsy

ePy(n_1)

EP(?\/'—l)N PNN

In the following analysis, the basic assumptions are needed.

Assumption 1 The triples(A;;,

B2

i

ii),izla 2a aN

are stabilizable and detectable.

Assumption 2 D;; has full column rank.

Assumption 3 o

for anyw.

Ay — jwly,

B2
D’f has full column rank
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3 Asymptotic Structure of the ARE because the matricel; —S;; P;; are stable under Assumptions

o ) ] 1-3. Therefore, if the parameteis very small, A. — S. P. is
Substituting the matriced., S., @ and P. into the ARE (5), stable also. m

settinge = 0 and partitioning the ARE (5), the following

reduced—order AREs are obtained, whég i = 1, ---, N ) i )
be the limiting solutions of the ARE (5) as— +0. 4 Kleinman Algorithm for Solving ARE
PiiAii + AL Py — PyiSiiPii + Qi = 0, (7) Inorder to obtain the near—optimél, controller, the following

useful result is obtained.
wheres,; := B2 B?T,

110

Lemma 2 Consider the iterative algorithm which is based on

The limiting behavior ofP. as the parameter — +0 is de- the Kleinman algorithm

scribed by the following lemma.
PUD(A, = S.PY) + (A — S.PY)T P

Lemmal Under Assumptions 1-3, there ex.ists a sn.aall +POS.PHD 4+ Q=0 i=0,1, -, (12a)

such that for alle € (0, ¢*) the ARE(5) admits a positive

(2)
semidefinite stabilizing solutioR. which can be written as P ,
P(i) P(i) P(i) EP(“ EP(” 7
5 _ . 5 5 1 & e 1(N-1) IN
P. = P + O(e) = block — diag ( Pii -+ Pyn ) + O(e), 0T () ) ) ()
(8) ePpy Pyy  ePyy - EPQ(N_D ePyy
)T )T [ 1 [
= | ePy" ePPT PY o 2P, ePR |,
Proof. The proof can be done by using the implicit function : : : : :
theorem [2] to the ARE (5). To do so, it is enough to show that @& @& \T @7
the corresponding Jacobian is nonsingulasr at 0. It can be L ePiv ehy el ePv-yn Pan |
shown, after some algebra, that the Jacobian of the ARE (5) in (12b)
the limit ase — +0 is given by
Ju - 00 0 with the initial condition obtained from
: 0 0 0 o = . _ _
P = P =block — diag ( Pi1 --- Pnn ). (13)
7= Jvn 0 0 9
- ’ ©) Under Assumptions 1-3, there exists a sralch that for all
Ji2 0 e € (0, 3), ¢ < o* the iterative algorithm(12) converges to
S ) 0 the exact solution aP. with the rate of quadratic convergence,
L% oo Tvonn whereP" is positive semidefinite. That is, the following con-
ditions are satisfied.
where , it
_ — _ _ ||P)e2(7)_13~‘?”:0(E ),ZZO, 1a"'a (14)
Jii = (Aii — SiiPyi) @ In, + In, ® (A — SiiPii),
Jij = (A — SiiPii) @ I, + I, ® (A;; — S;;Pj;).  where
The Jacobian (9) can be expressed as v =28 < o0, B=| [VQ(PE(O))]—1”7
N N =516, 6= b,
detJ = l]‘[ detJM] I detd; (10) YG(P) dvecG(P:)
i=1 i=1, j=2, i<j ( 5) - a(veCPe)T’
Obviously,J;;, J;; are nonsingular because the matdy — G(P.) = P.A. + AlP. - P.5.P. + Q.

S;i Py; is stable under Assumptions 1-3. ThdstJ # 0, i.e.,
J is nonsingular at = 0. The conclusion of Lemma 1 isProof. The proof follows directly by applying Newton—
obtained directly by using the implicit function theorem. Kantorovich theorem [7] for the ARE (5). It is easy to verify

The remainder of the proof is to show that is the positive that functiong (P.) is differentiable. Using the fact that

semidefinite stabilizing solution. For sufficiently small param- dvecG(P:)
etere, P. > 0 because the solutioR;; is the positive semidef- VI (F:) = O(vecP)T (15)
inite matrix. Moreover, using (8), the following relation holds

= (A -SPYT'®Ii+ I, ®(A. — SP.)T,
-Ae - SEPE

= block — diag ( A11 — S11 P11 -+ Anv — SvvPan )
+0(e), (11) IVG(Pre) = VG(Poe)| < A Pre — Poe|, (16)

the following inequality holds



wherey = 2|S.|. Moreover, using the result of the stabilwhereW, is a positive semidefinite solution of the algebraic
ity established by (11), it is shown that there exists a simallLyapunov equation (ALE)
such that for sufficiently small parametee (0, 7), ¢ < o*, _ _ _
VG(P.) is nonsingular. Therefore, there exisissuch that (As = SeP)"We + We(A: — S.P) + PS.P+ Q=0 (20)
I[VG(P.)]"!| = B. On the other hand, using the Lemmal,
it is easy to show thatG(P.)| = O(e). Hence, there existy with A, — B2K = A. — S.P and(C + DK)*(C + DK) =
such that [VG(P.)] '] - ||Q( )| = n = O(e). Thus, there PS.P+ Q.
existsf such that9 = [y < 2‘1 because) = O(g). Using . .
Newton—Kantorovich theorem, the strict error estimate is glvé,\rfbtractmg (5) from (20)V- = W. — P satisfies the following
by (14).

(Ac = S.P)TV. + V.(A. — S.P)
5 Near—optimal H, control +(P. — P)S.(P. — P) =0. (21)

The required solution of the ARE (5) exists under Assum@imilarly, subtracting (5) from (12a), the following ALE holds.
tions 1-3. The attention is focused on the specific linear state

feedback controller which does not depend on the values of (A: — SEPS))T(PS*l) —P.)
the small parameter. Such a linear state feedback controller is +(PUHD) — P) (A, — S8.PY)
obtained by eliminating(¢) item of the linear state feedback +(P. — PD)S.(P. — PY) = 0 22)
controller (4). Ife is very small, it is obvious that the linear fooTe mEvE e ’
state feedback controller (4) can be approximated as Wheni = 0, the following relation is satisfied.
tepp (/) (A = SPOY(PY = P + (P = P)(A: = S.PL)

= block — diag ( utapp(t) -+ Unapp(t) ) +(P. — PO)YS.(P. — P)

= Kuz(t) = —(BQTP—I— DT C)x(t) = (A. —S8.P)T (P! P _ P)+ (P(l) P.)(A. - S.P)

= —block — diag ( Bl Py + DT Chy -+ +(P. — P)S.(P. — P) =0.

BJQ\/?;VPNN—FDJZ\}NCNN )x(t), (17) o ) o
Therefore, it is easy to verify thdt. = P.’ — P. because

whereB2T := block — diag ( BY --- B¥y ). A. — S. P is stable. Using Lemma 2 it is easy to show that
It should be noted that the proposed control design is quite dif-  |[V.| = [W. — P.| = |PY) — P.| = O(?). (23)

ferent from the multi-level computation design approach [1].
Whene is sufficiently small, it is known from Lemma 1 that™€nce
the resulting controller (17) will be close to the optimal con-
troller (4). In an optimization problem it is of interest to check
whether the resulting value of the cost function will be near {gnich implies (18). m
its optimal value.

Ve =W. — P. = O(¢%), (24)

The main result for the degradation of tii&—norm via the § Numerical Example
new H, controller (17) is given as follows.
In order to demonstrate the efficiency of the proposed algo-

Theorem 1 Under Assumptions 1-3, the use of the reducedithm, a numerical example is tested. Consider the inter-

order controller(17) results in(18) connected large—scale system (1) composed of three four—
o ) ) dimensional subsystems. The system matrix is given as a mod-
IG(s)]z = 1G(s)]z + O(e7), (18)  ification of [1].
where 0 1 —0.266 —0.009
_ _ —-2.75 =2.718 —-1.36 —0.037
IG()I3 = Trace[BTL.BY, An=1 97 0 Tk
G(s) := (C + DK)(sl — A. — B’K)"'B., —495 0 —55.5 —0.039
Le(A: + B2K) + (A + B2K)" L. [0.0024 0 —0.087 0.002
+(C+ DK)'(C + DK) =0, | -0185 0 111 —0.011
ez = 0 0 0 0 ’
and the optimal valudG(s)|3 is obtained with the controller 092922 0 817 0.004
(4) which optimizesH, cost for the actual syste(d). - ) )
0.073 0 —-0.25 0.003
Proof. Whenu,,, (t) is used, the value of the norm is cAjs = _00'46 8 2(')8 _0602 ,
|G(5)]5 = Trace[B;"W.B.], (19) 0924 0 175  0.02




0.021 0 0.121  0.003
Ay = -1.1 0 -1.62 -0.015
0 0 0 0 ’
—243 0 137 —-0.034
—-0.21 1 —-1.6 —0.005
Agy — -19 -1.8 93 —0.12
0 0 0 1 ’
3.1 0 —56  0.032
0.06 0 046 0.002
cAys — -1 0 149 -0.04
0O 0 O 0 ’
0.12 0 29.8 —-0.028
—-0.002 0 0.83 0
Agy = —6.78 0 -—10.1 0.09
0 0 0 0 ’
—1.24 0 0.498 -0.017
0.011 0 0.22 0
cAgy — -2.1 0 1.7 -0.123
0 0 O 0 ’
| —0.07 0 6.38 —0.011
[ —0.197 1 —-1.2 —0.003
Ay — —-54.5 —20 70.1 —2.37
0 0 0 1 ’
| -34 0 —210 -0.017
[1 0 0] [0 0 0 ]
1 0 0 36.1 0 0
0 0 0 0 0 0
2 00 0 0 0
0 1 0 0 0 0
1 01 0 ) 0 789 0
B: = 0 0 0 » Be = 0 0 0 ’
0 2 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 1000
0 0 0 0 0 0
|0 0 2 | 0o 0 0 |
(1 1.0 0000 0O0O0TO0O
001 100O0O0O0O0TGO0TO
C— 000O0OT1100O0O0TO0T©O
000O0OO0OO0OT1T1QO0O0TGO0OTO0]|’
000O0O0OO0OOOODTI1T1TO0O0
00 0 0O0O0O0O0CO0OTO0T11
[1 0 0
0 0 0
0 1 0
D= 0 0 0
0 0 1
|0 0 0
The small parameter is chosen as= 0.5065. Referring

the proposed design procedure, the near—optifhakontrol
is given by

Uapp(t) = block — diag (ulapp (t) u2app(t) uzapp(t) ) (25)

Utapp(t)

= [~1.6073 —1.0155 —6.7626 —1.6343 x 10~2] z(t),

U2app (1)
= [—1.3703 —1.0046 —6.6746 8.3537 x 1072 ] z(¢),

Uzapp (t)
= [—1.5716 —1.0006 —3.4550 2.5050 x 10_1] x(t).

Now, let us evaluate the costs using the near—optimal con-
troller (25). The values of theHy—norm is [G(s)|3 =
Trace[BXTW.B!] = 2.4136 x 10. Hence, the loss of
IG(s)|% is less than12.3075% compared with the optimal
value|G(s)|3 = 2.1491 x 10. The values of théZ,—norm for
|G()I3 — G (5)13

variouse are given in Table 1, wherg =

52
Table 1.

£ [G(s)13 [G(s)]5 ¢
0.5 2.1441 x 10 2.4019 x 10 1.0311 x 10
10—t 1.9056 x 10 1.9162 x 10 1.0608 x 10
10~2 1.8919 x 10 1.8920 x 10 1.0968 x 10
1073 1.8918 x 10 1.8918 x 10 1.1018 x 10
10~4 1.8918 x 10 1.8918 x 10 1.1053 x 10
10—° 1.8918 x 10 1.8918 x 10 1.0200 x 10
10-6 1.8918 x 10 1.8918 x 10 2.9161 x 10

Itis easy to verify thalG(s)|3 — |G (s)|3 = O(£?) because of
¢ < oco. Therefore, the new result for thd,—norm property
which is indicated by (18) is correct.

As a result, from the point of view of the numerical example,
if the small positive weak coupling parameter which connect
the other subsystems is sufficiently smail, controller can be
constructed by using the information only of the subsystems.

7 Conclusion

In this paperH, state feedback control of the large—scale sys-
tems which are connected by the weak small parameter has
been studied. The main contribution of this paper is to pro-
pose the new design method of theindependent reduced—
order controller. It should be noted that the proposed design
method is quite different from the existing method such as the
multi-level computation design method [1]. Furthermore, it
has been newly shown that the resulting controller achieves
O(&?) approximation of the optimal solution. Thus, the pro-
posedH, controller design is very useful and reliable because
such controller can be obtained without information of other
connected subsystem and calculated in the same dimension
compared with the subsystems.

It is expected that the proposed approach is also applied to the
output feedback case. Such problem is more realistic than state
feedback case. This problem will be addressed in future inves-

tigations.



References

[1]

(2]

J. D. Delacour, M. Darwish, and J. Fantin. “Control strate-
gies for large—scale power systemsit. J. Contro| 27-5,
pp. 753-767, (1978).

Z. Gajic, D. Petkovski, and X. SherSingularly Per-
turbed and Weakly Coupled Linear System—A Recursive
Approach: Lecture Notes in Control and Information Sci-
ences, 140Berlin: Springer—\Verlag, (1990).

[3] A.J. Laub. “A Schur method for solving algebraic Riccati

[4]

(5]

equations”,|EEE Trans. Automat. Contr24-6, pp. 913—
921, (1979).

X. Shen, V. G. Gourishankar, Q. Xia, and M. Rao. “Opti-
mal control for large—scale systems: a recursive approach”,
Int. J. Systems S¢k5-12, pp. 22352244, (1994).

D. D. Siljak. Large—Scale Dynamic Systems: Stability and
Structure Amsterdam: North Holland, (1978).

[6] Y. Wang, D. J. Hill, and G. Guo. “Robust decentralized

control for multimachine power systemslEEE Trans.
Circuits and Systemd5-3, pp. 271-279, (1998).

[7] T. Yamamoto. “A method for finding sharp error bounds

(8]

for Newton’s method under the Kantorvich assumptions”,
Numerische Mathematil9, pp. 203—-220, (1986).

K. Zhou. Essentials of Robust ContiolNew Jersey:
Prentice—Hall, (1998).



	Session Index
	Author Index



