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Abstract troller variables so that they cannot be solved as convex prob-

) _ ) lems. Transforming these techniques into convex problems
An iterative procedure is proposed for robiist controller de- g only possible by introducing conservatism, and the chal-

sign. This method improves a previously reported techniqygnge in developing robugf, synthesis techniques is to reduce
where optimization over two variables - the controller and @ conservatism as far as possible, while still maintaining a
scaling matrix - was carried out by keeping one fixed at a tim@,tahle problem that can be solved as a convex optimization
and minimizing the worst-casi; norm over the other. In this yrohlem. It should be kept in mind that what is required in in-

paper, it is shown how optimization over both parameters @lsyria| practice is controller synthesis, with user-friendly and
the same time can be formulated as an LMI problem with agjizple tuning interfaces.

additional constraint. Application to a well-known benchmark _ _ _ _
problem illustrates that this approach leads to a significanfiy? iterative design procedure - referred to as K-S iteration -
larger range of feasible solutions, thus allowing the synthe¥i@s proposed recently in [2], together with an efficient tun-

of controllers that guarantee robust performance over a lar§jt@ strategy. This method uses a fixed quadratic Lyapunov
range of uncertain parameters. function, and the S-procedure for transforming a constrained

optimization problem into an unconstrained one. Both imply
that the resulting design is conservative, but it could be demon-
strated on a benchmark problem that this approach still outper-

Analysis techniques for estimating the worst-c&&eorm of a  fOrms other robust design techniques.

control system have received considerable attention. Receni\his paper we propose a refined version of the approach in
reported results include an approach based on paramefgf-where additional degrees of freedom are introduced into
dependent Lyapunov functions and an LFT representationtgé design. The K-S iteration technique proposed in [2] is
both the uncertainty and the Lyapunov function [9]. In the sani@ysed on alternatingly minimizing a bound on the worst-case
paper a variety of objectives has been formulated in a genefal norm over the controllefs (s) and over a scaling matrix
framework. Related results had been presented earlier in [§]. Here we present an algorithm that allows the simultaneous
One of the strongest results - based on a multiplier approacearch for controller and scaling matrix, subject to a norm con-
on estimating the worst-ca$, norm was reported in [4]. This straint. This method can lead to a significant increase in achiev-
work was an extension to robut, performance of results on gple robustness; this is illustrated by application to a bench-
robust stability in [10]. mark problem for robust control.

In contrast, synthesis techniques for controllers that minimiag alternative approach to minimizing the worst c&enorm

the worst-casé!; norm are less well developed. An approacthat allows for non-square LFT representations of the model
using Popov multipliers and an iterative technique was usgfcertainty is presented in [3].

in [8] and [7]. The results presented here are closely related ) ] _ )
to the work reported in [5], where affine parameter-dependérrﬁe paper is organized as follows. Section 2 gives the problem

Lyapunov functions are used for both analysis and synthe&§Scription and a brief review of the K-S iteration technique
The analysis results in [5] are translated into synthesis te@f0Posed in [2]. Animproved algorithm for robusit, synthe-
niques by using a transformation of controller variables origfiS IS Presented in section 3. In section 4 the proposed method
nally proposed in [1]. This leads to a technique referred to $s@Pplied to the ACC benchmark problem, and the achievable
K-D iteration where alternatingly scaling parameters and cofPustness is compared with the results from [2]. Conclusions
troller parameters are optimized. are drawn in section 5.

1 Introduction

Most methods for analyzing the worst-cage norm are based

either on multiplier techniques or on parameter-dependent Lya-
punov functions. When translated into synthesis techniques,
both approaches lead to terms that are nonlinear in the con-



2 Problem Description and Review of K-S Iter- such that

ation for Robust H, Control J <P VA:[A <1 (5)
Consider the control system shown in Figure 1. The generf’;ﬂ-r agiven constant > 0.
ized plantP has a state space representation This problem can be expressed in the form of a matrix inequal-
ity as follows. Consider the closed-loop system
T | . w
T = Aox + Bywy + Bows + Bu [C']_A{C}Jr[Bl Bz]{w;}
zZ1 = leL'
Z9 = CQ!L‘ + DQuU 2 7 él T
y = Cx + Doywo 1) 2o | 02 ¢
where
A = T Ay BCk 5 By 5 By
N R e
Wl L gl [ Zl
W, P — 7 _ _
u —= —y Cy=[Cy 0], Cy=][Cy D9,Ck]
The work reported in [2] is based on the following result.

Theorem 2.1

Figure 1: Closed-loop system with model uncertainty  In the control system in Figure 1, the performance index satis-
fiesJ < v? for all |Al| < 1, if there exist a positive definite

Here(Ag, B, C) represents the physical plant with control inmatrix ~ and a matrbd¥” such that

put v and measured outpyt Perturbations of the nominal trace W < 12
plant dynamics ) are expressed via fictitious inputs through

B; and fictitious outputs througlt’;: Introducing feedback and

w1 = Az, where the matrixA(¢) represents perturbations and - 7

. . . PAY + AP

is assumed to satisfyA|| < 1 at all times, leads to + () () ()

CP —I 0 0 |_, {W Bg]>0
. P 0 -S 0 | By P
= (4o + B1AC B B L 2
#=(do+ BIACYz + Bywy + Bu SBT 0 0 -8
The inputw, is a white noise process with unit variance. If the (6)
matricesCz, Da,, Bz andDsy,, are chosen as The variables in the constraint (6) are the controligs) (the
12 closed-loop matrices$A, B,, Cs) depend on the controller),
Cy = [ Q } . Doy, = { (1)/2 } and a scaling matrixs. This constraint can be transformed
0 R into an LMI condition in the controller variables and used for
By = [Qiﬂ 0], Day, =10 Ré”] (2) controller synthesis, by employing a linearizing change of vari-
ables [1]. Unfortunately, this change of variables introduces a
then product term between controller variables &dhus prevent-
T ing the optimization oveK andS simultaneously. In [2] the
J = E||z®)|2 = E | lim l/ Lo dt 3) f_ollowing algorithm was p_rop(_)sed to find a sub-optimal solu-
t—00 tion to the problem of minimizing the worst-cagk norm.

represents a LQG cost function with the usual weight matric’é‘ggor'thm 1 (K-S Iteration)

@, R and noise covarianc&g., R.. Note that the cosf is TakeS = S, as start value, e.gfly = I. Repeat the following
equal to the square of thé, norm of the closed-loop transfertwo steps until no further reduction in the worst-cdgenorm
function fromws to 2. is observed.

The problem considered in this paper is to find a strictly proper
Contro”erK(s) W|th state Space rea”zation K-Step: Fix S and flnd the ControlleK(S) that minimizeS the

worst-cased, norm.

C(t) = AxC(t) + Bry(?) S-step: Fix K (s) and find the scaling matrig that minimizes

u(t) = Cr((t) (4 the worst-caséf, norm.



Fixing either the controller or the scaling matrix during opBased on Theorem 3.1, a sub-optimal solution to the robust
timization makes it possible to solve the minimization probH, design problem can be obtained by an iterative algorithm
lem in each step as an LMI problem; however this restrictianvolving three steps.

is a source of conservatism in the design. It was nevertheless . .

possible to demonstrate on a well-known benchmark problgﬁgomhm 2 (K-S- @ Iteration)

that K-S iteration outperforms other robust design strategi€akeS = Sy and¥ = (1 — e)SO_1 , whereS, is a suitable start
[2]. The algorithm presented in the next section was motivatedlue and= > 0 is a small constant (e.g.= 10~3). Compute

by the desire to reduce the conservatism of the K-S iteratiahfrom (9), and repeat the following three steps until no further
by allowing a simultaneous optimization ov&randS. reduction in the worst-casé, norm is observed.

3 K-S-® Iteration for Robust H, Control K-Step: Fix ® and minimizev over K, S, ¥ and P, subject
to traceW < v? and conditions (7) and (9).

The motivation for the K-S iteration technique was the fact that - N :

the linearizing change of variables that is required to conv EStep. F|x2K and minimizev over § and P subject to trace

the design problem into an LMI problem, introduces a term W <v”and (6).

that is nonlinear inS and K. This term arises because of thep-Step: Fix S and¥ = (1 — €)S~! (this fixes@), and deter-

presence of in the same row (or column) in the firstblock ma-  mine ® from (9).

trix in (6) as the matrix variablé’. To removeS from the first
column, appléllthe congruence transformation diag(7, V), |n the K-step, the search for the controll&t is carried out
where¥ = S, to obtain with less conservatism than in Algorithm 1, because instead of

fixing S, S and ¥ are variables constrained only by (9). The
objective of this step is to find the best controli€r In order to

PAJ 4+ AP () () (%) be able to solve the minimization problem in the K-step as an
CyP -1 0 0 <0 [ W (%) } >0 LMI problem, a congruence transformation must be applied to
P 0 -S 0 | By P the constraint (6). This transformation and the resulting LMI
BT 0 0 -V constraints are given in the Appendix.

The condition (7) is equivalent to (6) if we impose the additne purpose of the S-step is then - witHfixed - to find the best

tional constraint'.S = 1. Itis in fact straightforward to show scaling matrix; this step is the same as in Algorithm 1. Vifith

that (7) will still guarantee the bound (5) on the worst-case obtained in the S-step, andfixed as the (slightly reduced for
norm when this constraint is relaxed to feasibility) inverse ofS, in the®-step a matrixp is determined

for the constraint (9) in the next K-step. To obtain a matrix
US < I (8 ® that allows maximum freedom when searching foin the
K-step, the following problem is solved
After a linearizing change of variables, (7) can be solved as _d TP
an LMI problem with variabless, ¥ and the transformed con-max«a subject to OJ+[ G  —d } <0, 2=0">0
troller variables. The problem is now that the additional con- (10)
straint (8) is nonlinear irt and¥. To replace (8) by a linear

constraint, introduce the matrix L.
4  Application to the ACC Benchmark Problem

0 v
G = [ S 0 ] This problem was proposed as a benchmark problem for robust
control at the American Control Conference [12]. Two bodies

Note that if is an eigenvalues @, then)? is an eigenvalue of With massesn, andm are connected by a spring with stiff-
US. Thus, the constraint (8) is equivalent to the constraint tHAESSk: @s shown in Fig. 2. A state space model of the system
G has its eigenvalues inside the unit disc, or that there existSa

symmetric matrixd that satisfies : 0 0 r

X1 1 0 T1

_ T 1:2 _ 0 0 0 1 To

{ @2 G_(I()I) } <0, ®=dT>0 9) Z3 —k/my  k/m; 0O 0 T3

5154 L k/m2 7]43/7712 0 0 L T4

. [0 0 0 ]
We can summarize the above as follows. 0 0 0 dy
Theorem 3.1 + 1/my ut 1/my 0 { ds ] ’
0 0 1/m2

J <v?forall A: ||A]| < 1if there exist symmetric matrices -
P >0, W, S and¥ that satisfy tracél” < 2 and conditions
(7) and (9). y =z (11)



We consider the following two problems.

Problem 1: Spring Constant k Uncertain

We use the following model to represent the parameter uncer-
tainty

A:A()-f—pBlACl with —1<A<1

where
0 0 10 0 -1
10 0 01 0 T
do=1 1 4 oo |Br=r| 1 |G = (1)
1 -1 00 -1 0

An additional tuning parameterhas been introduced that can
be used to scale the uncertainty. This tuning parameter is ab-
sorbed into the model by replacirdgy with pB;.

We choose the following values of LQG tuning parameters in

&)

Q=100-1, Q.=100-1I, R=1, R.=1

The aim is to push the tuning parameteas high as possible

to achieve the maximum possible degree of robustness against
variation in the spring constait Note thatA is just a scalar

in this case, thus botfr and.S are scalar. A comparison of the
worst-caseH, norm achieved with controllers obtained from
Algorithm 1 and 2 are shown in Figure 3. The worst-cébe
norm is plotted versus the scaling parametéor different val-
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ues of the tuning parametgr The endpoints of the curves in- Algorithm 2
dicate the points where the LMI problem becomes infeasible.
Problem 2: Spring Constant k and Massmy Uncertain Figure 3: Comparison of the worst-caBe norm in the K-step

A systematic way of constructing the uncertainty represenfEhieved with Algorithm 1 and 2, for different valuesof

tion in (1) was proposed in [11]. Here the model uncertainty is
represented by

0 0 10 0 0
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Figure 2: Two-mass-spring system

A comparison between the controllers obtained from Algo-
rithm 1 and 2 for different parameter values are shown in Fig-
ures 4 - 6. Note that in problem 2 we have two scaling param-
eterss; andss - the non-zero diagonal entries 8f Again, the
edges of the cost surfaces indicate the boundaries of feasibility.

following observations can be made:

If a feasible solution exists, Algorithm 2 gives in con-
trollers that are identical to those obtained from Algorithm
1, as is illustrated clearly in Figure 6. This is enforced by
the constraintl’ S < I; note that maximizingx in (10)
pushes this towards = S—1.

Figure 3 shows that although the same worst-case cost
is achieved with both approaches, at low valuespof

(p < 0.7), the range of feasible solutions is much larger
when using Algorithm 2 - Algorithm 1 gives no solution
for any scalingS less thar2 - 10~6. Figure 4 confirms this
observation for the case of a two-dimensional uncertainty.
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A practical difficulty is to find a feasible start valu&, for

the K-step when searching for a controller that guarantees the
worst-casdd, bound for a large range of uncertain parameters.
Whenp is large, the range of feasible values tends to be small.
Here, the following strategy was used to find a feasBydor
largep: carry out K-S iteration with a smallep and use the
optimal scalingS as start value with an increased

Algorithm 2,p = 0.8

5 Conclusion

Figure 5: Worst-casé&l; norm versus scaling parametaiss,  An improved method for computing robuit, controllers has
in problem 2 been proposed. The conservatism in the K-step of a previously
proposed K-S iteration technique can be significantly reduced
by introducing additional degrees of freedom. This reduction in
e Algorithm 1 gives no feasible solution fer> 0.7, while = conservatism does not involve much additional computational

Algorithm 2 still finds a solution whep = 0.9 for a scalar ¢ost, because the additioristep in the iteration procedure is
uncertainty. A similar observation can be made in the caggatively cheap.

of a two dimensional uncertainty: Algorithm 1 leads to o . . .
infeasible problems i > 0.6 , while Algorithm 2 leads There is still considerable conservatism in the S-step of this

to infeasible problems when> 0.8 procedure, especially when the range of admissible parameter
uncertainty is large. Further reduction of conservatism, for ex-
e The larger range of feasible values®chieved with Al- ample by exploiting the non-uniqueness of the factorization in
gorithm 2, makes it easier to find feasible starting valu€$7) below, and by employing parameter-dependent Lyapunov
when searching for the minimum ov&r functions, are currently under investigation.



A Appendix

K-Step:

A congruence transformation proposed in [1] can be used to
transform the constraints (7) into equivalent LMI constraints.

Theorem 2.1 can then be reformulated as follows.
Theorem A.1

The cost in (3) satisfies
J<v? (12)

in all admissible operating conditions, i.e. for alA[| < 1, if
there exist matriceX, Y, W. S, ®, Ax, By, Ck that satisfy

trace W < 1/ (13)
[ QYY) * * * *
AIT( + Ag Q(X) . * * *
Co CoX +Dy,Cx —1I 0 0 <0
Cq i X 0 -S 0
BTY BT 0 0 -v
] (14)
I W BIY + DI, BL BT
Y By + Bg Do, Y I >0 (15)
I By I X
—dqq * * *
—(1312 —(I)QQ X *
BpS OuU —dy o« | <0 (16)
DS Pp¥ —DPp —Dy
where

Q(Y) = YA + BgCy + (%)
Q(X) = AgX + BCk + (¥)

® has been partitioned compatible with the partitiorGof

Having found solutionsl x, Bx, Ck, Y andX to the above

S-Step:

Fix® and minimizev overAx, Bk, Ck, X, Y,
S and¥, subject to (13) - (16)

FixAx, Bk, Cx and minimizev overS, X andY’
subject to (13) - (15)

®-Step:  FixS and¥ = (1 — €)S~! and determin@ by
solving (10)
References

(1]

(2]

(3]

[4]

(5]

(6]

[7]

LMI problem, a controller that satisfies the constraint (12) catj8]
be computed as follows. Compute via singular value decompo-

sition nonsingular square matricgé$ and NV that satisfy
MNT =71-YX (17)
then the controller (4) is given by
Ckg = CYKMiT
Bk = N7 'Bg
Ax = N"Y(Ax — NBxCY — XBCxMT — XAY)M ™!

(9]

(10]

Algorithm 2 can be reformulated in terms of the transformedd1]

controller variables as
Algorithm 2 (K-S- @ Iteration)
TakeS = Sy and¥ = (1 — €)S, as start values. Compute

(12]

from (10) and repeat the following three steps until no further

reduction in the worst-casé, norm is observed.

M. Chilali and P. Gahinet.H,-design with pole place-
ment constraints: An LMI approaciEEE Trans. Auto-
matic Contro| 41(3):358-367, 1996.

A. Farag and H. Werner. RobuBt, controller design and
tuning for the ACC benchmark problem and a real-time
application. InProc. IFAC World Congres£002.

A. Farag and H. Werner. A design procedure for robust
Hy control using a multiplier approach. I[Buropean
Control Conference ECQJniversity of Cambridge, UK,
2003.

E. Feron. Analysis of robudtl, performance using mul-
tiplier theory.SIAM Journal Control Optim35:160-177,
1997.

E. Feron, P. Apkarian, and P. Gahinet. Analysis and syn-
thesis of robust control systemEEEE Trans. Automatic
Control, 41(6):1041-1046, 1996.

A. Helmersson. Parameter dependent Lyapunov functions
based on linear fractional transformation. Rroc. IFAC
World Congresspages 537-542, 1999.

J. How. Robust control design with real parameter uncer-
tainty using Absolute Stability Theor{?hD thesis, MIT,
Cambridge, MA, USA, 1993.

J.P. How, S.R. Hall, and W.M. Haddad. Robust controllers
for the middeck active control experiment using Popov
controller synthesislEEE Trans. Control Systems Tech-
nology, 2(2):73-86, 1994.

D. Peaucelle and D. Arzelier. Robust performance anal-
ysis with LMI-based methods for real parametric un-

certainty via parameter-dependent Lyapunov functions.
IEEE Trans. Automatic Contrp#t6(4):624—630, 2001.

M.G. Safanov and G. Wyetzner. Computer-aided stability
criterion renders Popov criterion obsoletlEEE Trans.
Automatic Contrqgl32:1128-1131, 1987.

H. Werner, P. Korba, and T.C. Yang. Robust tuning of
a power system stabilizer using LMI technique&EE
Transactions on Control Systems Techno)&f03.

B. Wie and D.S. Bernstein. A benchmark problem for
robust control design. IRroc. American Control Confer-
ence pages 961-962, San Diego, CA, USA, 1990.



	Session Index
	Author Index



