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Abstract

PID controller design is considered where optimal con-
troller parameters are found with constraint on max-
imum sensitivity and robustness with regard to cone
bounded static nonlinearity acting on the plant.

1 Introduction

Many mainstream control synthesis methods result in
controllers of order related to the order of the plant.
But often it is beneficial to design controllers with a
restricted structure. There are many reasons for this.
Their performance is often close to optimal performance
while they often remain substantially less complex.
One of the most common controllers is the PID con-
troller. Its stronghold has been the process industry
but it can be encountered elsewhere as well. The syn-
thesis procedure presented in this article, is an exten-
sion to synthesis procedures presented in [1, 6] which
are collected in [5]. There, a design procedure for PI(D)
controllers was presented which minimizes the effect of
a load disturbance by maximizing integral gain while
making sure that the closed loop system is stable. Fur-
thermore, it is guaranteed that the Nyquist curve of
the loop transfer function is outside a circle with center
−Cs and radius Rs. This constraint can be expressed
with the equations

maximize ki (1)
subject to F(k, ki, kd,w) ≥ R2

s ∀ω > 0

where F is the function:

F(k, ki, kd,ω) = hCs+C(iω)G(iω)h2 (2)
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Figure 1: Block diagram showing nonlinearity, plant
and controller.

and G(s) is a linear time invariant plant and C(s) is
the PID controller parameterized as

C(s) = k+ ki

s
+ kds (3)

In the PI case, a number of robustness conditions
could be fulfilled by choosing Cs and Rs differently.
By choosing Cs = 1 and Rs = 1/Ms, the resulting con-
troller will guarantee a maximum sensitivity function
(S(s)= 1/(1+G(s)C(s))) equal to Ms. Controllers with
constraints on the maximum complementary sensitiv-
ity function (T(s) = 1−S(s)) could also be designed or
a combination of the these constraints.

In [5] the recommended criterion was to constrain the
maximum of the sensitivity function and that is what
will be used here as well. Ms is therefore a design
parameter with value typically between 1.4-2. Selecting
Ms in this interval guarantees a well damped closed
loop system. In the PID case additional constraint are
presented. These will be reviewed later.

The extension presented in this article guarantees



asymptotic stability of equilibrium points of the system
when a cone bounded nonlinearity is present in feed-
back with part of the plant, as shown in Fig. 1, while
keeping the constraint presented in relation (2).
By combining these two conditions a controller is ob-
tained which is robust toward the uncertainty descrip-
tion presented as well as keeping the good qualities of
a controller with limited maximum sensitivity.

The result given in Theorem 1 in this paper have a
higher degree of generality than that in [9] while the
parametric relations remain simpler. Equivalent re-
sults were presented in [8].
Robust PID control design has been considered by many
authors. In [2] a synthesis method for H∞ optimal PID
controllers is proposed. There, a linear programming
characterization of all admissible PID controllers was
presented.

The design procedure in this paper results in con-
straints in the controller parameter space. Similar ap-
proaches can be found in [4, 7].
The layout of the paper is the following: in section 2
conditions for stability are given for the uncertainties
in question. In section 3 the synthesis problem and the
underlying optimization and design problems are dis-
cussed. In section 4 the design procedure is applied on
an example while in section 5 an industrial application
of this method is described. Finally, conclusions are
drawn in section 6.

2 Conditions and Theorems about sta-
bility

Consider the transfer functions G(s) =G1(s)G2(s), with

G(iω) = a(ω)+ ib(ω) = r(ω)eiφ (ω )

G1(iω) = a1(ω)+ ib1(ω) = r1(ω)eiφ1(ω )

Consider for the beginning the case when the controller
is a PI, i.e.:

C(s) = k+ ki

s
.

Define the transfer function from u to y as

P(s) ∆= G1(s)
1+C(s)G(s) (4)

Conditions for stability of the system in Figure 1 can be
obtained by applying the circle criterion, for the trans-
fer function P(s) as it is connected in a loop with the
nonlinearity. In order to state the main results, some
intermediary steps will be helpful.

Lemma 1 Consider P(s) as in (4) and α , β ∈R. Then

ℜ
{

1+β P(s)
1+α P(s)

}
> 0

if and only if

H(k,ki ,ω) ∆= p1(ω)k2+ p2(ω)k+q1(ω)k2
i

+q2(ω)ki+h(ω) > 0 (5)

with

p1(ω) = r(ω)2
p2(ω) = (a(ω)a1(ω)+b(ω)b1(ω)) (α +β )+2a(ω)
q1(ω) = r(ω)2

q2(ω) = 1
ω ((a(ω)b1(ω)−b(ω)a1(ω)) (α +β )+2b(ω))

h(ω) = (α +β )a1(ω)+α β r1(ω)2+1 (6)

Proof:

ℜ
{

1+β P(s)
1+α P(s)

}
= ℜ

{
1+C(s)G(s)+β G1(s)
1+C(s)G(s)+α G1(s)

}
(7)

By elementary but tedious computations, (7)will result
in an ellipse in the k− ki plane as in (5) with parame-
ters as in (6). 3

Consider a minimal realization of the linear system in
Fig. 1. The total system can be written as

ẋ = Ax− B( f (y, t))+Brr

y = Cx

z= Czx
(8)

Assume now that r = 0. The following theorem gives
conditions of absolute stability of the origin.

Theorem 1 Consider f (y, t) piecewise continuous in t
and locally Lipschitz in y such that:

α y2 ≤ y f (y, t)≤ β y2, ∀y ∈R,∀t≥ 0 (9)

and H(k, ki,ω) defined by (5). Assume P(s) and 1
1+α P(s)

Hurwitz transfer functions, with P(s) given by (4).
If

H(k, ki,ω) > 0 (10)
then the origin is absolutely stable.

Proof:
The circle criterion (see Theorem 10.1 in [3]) provides
sufficient conditions for absolute stability of the system.
The condition that:

ℜ
{

1+β P(s)
1+α P(s)

}
> 0

is ensured by Lemma 1, completing the proof.3

Some of the assumptions in the theorem above should
be commented in the context of the proposed synthe-
sis method. The assumption that P(s) is Hurwitz, is
equivalent to the stability conditions for the linear sys-
tem. These conditions will be obviously fulfilled by the



controller resulting from the design procedure. The as-
sumption that 1

1+α P(s) is Hurwitz has a geometric in-
terpretation when α is positive. Since P(s) is Hurwitz,
it states that the Nyquist curve is not allowed to go
round the point −1/α , j0 and therefore not around the
circle in the circle criterion. The consequences in k− ki
plane will be that the optimizer should stay below the
ellipses family generated by the stability constraints for
the nonlinear system.

The next theorem proves the asymptotic stability of
equilibrium points for constant r.

Theorem 2 Assume P(s) and 1
1+α P(s) are Hurwitz

transfer functions.

Consider f (y, t) piecewise continuous in t and locally
Lipschitz in y such that:

α ≤ f (y1, t)− f (y2, t)
y1− y2

≤ β , ∀y1, y2 ∈R,∀t≥ 0 (11)

Consider H(k, ki,ω) defined by (5). If

H(k, ki,ω) > 0

then the equilibrium point of system (8) corresponding
to a constant r is globally uniformly asymptotically sta-
ble.

Proof:
If xr is the equilibrium point of (8) for some r ∈R then
it fulfills the equation:

0= Axr − B f (yr, t)+ Brr yr = Cxr (12)

Furthermore, consider the Lyapunov function:

V (x,u) = (x− xr)T P(x− xr)

For ease of writing, denote x̃ = x− xr and drop the t as
argument of f then

V̇ (x, r) = x̃T(AT P+PA)x̃−2x̃T PB( f (y)− f (yr)) (13)

By (11) for f yields :

( f (y)− f (yr)−α (y− yr)) ⋅
( f (y)− f (yr)−β (y− yr)) ≤ 0 (14)

Then subtracting (14) from (13) gives:

V̇ (x,r) ≤ x̃T (AT P+PA−2α β CT C)x̃
+ 2x̃T

(
(α +β )CT −PB

)
( f (y)− f (yr))

− 2( f (y)− f (yr))2

=
[

x̃
f (y)− f (yr)

]T

M
[

x̃
f (y)− f (yr)

]
(15)

where

M =
[

AT P+PA−2α β CT C (α +β )CT −PB
(α +β )C− B T P −2

]
.

Then V̇(x, r) < 0 if the following LMI is feasible for a
P > 0: [

AT P+PA−2α β CT C (α +β )CT −PB
(α +β )C− B T P −2

]
< 0

which by Schur complement is equivalent to:

2(AT P+PA)−(α +β )
(

CT B T P−PBC
)

+PB BTPT+(α −β )2CT C < 0 (16)

Consider now the linear system:

1+β P(s)
1+α P(s) (17)

Given the minimal realization of P(s) in Eq. (8), then
a minimal realization of (17) is given by:

ẋ = (A−α B C)x+ Bu∗

y∗ = C(β −α )x+u∗ (18)

By the Kalman-Yakubovich-Popov Lemma, system (18)
is SPR if and only if exists P > 0 such that:[

(A−α BC)T P+P(A−α BC) PB−(β−α )CT

BT P−(β−α )C −2

]
< 0

which by Schur complement is equivalent to (16). Thus
V̇(x, r) < 0 if (17) is SPR. This is equivalent to the fact
that 1

1+α P(s) is Hurwitz and that

ℜ
{

1+β P(s)
1+α P(s)

}
> 0. (19)

By Lemma 1 condition (19) is equivalent to (5) which
completes the proof.3

Remark

Eq. (10) is for a fixed frequency equivalent to

n(k, ki) > 0 (20)
where n(k, ki) has the form

n(k, ki) = (k− k0)2
A

+ (ki− ki0)2
B

−1 (21)

which describes an ellipse in the k− ki plane, which is
a similar condition to that obtained in [1].

Remark

Notice that Theorem 2 assumes the existence of solu-
tions to Eq. (12).



Remark

In the PID case, ki is replaced with ki−ω2 kd. The con-
dition for stability remain the same but the synthesis
problem is more complex. PD controller design can be
approached the same way.

Remark

Condition (11) means that the slope with respect to y,
of the nonlinearity f (y, t) is limited below and above by
α and β respectively, for any y and t.

3 Optimization

Using the results presented in the previous section the
synthesis problem can be stated as the following opti-
mization problem.

max ki

subject to F(k, ki, kd,ω1) ≥ R2
s , ∀ω1 > 0 (22)

H(k, ki, kd,ω2) ≥ 0, ∀ω2 > 0 (23)
k> 0, ki > 0, kd > 0 (24)

Constraint (24) guarantees that the controller will not
have a unstable zero. The two frequency dependent in-
equalities, define the exterior of two ellipses for a fixed
frequency. For 0 < ω <∞ these ellipses generate en-
velopes that define the boundaries of the set of param-
eters which satisfy the constraints. The inequality (22)
guarantees that the maximum sensitivity will be lim-
ited. This on the other hand guarantees that P(s) is
Hurwitz.

The constraints can be visualized by plotting the el-
lipses for a tight griding of frequencies. The point with
the largest ki below the ellipses is then the solution to
the syntheses problem. This graphical approach suit-
able when PI design is considered but is more difficult
when a PID controller is the goal since then the ellipses
would have to be plotted for a griding of kd values. Then
a numerical optimization procedure can give the desired
result. For most numerical optimization procedures it
is important to have good starting value. The problem
of finding good starting values is related to determining
if the problem has any feasible solution. But a quick
view of the constraints for a few values of kd should be
sufficient to obtain good starting values and see if the
problem is feasible.

So far the synthesis procedure that has been presented
would need much manual intervention. It is of interest
to automate the synthesis procedure so that only the
process and the parameters characterizing the uncer-
tainties would need to be specified. This is in principle
to automate the checking of feasibility and finding a
good start value for the numerical optimization proce-
dure. Unfortunately this problem can be as complex as
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Figure 2: Constraints in the k-ki plane for Ex.1.

solving the optimization problem itself.

4 Example

An example for PI controller design will now be given.
The maximum sensitivity was chosen to be Ms = 1.7.

Example 1 Consider the system in Figure 1 with

G1(s) = 1
(s+1)3 G2(s) = 1

and f (y1, t) a static, possibly time varying nonlin-
earity which is bounded according to Eq.(11) with
α = 1, β = 4. The two constraints, Eqs. (22) and (23)
will give rise to constraint surfaces as shown in Fig.
2. Thus, in this case, the “optimum’’ considering only
the sensitivity constraint will not guarantee robust sta-
bility of the system against a cone bounded uncertainty
as considered above. Choosing the maximum ki that
falls bellow both constraint surfaces and a correspond-
ing k, Theorem 1 guarantees asymptotic stability of the
origin. The Nyquist plot of the loop transfer function
and the transfer function defined by Eq. (4), shown in
Figs. 3 respectively 4, confirm that the constraints are
not violated. If f (y1, t) described an uncertain gain the
transfer function would be given by

G(s) = 1
(s+1)3+∆

where ∆ ∈ [1,4].
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Figure 3: Nyquist plot of the loop transfer function for
Ex.1.
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Figure 4: Nyquist plot of P(s) for Ex.1.

5 Controller Synthesis for an Anti-Lock
Braking System

In this section an application will be presented of the
above synthesis method for an Anti-Lock Braking Sys-
tem (ABS). The synthesis method will be used to design
local PI controllers for a gain scheduled scheme as pre-
sented in [10]. There a design model for a quarter-car
(that is a wheel with a mass) was presented. A simpli-
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Figure 5: Tire friction curve

fied model of the plant can be written as:

λ̇(t)v= −β µ(λ(t))+α u(t−T) (25)

where,

• v is the velocity of the car, and its variation are
much slower in comparison to other variables in
the system

• λ is the tire slip defined as λ = v−ω r
v where ω r is

the linear velocity of the wheel

• α , β are constants depending on the car’s parame-
ters

• µ(λ) is the friction coefficient between the tire and
surface

• u braking force

• T is time delay due to communication and sampling

The control input then is the brake force u and the con-
trolled variable being the slip λ .
A typical dependence between the tire friction coeffi-
cient (µ) and tire slip (λ) is shown in Figure 5. By
linearizing this nonlinear system in different operat-
ing points, the slope of the friction curve will affect the
pole of the plant. Furthermore, scaling the controller
by the car’s velocity (v) the system can be put in the
form shown in Figure 1 where f (⋅, ⋅) is proportional to
the slope of the friction curve in the linearization point
and inverse proportional to the velocity.

The design problem is to obtain a robust controller with
respect to variations in one pole and the gain of the



plant. The gain scheduled controller is chosen depend-
ing on the current position on the friction curve. Addi-
tional robustness is needed due to the highly uncertain
nature of a tire-friction curve. Note that since it is pos-
sible to have negative slope in the friction curve, the
plant can become unstable. Furthermore, to obtain a
better performance, the actuator dynamics have also
been considered. These are incorporated in G2(s) and
can be easily handled by the proposed design method.
The resulting gain scheduled controller had two differ-
ent local controllers, scheduled with respect to the cur-
rent value of the tire slip.

Within the European project H2C, experiments have
been carried out in cooperation with DaimlerChrysler,
on a Mercedes E Class test vehicle. Experimental re-
sults are shown in Figure 6. The first subplot shows
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Figure 6: Experimental results for right back-wheel

the controlled slip, while the second presents the linear
velocity of the wheel (ω r) respectively the car’s velocity
(v). The third subplot shows an estimate of the tire fric-
tion coefficient. The scenario is that of an emergency
braking, while a reference tire-slip is to be maintained.
Notice in the first plot that the tire-slip is smoothly
controlled up to a velocity close zero.

6 Conclusions

The synthesis method presented deals with design of
robust PID controllers. The uncertainty of the plant
is described by a cone bounded nonlinearity which is
in feedback with part of the plant. To obtain a good
controller, maximum sensitivity is limited as well. The
synthesis method presented requires much manual in-
tervention but it is the belief of the authors it can be au-
tomated significantly. Experimental results have been
presented from an industrial application where the de-

sign method was successfully used.
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