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Abstract

In this paper we present some models of various enzy-

matic reaction systems amenable to analytic techniques

of classical control theory. These models extend from

simple and most abundant cases to more involved cases

where (negative) feedback plays a major role at the level

of a single enzyme reaction (including the so called ’feed-

back inhibition’). Using the above models we point at the

specific feedback loop at the molecular level, if it exists,

of a given reaction scheme. A simple numerical analysis

of an enzyme reaction system demonstrates the applica-

bility of our approach.

1 Introduction

All life forms on Planet Earth, with no exception, are or-

ganic by nature and are being transformed, developed and

evolved through a series of remarkably complicated bio-

chemical pathways. These pathways, whether they occur

in micro-organisms such as bacteria or in higher organ-

ism such as the animal kingdom or plants, are composed

of cascades of enzymatic reactions where typically, each

step in the reaction pathway is carried out via a single en-

zyme. A typical biochemical pathway may include sev-

eral enzymes and is highly organized in both space and

time (i.e in certain compartments of the cell interior and

in synchronization with other pathways). Most biochem-

ical pathways are branched and some are circular (see for

example the citric acid cycle, [1] which is a principle path-

way in both the anabolic and catabolic phases of the cell

metabolism).

Excluding recent discoveries [2], all known enzymes are

proteins which are encoded by a specific gene in the

cell genome. The role and function of these remarkable

molecules, still mysterious to some extent, were stud-

ied extensively during the second half of the last century

along with the advances made in protein chemistry and

later on in molecular biology. In principle, the function

of a single enzyme is exerted by increasing the rate by

which a certain (and highly specific) reaction system is

driven from a non-equilibrium initial state to a final chem-

ical (dynamical) equilibrium state. Once an equilibrium

is reached the presence of the enzyme (say in a test tube)

can not change the ratios of the reaction components ( i.e

reactants to products), [1], [3]. Remarkably, during the

entire course of the chemical enzymatic reaction, the en-

zyme molecule possesses a series of transitory states how-

ever, at the final stage of the overall reaction the enzyme

molecule is freely released, ready to begin a second cycle.

The study of the chemical kinetics of enzymatic reaction

was greatly advanced since the pioneering works of the

first half of the last century [3]. The reaction scheme for

the simplest case is described by the following

S + E
k1−→←
k2

ES
kp−→ E + P (1)

whereE is the enzyme,S is the substrate,ES is the

enzyme-substrate complex and wherek1 andk2, kp are

second-order and first-order rate constant, respectively.

Note that the left hand step is reversible whereas the sec-



ond step is irreversible (the latter can be easily relaxed).

The above reaction scheme accounts for a fraction of the

large variety of enzyme reactions. Typically, key en-

zymes in a given biochemical pathway are allosteric, most

of them are composed of several sub-units with multi-

ple sites that regulate the enzyme kinetic and thermody-

namic features. The latter more involved cases include

enzymes that act simultaneously on two or more substrate

molecules to produce two or more self products. An in-

teresting case is the case where a self product of a specific

enzyme reaction (driven by a single enzyme) acts also as

an inhibitor of the same enzyme. Clearly, as seen through

the eyes of control engineers (or control theoreticians) the

’ hidden technology’ of control engineering plays a signif-

icant role in these elementary hardware of life itself (how

could it not be ?).

We intend to explore, in this work, mainly by model-

ing and as a starting point, enzymatic reactions as pro-

cesses that are amenable to the analytical techniques used

in classical control theory. An attempt in this direction

has been made by [4], however the arguments there were

heuristic by nature and no quantitative aspects were con-

sidered. In the present work we start by modeling simple

enzymatic systems, (with and without inhibitory mecha-

nism) and we proceed by considering more involved sys-

tems, where the presence of feedback loop may be of

a major functional significance. In order to clarify the

derivations made here, we present some basic principles

of chemical kinetics. We also demonstrate via a simple

example, the applicability of our models.

Notation: Throughout the paper the sign ‘[ ]’ stands

for chemical concentration (usually in Molar units, but

note that enzyme concentration is typically around micro-

Molar units and that of the substrate around mili-Molar).

Derivatives of reactants or products are chemical veloci-

ties. A positive velocity represents rate of formation and

a negative one represent the rate of degradation (note that

no distinction is made here between rate and velocity).

Small ’k’s’ represent chemical rate constant, where large

’K’s’ are chemical equilibrium constants.

2 Some Basic Facts from Chemical Kinetics

Since the subject material of this research topic is not

usually within the scope of knowledge of control scien-

tists, we bring some necessary basic facts from the field

of chemical kinetics. Consider the following chemical re-

action and it’s related equations:

A
k−→ B, −d[A]

dt = d[B]
dt , −d[A]

dt = [A]k, A(t) = A0e
−kt.

(2a-d)

The reaction of (2a) is not reversible and in principle can

not reach chemical equilibrium. The mole ratio of the

reaction components dictates the velocities relation as in

(2b) where (2c) is a consequence of the law of mass ac-

tion [5] applied to experimental data. The solution of

latter simple first order equation is given in (2d). Note

that taking Laplace transform of both sided of (2c), a sin-

gle integrator system is obtained. However, in contrast

to, say, electrical systems the amount (i.e the number of

molecules) of B produced is related, at any given time, to

the amount of A consumed. The latter is a basic principle

that is considered in all the derivations made in this paper.

Note also that kinetic differential equations are not neces-

sarily related to the formal ratios of the reaction compo-

nents. However, in the case where a chemical reaction de-

picts the dynamics at the molecular level (i.e the number

and identity of the colliding molecules [5]), the reaction

which is called anelementary reactionhas unique signif-

icance. Elementary reactions constitute,at the molecular
level a given chemical mechanism and are formulated re-

lying on some experimental data and a proposed model

for the reaction mechanism. Once an elementary reac-

tion is formulated (say (2a)), the differential rate equation

is immediately determined (say (2c)). We bring this fact

here in order to emphasize that all the enzymatic reactions

we deal with are composed of elementary steps (which

were, usually, proven using a variety of physico-chemical

techniques). Consider next the following reversibleele-
mentary reaction and it’s related equations:

A + B
k1−→←
k2

C + D, −d[A]
dt = −d[B]

dt = d[C]
dt = d[D]

dt ,

Keq = [C][D]
[A][B] = k1

k2
,−dA

dt = [A][B]k1 − [C][D]k2.

(3a-d)

The above reaction is a second order reaction character-

ized by the equilibrium constantKeq, which can proceed

to a chemical equilibrium given the initial concentrations,



at timet0 of [A(t0)], [B(t0)] and[C(t0)], [D(t0)],. Note

that the reaction can proceed from a non equilibrium state

to an equilibrium (where all concentrations are constant)

by a net reaction of either the leftward or the rightward di-

rection, depending on the initial concentrations of the sys-

tem components. In the context of this research, assuming

that (3a) depicts some biological reaction, the addition of

a specific enzyme for this reaction will enhance the ten-

dency of the reaction towards equilibrium (in some cases

by six orders of magnitude !!!) but it will never change

the equilibrium constant [5], [3]. Finally, as is tradition-

ally assigned in enzymology, the left hand components of

(3a) are called the substrates (in the simplest case only

one substrate) and the right hand components are called

the products. In the sequel we take, without loss of gen-

erality, t0 = 0.

3 Problem Formulation and Results

3.1 Simple Michaelis-Menten enzymatic mechanism- I
We consider the following Michaelis-Menten enzymatic

reaction system [3]:

S + E
k1−→←
k2

ES
k3−→←
k4

E + P (4)

whereES is the enzyme-substrate complex and where
we note that the reaction ofE + P

k4−→ ES is abolished.

The rate of the productP formation is described by the

following kinetic equation:

v =
d[P ]
dt

=
[S]Vmax

[S] + KM
. (5)

The above equation refers to the velocity of the product

formationv = d[P ]
dt as a function of the substrate concen-

tration where the total concentration of the enzyme is con-

served (ie[Etotal] = [Efree] + [ES] = constant). The

derivation of (5) can be found in most introductory books

of General Biochemistry (see [1], page 214) Traditionally

three cases of substrate concentrations are considered by

the experimental biochemist:

Case-1: low substrate concentration
In the case where[S] << KM we obtain

v =
d[P ]
dt

=
[S]Vmax

KM
= K[S], K =

Vmax

KM
. (6)

Applying Laplace transform on the latter equation we ob-

tainP (s) = KS(s)
s , whereP (s) andS(s) are the Laplace

transforms of[P ] and[S], respectively. In the case where

the amount ofS (i.e number of moles) at a given concen-

tration [S] is practically unlimited (say a constant supply

of S ) one obtains a single integrator behavior of the re-

action system, whereS is taken as a step function input

signal. In the (usual) case where the amount ofS is lim-

ited (i.e[S] decreases as the reaction proceeds) we obtain

the following block diagram:

[S0]δ(t) - k∑+ - 1
S

- -` [S]

?¾K¾
6−

K
S

-[P ]

Case-2: mid substrate concentration
In the case where[S] ∼= KM , the initial velocity of the

product concentration can be derived around a given set

point, say[S0], for example[S0] = KM for which v =
Vmax

2 . The following linearization procedure is applied :

Defining

F ([S]) ∆= v =
d[P ]
dt

,

we obtain, taking a Taylor series around[S0] the follow-

ing linear approximation:

F ([S]) = F ([S0]) +
∂F

∂[S]
|[S0]([S]− [S0]).

DefiningS̄
∆= [S]− [S0] we obtain:

F̃ (S) = F ([S0]) +
∂F

∂[S]
|[S0]S̄.

Considering[S0] = KM and performing the partial

derivative we have:

∂F̃

∂[S]
|[S0] =

Vmax[[S0] + KM ]− Vmax[S0]
([S0] + KM )2

=
Vmax

4KM
.

We arrive at the following kinetic equation around the

chosen set point:

v =
dP

dt
= 0.5Vmax +

Vmax

4KM
S̄. (7)

Applying Laplace transform of (7) we obtain the follow-

ing :

P̄ (s) ∆= P (s)− P0(s) =
S̄(s)Vmax

4KM

1
s

+
0.5Vmax

s2
. (8)

The block diagram of this case is the following:

[S] - k∑
+

?

[S0]

−
-

µ´
¶³
Vmax
4K

Vmax
2 δ(t) - 1

S
-

6+

- k∑
+ - 1

S
-

?

`[P0]

+k∑
+[P ]−[P0] - `[P ]



Case-3: high substrate concentration
In this case[S] >> KM therefore the enzyme reaction

works at the maximal velocity ofVmax.

Remark 1: The case whereS ∼= KM was shown to be

the basal state (i.e intracellular concentration) at the level

of the cell interior (the so called ’in vivo’) [1], [3]. In this

case, the enzyme works at half of it’s catalytic power (re-

call thatv = 0.5Vmax)- an experimental fact that shows

the flexibility and adaptability of the system to respond

to changing conditions and demands of the cell metabolic

need [1], [3]. Once the productP is highly ’needed’ by

the cell, the formation rate ’jumps’ from the basal state

to higher levels in relatively short time. Likewise, in the

case whereP is poorly needed, the rate relaxes to lower

rate values (say0.1Vmax), again in relatively short time.

We note this fact to emphasize the point that the mod-

eling of Case 2, though restricted to small perturbation

fits, in many cases, the normal biochemistry of the cell.

Evidently as the substrate concentration deviates strongly

from KM (i.e S̄ increases), the non-linear behavior of

the system is heavily accentuated therefore the simple lin-

earization procedure of Case 2 is no longer valid.

Remark 2: A question may arise whether the linear ap-

proximation of Case 2 is biochemically relevant. Consid-

ering both (5) and (7) we note that at the ’natural’ set-

point of [S0] = KM the substrate concentration may fluc-

tuate by50%, causing only≈ 5% error when using the

linearized approximation of (7). The latter fluctuation has

been shown to cover the significant range of variation,at
a basal operating mode of the cell[1], [3], in the intra-

cellular concentration of[S].

3.2 Simple Michaelis-Menten enzymatic mechanism-
II
We consider the following Michaelis-Menten enzyme

system:

S + E
k1−→←

k−1

ES
k2−→←

k−2

E + P (9)

where we note that the product can associate with the
enzyme via the rate constantk−2. The later fact implies

that the net reaction can proceed to eitherS −→ P or

P −→ S, depending on the initial concentration of both

substances. Strictly speaking, all enzyme-catalyzed reac-

tions are reversible, therefore the system of (9) is more

realistic then that of Section 3.1. In fact, the system of

(9) involves only one central complex (i.eES) whereas

in reality the system involves a second central complex of

EP . Restricting our inquiry to (9), the kinetic equation

for the later reaction is (see [3], page 29):

ẏ
∆=

dP

dt
= vnet =

Vmaxf

Ks
u− Vmaxr

Kp
y

∆
, ∆ ∆= 1+

u

Ks
+

u

Kp
,

whereu
∆= [S], y

∆= [P ] and whereKs = k−1+k2
k1

, Kp =
k2+k−1

k−2
, Vmaxf

= k2[E]t and Vmaxr = k−1[E]t and

where[E]t is the total amount of the enzyme. Applying

similar arguments to those of Case 2 we obtain the fol-

lowing linear model:F̃ (u, y) ∆= ẏ(u, y) =

F̃ (u0, y0) +
∂F̃

∂u
|u0,y0(u− u0) +

∂F̃

∂y
|u0,y0(y − y0)

Defining ū
∆= u − u0, ȳ

∆= y − y0, β̄
∆= ∂F̃

∂u |u0,y0 , ᾱ
∆=

∂F̃
∂y |u0,y0 , we obtain :

˙̄y = F̃ (y0, u0)− ᾱȳ + β̄ū, (10)

where

ᾱ
∆=

Vmaxr

Kp
+

2Vmaxf

KsKp
u0

∆2
, andβ̄

∆=

Vmaxf

Ks
+ 2Vmaxr

KsKp
y0

∆2
.

Choosing, as an example, the special case where[S0] =

[P0] and where the equilibrium constant ofS
K1−→← P is

such that the net reaction proceeds in the forward direc-

tion of S −→ P, one obtains that for a given chosen pair

of [S0], [P0] one gets̃vnet =
Vmaxf

Ks
[S0]−Vmaxr

Kp
[S0]

1+
[S0]
Ks

+
[S0]
Kp

. Ap-

plying Laplace transform to (10) the following is found:

Ȳ (s) =
β̄Ū(s)
s− ᾱ

+
F̃ (u0, y0)
(s + ᾱ)s

, F̃ (u0, y0) = vnet.

We obtain the following block diagram:

[S] - k∑
+

?

`[S0]

−
- k̄β

F̃ (u0, y0)δ(t) - 1
S

-
6+

- k∑
+ - k∑

+ - 1
S

-
?

`[P0]

+k∑
+[P ]−[P0] -`

?¾¾ k̄α
6−

`[P ]

3.3 Regulation via Energy Charge - Product Inhibition
An interesting case in enzyme biochemistry pathways is

one where the total amount of the substrate and the prod-

uct is constant (i.e[S] + [P ] = constant ) during the



basal state of the cell normal life [1], [3]. We consider the

system of (9) and we obtain (see [3], page 120):

v

Vmax
=

[S]

Ks[1 + [P ]
Kp

] + [S]

Definingy
∆= [P ], u

∆= [S], F̂
∆= ẏ(t), α

∆= Ks

Kp
, C =

[S] + [P ], we obtain the following linearized kinetics:

F̂ (y) = F̂ (y0) + ∂F̂
∂y |y0(y − y0), whereK̄

∆= ∂F̂
∂y |y0 =

−Vmax[C + Ks + (α− 1)y0]− (α− 1)[C − y0]Vmax

[C + Ks + (α− 1)y0]2
(11)

Rearranging the latter equation we have :

ẏ = K̄y + K̃, K̃
∆= −K̄y0 +

(C − y0)Vmax

C + Ks + (α− 1)y0

(12)
Applying Laplace transformation to the above equation

we obtain the following:

Ȳ (s) ∆= Y (s)− Y0(s) =
K̃

s(s− K̄)
.

We have the following block diagram:

`K̃δ(t) - 1
S

- k∑
+ - 1

S
- -`[P ]−[P0]

?¾K̄¾
6+

k∑+

6+

`
[P0]=C−[S0]

- `[P ]

Note that similarly to Section 3.2 where the product is al-

lowed to produce the substrate via the dynamics of (9),

the feedback loop in Fig. 5 is different from that of Fig.

3. Whereas the latter isinherent to all reversible chemi-
cal reactions, here the accumulation of the product exerts

a biochemically significant inhibitory effect which is in-

dicated by the title of this section.

3.4 Random Bireactant Systems
We consider the kinetics of a multireactant enzyme sys-

tems where we treat the special case in which the enzyme

can bind randomly to either substratesA or B to produce

the productP via a complexEAB, as in the following

multi-step reaction (see [3], page 274):

E + A
KA←−→ EA, EA + B

αKB←−→ EAB
kp−→ E + P

E + B
KB←−→ EB, EB + A

αKA←−→ EAB
kp−→ E + P.

(13)

The kinetic analysis of the above reaction is based on the

assumption of a rapid equilibrium of all the reversible

steps in (13), in comparison with the last catalytic step

(the so called ”rate-limiting step”). Note also that the

reaction is not sensitive to the order by which both sub-

strates A and B bind to the enzyme. However, once the

enzyme binds to one of the substrates say A, the equilib-

rium constant of sayE+B
KB←−→ EB is changed by a factor

of α. For the reaction of (13) we have [3] :

v =
Vmax

[A][B]
αKAKB

1+
[A]
KA

+
[B]
KB

+
[A][B]

αKAKB

. (14)

Rearranging the above and definingᾱ = αKAKB , β̄ =
αKB and γ̄ = αKA the kinetic equation of the above

reaction system isv(t) = d[P ]
dt

=
[A][B]Vmax

∆̄
, ∆̄ = ᾱ + β̄[A] + γ̄[B] + [A][B].

Defining further

F̃ (u1, u2)
∆= v, u1

∆= [A] andu2
∆= [B],

we have:F̃ (u1, u2) = F̃ (u10 , u20)

+
∂F̃

∂u1
|u10 ,u20

(u1 − u10) +
∂F̃

∂u2
|u10 ,u20

(u2 − u20).

Defining ū1 = u1 − u10 , ū2 = u2 − u20 we obtain the

following linearized relation :

F̂ (u1, u2) = F̃ (u10 , u20) + α̃ū1 + β̃ū2, (15)

where

α̃
∆=

∂F̃

∂u1
|u10 ,u20

=
u20Vmax[∆̄− u10 [β̄ + u20 ]]

∆̄2
,

β̃
∆=

∂F̃

∂u2
|u10 ,u20

=
u10Vmax[∆̄− u20 [γ̄ + u10 ]]

∆̄2
.

Similarly to Case 2 the set point of the above analysis

can be chosen as̃F (u10 , u20) = 0.5Vmax. Choosing, for

example[A0] = [B0], the initial concentration of A can

be easily recovered from (14). We have:

F̃ (u10 , u20) = 0.5Vmax = F̃ ([A0], [B0]Vmax) =

Vmax[A0]2

ᾱ + [A0](β̄ + γ̄ + [A0])
.

Applying the Laplace transform to (15) we obtain:

P̄ (s) ∆= P (s)−P0(s) =
F̃ (u10 , u20)

s2
+

α̃Ū1(s)
s

+
β̃Ū2(s)

s
.



We obtain the following block diagram :

[A] - k∑
+

?

[A0]

−
- k̄α

F̃ (u0, y0)δ(t) - 1
S

-
+

-

?k∑
+ - 1

S
-

?

[P0]

+

[B] - k∑
6

[B0]

−
+ - k̄β -

6+

k∑
+[P ]−[P0] -

[P ]

Remark 3: Among the most complex of all enzyme-

catalyzed mechanisms, we find a large number of en-

zymes that are composed of two or more subunits. These

enzymes, generally known asallosteric enzymes[1],[3],

exhibit a complex behavior. In general, these enzymes are

composed of one or more catalytic sites (where the sub-

strates are converted into products) and, in addition, one

or more regulatory sites (or modulatory sites) which exert

an internal control on the active catalytic sites. The ef-

fect of the regulatory sites is mediated through special and

highly specific molecules which may include: metabo-

lites, ATP and related compounds, metal ions, vitamin

molecules (sometimes generally known as coenzymes).

4 Conclusions

In this paper we present some models of enzyme-

catalyzed chemical reactions. These models, derived

mainly around some physiologically sound set-points,

serve as building blocks that are amenable to the an-

alytic techniques of classical control theory. We note

that the basickinetic derivations that are applied here

are based either on the assumption that one or more

components of the reaction scheme (usually an enzyme-

substrate, enzyme-product complexes [3]) are in steady

state, or on the assumption of a rapid equilibrium, as in

the case of Section 3.4. These assumptions simplify the

kinetics of the adequate enzyme-catalyzed reaction sys-

tems and they were shown to be reasonable descriptions

of themeasuredkinetic behaviors.

Motivated by the evolution theory we maintain that bio-

chemical reaction schemes which contain components

with feedback loops have evolved in such a way that the

feedback loops optimize some physiological cost func-

tions and they therefore conform to the principles of feed-

back control theory. It was thus interesting to isolate these

components and to analyze their behavior from the con-

trol theory point of view.

Our approach is not confined to the assumption that the

pathway as a whole is at steady state, which is the tra-

ditional basis of MCA [6], [7]. While the steady state

assumption is reasonable in some cases, it is restrictive

in many cases (such as transient responses at the onset of

rather ’sleepy’ biochemical pathway that is turned on by

some hormone or some interluekin molecule of immune

system origin). It is obvious that under a stress condi-

tion, or in cases where the cell has to respond immedi-

ately, a steady state type of response is not efficient. In

these cases the relevant pathways are controlled by their

feedback loops in order to shape the adequate transient

response of the system. Using the models of the present

work more realistic simulations of the biochemical behav-

ior of the cell can be obtained.
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