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Abstract

An iterative procedure is proposed for robustH2 controller de-
sign. This method improves a previously reported technique,
where optimization over two variables - the controller and a
scaling matrix - was carried out by keeping one fixed at a time
and minimizing the worst-caseH2 norm over the other. In this
paper, it is shown how optimization over both parameters at
the same time can be formulated as an LMI problem with an
additional constraint. Application to a well-known benchmark
problem illustrates that this approach leads to a significantly
larger range of feasible solutions, thus allowing the synthesis
of controllers that guarantee robust performance over a larger
range of uncertain parameters.

1 Introduction

Analysis techniques for estimating the worst-caseH2 norm of a
control system have received considerable attention. Recently
reported results include an approach based on parameter-
dependent Lyapunov functions and an LFT representation of
both the uncertainty and the Lyapunov function [9]. In the same
paper a variety of objectives has been formulated in a general
framework. Related results had been presented earlier in [6].
One of the strongest results - based on a multiplier approach -
on estimating the worst-caseH2 norm was reported in [4]. This
work was an extension to robustH2 performance of results on
robust stability in [10].

In contrast, synthesis techniques for controllers that minimize
the worst-caseH2 norm are less well developed. An approach
using Popov multipliers and an iterative technique was used
in [8] and [7]. The results presented here are closely related
to the work reported in [5], where affine parameter-dependent
Lyapunov functions are used for both analysis and synthesis.
The analysis results in [5] are translated into synthesis tech-
niques by using a transformation of controller variables origi-
nally proposed in [1]. This leads to a technique referred to as
K-D iteration where alternatingly scaling parameters and con-
troller parameters are optimized.

Most methods for analyzing the worst-caseH2 norm are based
either on multiplier techniques or on parameter-dependent Lya-
punov functions. When translated into synthesis techniques,
both approaches lead to terms that are nonlinear in the con-

troller variables so that they cannot be solved as convex prob-
lems. Transforming these techniques into convex problems
is only possible by introducing conservatism, and the chal-
lenge in developing robustH2 synthesis techniques is to reduce
this conservatism as far as possible, while still maintaining a
tractable problem that can be solved as a convex optimization
problem. It should be kept in mind that what is required in in-
dustrial practice is controller synthesis, with user-friendly and
reliable tuning interfaces.

An iterative design procedure - referred to as K-S iteration -
was proposed recently in [2], together with an efficient tun-
ing strategy. This method uses a fixed quadratic Lyapunov
function, and the S-procedure for transforming a constrained
optimization problem into an unconstrained one. Both imply
that the resulting design is conservative, but it could be demon-
strated on a benchmark problem that this approach still outper-
forms other robust design techniques.

In this paper we propose a refined version of the approach in
[2], where additional degrees of freedom are introduced into
the design. The K-S iteration technique proposed in [2] is
based on alternatingly minimizing a bound on the worst-case
H2 norm over the controllerK(s) and over a scaling matrix
S. Here we present an algorithm that allows the simultaneous
search for controller and scaling matrix, subject to a norm con-
straint. This method can lead to a significant increase in achiev-
able robustness; this is illustrated by application to a bench-
mark problem for robust control.

An alternative approach to minimizing the worst caseH2 norm
that allows for non-square LFT representations of the model
uncertainty is presented in [3].

The paper is organized as follows. Section 2 gives the problem
description and a brief review of the K-S iteration technique
proposed in [2]. An improved algorithm for robustH2 synthe-
sis is presented in section 3. In section 4 the proposed method
is applied to the ACC benchmark problem, and the achievable
robustness is compared with the results from [2]. Conclusions
are drawn in section 5.



2 Problem Description and Review of K-S Iter-
ation for Robust H2 Control

Consider the control system shown in Figure 1. The general-
ized plantP has a state space representation

ẋ = A0x + B1w1 + B2w2 + Bu

z1 = C1x

z2 = C2x + D2uu

y = Cx + D2ww2 (1)
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Figure 1: Closed-loop system with model uncertainty

Here(A0, B, C) represents the physical plant with control in-
put u and measured outputy. Perturbations of the nominal
plant dynamics (A0) are expressed via fictitious inputs through
B1 and fictitious outputs throughC1: Introducing feedback
w1 = ∆z1, where the matrix∆(t) represents perturbations and
is assumed to satisfy‖∆‖ < 1 at all times, leads to

ẋ = (A0 + B1∆C1)x + B2w2 + Bu

The inputw2 is a white noise process with unit variance. If the
matricesC2, D2u, B2 andD2w are chosen as

C2 =
[

Q1/2

0

]
, D2u =

[
0

R1/2

]

B2 = [Q1/2
e 0], D2w = [0 R1/2

e ] (2)

then

J = E‖z2(t)‖22 = E

[
lim

t→∞
1
T

∫ T

0

zT
2 z2 dt

]
(3)

represents a LQG cost function with the usual weight matrices
Q, R and noise covariancesQe, Re. Note that the costJ is
equal to the square of theH2 norm of the closed-loop transfer
function fromw2 to z2.

The problem considered in this paper is to find a strictly proper
controllerK(s) with state space realization

ζ̇(t) = AKζ(t) + BKy(t)
u(t) = CKζ(t) (4)

such that
J ≤ ν2 ∀∆ : ‖∆‖ < 1 (5)

for a given constantν > 0.

This problem can be expressed in the form of a matrix inequal-
ity as follows. Consider the closed-loop system

[
ẋ

ζ̇

]
= Ā

[
x
ζ

]
+ [B̄1 B̄2]

[
w1

w2

]

[
z1

z2

]
=

[
C̄1

C̄2

] [
x
ζ

]

where

Ā =
[

A0 BCK

BKC AK

]
, B̄1 =

[
B1

0

]
, B̄2 =

[
B2

BKD2w

]

C̄1 = [C1 0], C̄2 = [C2 D2uCK ]

The work reported in [2] is based on the following result.

Theorem 2.1

In the control system in Figure 1, the performance index satis-
fiesJ ≤ ν2 for all ‖∆‖ < 1 , if there exist a positive definite
matrixP and a matrixW such that

trace W < ν2

and



PĀT + ĀP (∗) (∗) (∗)
C̄2P −I 0 0
C̄1P 0 −S 0
SB̄T

1 0 0 −S


 < 0,

[
W B̄T

2

B̄2 P

]
> 0

(6)

The variables in the constraint (6) are the controllerK(s) (the
closed-loop matrices(Ā, B̄2, C̄2) depend on the controller),
and a scaling matrixS. This constraint can be transformed
into an LMI condition in the controller variables and used for
controller synthesis, by employing a linearizing change of vari-
ables [1]. Unfortunately, this change of variables introduces a
product term between controller variables andS, thus prevent-
ing the optimization overK andS simultaneously. In [2] the
following algorithm was proposed to find a sub-optimal solu-
tion to the problem of minimizing the worst-caseH2 norm.

Algorithm 1 (K-S Iteration)

TakeS = S0 as start value, e.g.S0 = I. Repeat the following
two steps until no further reduction in the worst-caseH2 norm
is observed.

K-step: Fix S and find the controllerK(s) that minimizes the
worst-caseH2 norm.

S-step: Fix K(s) and find the scaling matrixS that minimizes
the worst-caseH2 norm.



Fixing either the controller or the scaling matrix during op-
timization makes it possible to solve the minimization prob-
lem in each step as an LMI problem; however this restriction
is a source of conservatism in the design. It was nevertheless
possible to demonstrate on a well-known benchmark problem
that K-S iteration outperforms other robust design strategies
[2]. The algorithm presented in the next section was motivated
by the desire to reduce the conservatism of the K-S iteration,
by allowing a simultaneous optimization overK andS.

3 K-S-Φ Iteration for Robust H2 Control

The motivation for the K-S iteration technique was the fact that
the linearizing change of variables that is required to convert
the design problem into an LMI problem, introduces a term
that is nonlinear inS andK. This term arises because of the
presence ofS in the same row (or column) in the first block ma-
trix in (6) as the matrix variableP . To removeS from the first
column, apply the congruence transformation diag(I, I, I, Ψ),
whereΨ = S−1, to obtain




PĀT
0 + Ā0P (∗) (∗) (∗)
C̄2P −I 0 0
C̄1P 0 −S 0
B̄T

1 0 0 −Ψ


 < 0,

[
W (∗)
B̄2 P

]
> 0

(7)
The condition (7) is equivalent to (6) if we impose the addi-
tional constraintΨS = I. It is in fact straightforward to show
that (7) will still guarantee the bound (5) on the worst-caseH2

norm when this constraint is relaxed to

ΨS < I (8)

After a linearizing change of variables, (7) can be solved as
an LMI problem with variablesS, Ψ and the transformed con-
troller variables. The problem is now that the additional con-
straint (8) is nonlinear inS andΨ. To replace (8) by a linear
constraint, introduce the matrix

G =
[

0 Ψ
S 0

]

Note that ifλ is an eigenvalues ofG, thenλ2 is an eigenvalue of
ΨS. Thus, the constraint (8) is equivalent to the constraint that
G has its eigenvalues inside the unit disc, or that there exists a
symmetric matrixΦ that satisfies

[ −Φ GT Φ
ΦG −Φ

]
< 0, Φ = ΦT > 0 (9)

We can summarize the above as follows.

Theorem 3.1

J < ν2 for all ∆ : ‖∆‖ < 1 if there exist symmetric matrices
P > 0, W , S andΨ that satisfy traceW < ν2 and conditions
(7) and (9).

Based on Theorem 3.1, a sub-optimal solution to the robust
H2 design problem can be obtained by an iterative algorithm
involving three steps.

Algorithm 2 (K-S- Φ Iteration)

TakeS = S0 andΨ = (1− ε)S−1
0 , whereS0 is a suitable start

value andε > 0 is a small constant (e.g.ε = 10−3). Compute
Φ from (9), and repeat the following three steps until no further
reduction in the worst-caseH2 norm is observed.

K-Step: Fix Φ and minimizeν overK, S, Ψ andP , subject
to traceW < ν2 and conditions (7) and (9).

S-Step: Fix K and minimizeν overS andP subject to trace
W < ν2 and (6).

Φ-Step: Fix S andΨ = (1 − ε)S−1 (this fixesG), and deter-
mineΦ from (9).

In the K-step, the search for the controllerK is carried out
with less conservatism than in Algorithm 1, because instead of
fixing S, S andΨ are variables constrained only by (9). The
objective of this step is to find the best controllerK. In order to
be able to solve the minimization problem in the K-step as an
LMI problem, a congruence transformation must be applied to
the constraint (6). This transformation and the resulting LMI
constraints are given in the Appendix.

The purpose of the S-step is then - withK fixed - to find the best
scaling matrix; this step is the same as in Algorithm 1. WithS
obtained in the S-step, andΨ fixed as the (slightly reduced for
feasibility) inverse ofS, in theΦ-step a matrixΦ is determined
for the constraint (9) in the next K-step. To obtain a matrix
Φ that allows maximum freedom when searching forK in the
K-step, the following problem is solved

max
Φ

α subject to αI+
[ −Φ GT Φ

ΦG −Φ

]
< 0, Φ = ΦT > 0

(10)

4 Application to the ACC Benchmark Problem

This problem was proposed as a benchmark problem for robust
control at the American Control Conference [12]. Two bodies
with massesm1 andm2 are connected by a spring with stiff-
nessk, as shown in Fig. 2. A state space model of the system
is




ẋ1

ẋ2

ẋ3

ẋ4


 =




0 0 1 0
0 0 0 1

−k/m1 k/m1 0 0
k/m2 −k/m2 0 0







x1

x2

x3

x4




+




0
0

1/m1

0


 u +




0 0
0 0

1/m1 0
0 1/m2




[
d1

d2

]
,

y = x2 (11)



We consider the following two problems.

Problem 1: Spring Constant k Uncertain

We use the following model to represent the parameter uncer-
tainty

A = A0 + ρB1∆C1 with − 1 < ∆ < 1

where

A0 =




0 0 1 0
0 0 0 1
−1 1 0 0
1 −1 0 0


 , B1 = ρ




0
0
1
−1


 , CT

1 =




−1

1
0
0




An additional tuning parameterρ has been introduced that can
be used to scale the uncertainty. This tuning parameter is ab-
sorbed into the model by replacingB1 with ρB1.

We choose the following values of LQG tuning parameters in
(2)

Q = 100 · I, Qe = 100 · I, R = 1, Re = 1

The aim is to push the tuning parameterρ as high as possible
to achieve the maximum possible degree of robustness against
variation in the spring constantk. Note that∆ is just a scalar
in this case, thus bothΨ andS are scalar. A comparison of the
worst-caseH2 norm achieved with controllers obtained from
Algorithm 1 and 2 are shown in Figure 3. The worst-caseH2

norm is plotted versus the scaling parameterS for different val-
ues of the tuning parameterρ. The endpoints of the curves in-
dicate the points where the LMI problem becomes infeasible.

Problem 2: Spring Constant k and Massm2 Uncertain

A systematic way of constructing the uncertainty representa-
tion in (1) was proposed in [11]. Here the model uncertainty is
represented by

A0 =




0 0 1 0
0 0 0 1

−1.25 1.25 0 0
2.12 −2.12 0 0


 , B1 = ρ




0 0
0 0

0.75 0
0 1.875




C1 =
[ −1 1 0 0

1 −1 0 0

]
, ∆ =

[
δ1 0
0 δ2

]

d1

u
m1 m2 d2

k

x1 x  = y2

Figure 2: Two-mass-spring system
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Figure 3: Comparison of the worst-caseH2 norm in the K-step
achieved with Algorithm 1 and 2, for different values ofρ

A comparison between the controllers obtained from Algo-
rithm 1 and 2 for different parameter values are shown in Fig-
ures 4 - 6. Note that in problem 2 we have two scaling param-
eterss1 ands2 - the non-zero diagonal entries ofS. Again, the
edges of the cost surfaces indicate the boundaries of feasibility.

The following observations can be made:

• If a feasible solution exists, Algorithm 2 gives in con-
trollers that are identical to those obtained from Algorithm
1, as is illustrated clearly in Figure 6. This is enforced by
the constraintΨS < I; note that maximizingα in (10)
pushes this towardsΨ = S−1.

• Figure 3 shows that although the same worst-case cost
is achieved with both approaches, at low values ofρ
(ρ ≤ 0.7), the range of feasible solutions is much larger
when using Algorithm 2 - Algorithm 1 gives no solution
for any scalingS less than2 ·10−6. Figure 4 confirms this
observation for the case of a two-dimensional uncertainty.
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Figure 4: Worst-caseH2 norm vs. scaling parameterss1, s2 in
problem 2
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Figure 5: Worst-caseH2 norm versus scaling parameterss1, s2

in problem 2

• Algorithm 1 gives no feasible solution forρ > 0.7, while
Algorithm 2 still finds a solution whenρ = 0.9 for a scalar
uncertainty. A similar observation can be made in the case
of a two dimensional uncertainty: Algorithm 1 leads to
infeasible problems ifρ > 0.6 , while Algorithm 2 leads
to infeasible problems whenρ > 0.8

• The larger range of feasible values ofS achieved with Al-
gorithm 2, makes it easier to find feasible starting values
when searching for the minimum overS.
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Figure 6: Worst-caseH2 norm versus scaling parameterss1, s2

atρ = 0.2

A practical difficulty is to find a feasible start valueS0 for
the K-step when searching for a controller that guarantees the
worst-caseH2 bound for a large range of uncertain parameters.
Whenρ is large, the range of feasible values tends to be small.
Here, the following strategy was used to find a feasibleS0 for
largeρ: carry out K-S-Φ iteration with a smallerρ and use the
optimal scalingS as start value with an increasedρ.

5 Conclusion

An improved method for computing robustH2 controllers has
been proposed. The conservatism in the K-step of a previously
proposed K-S iteration technique can be significantly reduced
by introducing additional degrees of freedom. This reduction in
conservatism does not involve much additional computational
cost, because the additionalΦ-step in the iteration procedure is
relatively cheap.

There is still considerable conservatism in the S-step of this
procedure, especially when the range of admissible parameter
uncertainty is large. Further reduction of conservatism, for ex-
ample by exploiting the non-uniqueness of the factorization in
(17) below, and by employing parameter-dependent Lyapunov
functions, are currently under investigation.



A Appendix

A congruence transformation proposed in [1] can be used to
transform the constraints (7) into equivalent LMI constraints.
Theorem 2.1 can then be reformulated as follows.

Theorem A.1

The cost in (3) satisfies

J ≤ ν2 (12)

in all admissible operating conditions, i.e. for all‖∆‖ < 1, if
there exist matricesX, Y,W, S, Φ, ÃK , B̃K , C̃K that satisfy

trace W < ν2 (13)




Ω(Y ) ∗ ∗ ∗ ∗
ÃT

K + A0 Ω(X) ∗ ∗ ∗
C2 C2X + D2uC̃K −I 0 0
C1 C1X 0 −S 0

BT
1 Y BT

1 0 0 −Ψ




< 0

(14)


W BT
2 Y + DT

2wB̃T
K BT

2

Y B2 + B̃KD2w Y I
B2 I X


 > 0 (15)




−Φ11 ∗ ∗ ∗
−Φ12 −Φ22 ∗ ∗
Φ12S Φ11Ψ −Φ11 ∗
Φ22S Φ12Ψ −Φ12 −Φ22


 < 0 (16)

where
Ω(Y ) = Y A0 + B̃KC2 + (∗)
Ω(X) = A0X + BC̃K + (∗)

Φ has been partitioned compatible with the partition ofG.

Having found solutions̃AK , B̃K , C̃K , Y andX to the above
LMI problem, a controller that satisfies the constraint (12) can
be computed as follows. Compute via singular value decompo-
sition nonsingular square matricesM andN that satisfy

MNT = I − Y X (17)

then the controller (4) is given by

CK = C̃KM−T

BK = N−1B̃K

AK = N−1(ÃK −NBKCY −XBCKMT −XAY )M−1

Algorithm 2 can be reformulated in terms of the transformed
controller variables as

Algorithm 2 (K-S- Φ Iteration)

TakeS = S0 andΨ = (1 − ε)S0 as start values. ComputeΦ
from (10) and repeat the following three steps until no further
reduction in the worst-caseH2 norm is observed.

K-Step: FixΦ and minimizeν overÃK , B̃K , C̃K , X, Y,
S andΨ, subject to (13) - (16)

S-Step: FixÃK , B̃K , C̃K and minimizeν overS, X andY
subject to (13) - (15)

Φ-Step: FixS andΨ = (1− ε)S−1 and determineΦ by
solving (10)
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