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Abstract

_ 2 Problem formulation
Tuning rules are frequently used to choose the parameters of

PID controllers. However, they are often based on heusisti€€onsider a single loop containing a PID controller and adine
are limited to systems of a certain class, use dead titiime delay system (see Fig. 1), given by the transfer funstio
approximations and ignore parameter uncertainties in the

modeled system. This work develops a systematic, universal PID(s, k) :K1 + Kps+ Kps® )
and transparent method to design a robust PID controllerxhas ' s (14 Tgs)
on the parameter space approach, which is extended to cope A

i e PP P Gls L) = 5D oot @

with quasipolynomials. R(s,q)

wherek = (K;, Kp, Kp)T are the controller parameterd.y{

1 Introduction ensures feasibility of the controller and filters noiset is as-
sumed to be fixed prior to the controller design, e.g. by agidin

PID is the most common controller in industrial practice. [2a non dominant pole t&(s, g)). The unknown but constant

But a high percentage of PID control systems seems to be tupdght parameters are the dead time> 0 and the parameters

badly [6]. One major reason may be that today’s tuning metim-the vectorg. They lie in anoperation domain

ods are limited to very restricted conditions on the planhfc

cerning model order, pole and zero location, neglectednpara Q={(L,@" |Le[L;LT], ¢ €lg;:q/]}, (3

eter uncertainty) [12]. Time delay systems, especiallyrwit- B N . o

certain and immeasurable dead time, present one of the n@greq; andg;” are specified as the lower and upper limits of

challenging problems for tuning a PID controller. parametey; in g (analogL~ and L ™).

This paper develops a PID tuning method based on the par;;rrﬂg problem of designing a roEust PID controller is to.f.indt_a se
eter space approach [1]. So far, in [3] the synthesis stepliscontroller parame}erk = k7, that meets the specification
extended to time delay systems, but important results fer tif" &/l values of L, g)" € Q. Specifications are assumed in the

practical application are still missing. Also, the anadystep is form of Hurwitz stability(all roots of the characteristic function

not developed in the literature and results have not been cd# N the open left half plane (LHP)) anéstability (all roots
pared with existing tuning methods. have a real part smaller then a real numdagr

In [15] an analytical solution to find the Hurwitz stable PID! "€ characteristic function of the loop in Fig. 1

parameters for a first order system plus time delay is puddish )
P(S, k7 La q) = (KI + I(PS + KDS )A(S, q)+

+5s(14+Trs) R(s,q) et (4)

d B(s,q)

r u A(s,@) —sL Y

4—T—> PID(s, k) Alva) © T with polynomials
v A(s,q) = ao(@)+ai(q)s+... +am(q)s™,  (5)

B(s,q) = bo(q) +b1(q) s + ... + bn(q) s", (6)

Figure 1: Single loop with PID controller and time delay sys-
tem with a,,(q) # 0, b,,(q) # 0 belongs to the class gfuasipoly-
nomials[5, 13] due to the dead time. (Note tHg{q) = 0 for




basic case of a PID controller (1). However, latéiyég) # 0 5. Compute ther-stable region in plant parameter space for

may appear through transformations, see section 7.) the candidate controller.

Theprincipal term conditior{13] requires for Hurwitz stability 6. If the Q-domain lies entirely in the-stable region, then

that in the case of PID control(p, # 0) the degrees fulfil the problem is solved.

n > m + 2. In the sequel we treat only this case (i.e. we

assume a propet(s, q)/R(s, q) for Tr # 0.) o-stability can be reduced to the Hurwitz case by the substitu
tion s = v + oo which leads to a transformation in parameters

3 Parameter space approach and polynomials (see section 7). So Hurwitz stability is-con

sidered first in the next paragraphs.
The parameter space approach is used to solve the problem in
two main steps. In theontroller synthesistep, we compute :
the stable (either Hurwitz os-stable) region in the space of5 Controller synthesis
controller parameter for several representativé€*, ¢*)"  For each fixed representativé*, ¢*)7 the Hurwitz stability
out of @ (usually the vertices). A candidate for a robust corhoundaries of (4) in thé-space are determined. The RRB
troller k* is chosen from the intersection of stable regions. tyrns out to be simply a straight line given by the equation

This controller satisfies the specification for the repréetares. bo

The second step, theontrol loop analysisis applied to test P(0,k) = K1 A(0)+ B(0) =0 & Ky =-—. (7)
the robust stability for the continuum of all values@ Now 0

we compute the stable region in the space of plant parameté¢fsthe basic case we habg = 0 and the RRB is; = 0.)

T . ; : .
(L’_q) Vr\?th flxedl cqntrolfle;k ) Ifg “es. efnnre(ljy inthe stable \\qre theoretical difficulties arise when calculating theBIR
region, then a solution of the problem is found. Quasipolynomials possess an infinite number of roots, which

The calculation of a Hurwitz stable region in a parametecepacan not be calculated analytically in the general case. How-
(either k or (L,q)") is based on the fact that the roots o€ver, the asymptotic location of roots far from the origimes|

the quasipolynomial (4) with continuous coefficient funais known [5]. It turns out that infinite root boundaries only ex-
ai(q), b;(g) do not jump when the parameters are changed cdst, if the degree equation = m + 2 is fulfilled (in case of
tinuously. Thus, a stable quasipolynomial, whose rootfieall K p # 0). These are two straight lines

in the LHP, becomes unstable if and only if at least one root b

crosses the imaginary axis. The parameter values of the root Kp=+-". (8)
crossings form thetability boundariesn the parameter space, Gm

e e e e s e calaion o e CR starsao o ey e cas
gin (substitutes = 0 in the quasipolynomial), thisfinite root ©! Pelynomials [1]. The root conditio® (jw, k) = 0 can be
boundary (IRB)where a root leaves the LHP at infinity (Se§eparated into a system of two equations for real and imagina

|s| — oc) and thecomplex root boundary (CRBWhere a pair art

of conjugate complex roots crosses the imaginary axest{subs 9

tute s = jw and sweep over all real > 0). These stability ( ]I%P((:j’:)) ) = ( Ra w R > ( [[((I >+
boundaries separate different regions in the paramet@espa P p
To classify a region as Hurwitz stable it suffices to prove sta n ( R — Kpwla > _ < 0 > ©)
bility for one inner test point (e.g. by the Nyquist criterjo I+ KpwRa 0/’

IA —MQIA

where B(jw) = B(jw)e“r" and R, I denote the real and

4 Controller design algorithm imaginary parts ofd, B andP at (jw).
The proposed controller design procedure is summarizéwin Clearly, the matrix multiplying K7, Kp)? is singular. Thus,
following steps: the key idea is to fiX<{p = K7}, and to evaluate the CRB in the

(Kp, Kr)-plane. A solution of (9) exists and only exists for

1. Specify the maximum real past from closed-loop sett- the real zeros,; of

ling time requirements. Ra Rj- I*DwIA>

g(w) = det < K
. . I, I;+ KjiwR
2. Compute theo-stable regions in controller parameter A Jp T Apwiia (10)

space for representatives (usually the vertices) of@he =wKp (R +13) + Rals — IaRp.
domain.
The zeros ofy(w) are calledsingular frequenciesFor eachi
3. Determine the intersection of thestable regions. appears a straight line as CRB in €5, K)-plane, ruled by
the equation
4. Choose a candidate controller out of the intersection. Kr = wgi Kp + K} (w,), (11)
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Figure 2: Functionk p(w) (solid), its limit function (dashed),

singular frequencies fok;, = 1 (x-marks) and stabilizing Figyre 3: Stability boundaries if¥ p, K )-plane forks = 1
Kp-interval (dash-dotted) o, (s). of G1(s). The side of the lines with more unstable poles is
shaded.

whereK?(w,) can be easily determined from the first or sec-
ond row of (9). frequencies which lie in a frequency range where (14) and

Thus, the stability boundaries RRB, IRB and CRB are straight (12) are practically identic_al resultin CRB lines which do_
lines in the( K p, K)-plane and partition the plane into convex go;f'izgtrtflétgnt]o btzuggjréeZ|O;2eoit|ab;ef'29tg%0r:ﬁbse ?’(;tf
polygons. (Additionally, for each boundary line the sida ba u pu val yain u

determined which possesses the lower number of stable, poles g)r;/\és(ng)ular frequencies, given by the comparison of (14)
see [3].) '

The singular frequencies may be determined by a graph of 2. The question of determining the interval &fp which

leads to a stable polygon is analytically solved only for
Kp(w) = —Ralp + IaRjp (12) a first order system plus time delay [15]. Following work
P w(R% +13) hypothesis for the general system (2) is stated:

. . . ' Work hypothesis.  Provided that there is a stabiliz-
Graphically, the singular frequencies for a fixéd;, are the . X o
abscissa values of the intersections betweenithec)-plot ing PID controller, a Hurwitz stable polygon exists in the

and e K, — ¥ . Due o e dead tme e mumberor (L Pete LG st e e o e
singular frequencies is infinite. Algorithms for the autdima 9 P 9 q '

calculation of the singular frequencies can be found in [8]. The result of the hypothesis 6 (s) is depicted in Fig. 2.

The function Kp(w) and the resulting boundaries in théThe entire stable region ik-space can be computed by grid-
(Kp, Kr)-plane for a fixedk';, = 1 are demonstrated in Fig. 2ding Kp in its stabilizing interval and extracting the stable
and Fig. 3 for the example system (with ideal PID controllgrolygon for each gridded’;, (see Fig. 4).

Tr = 0)

Gi(s) = e’ (13) 6 Control loop analysis

Now we determine the Hurwitz stable region in plant paramete

Stability checks of test points prove that the polygon adbu ) » : i
Yy mapping the stability boundaries of the quasislyn

P, is stable (and it is the only one). Two questions arise: HoWPace P
many singular frequencies have to be evaluated and wiijgh M@l

values lead to a stable polygon? P(s,L,q) = D(s,q) + B(s,q) e*", (15)
where
1. For high frequencies, function (12) tends to a much sim- D(s,q) = (K} + Kb s+ Kb s?) A(s, q)
pler limit function of the form , (16)

=do(q) +di(g)s+ ...+ dm(q)s™

The case of mapping the boundaries to a plané aihd one
wherea andg are real constant@(> 1) andtrig is either additional parametey is treated. If there are more uncertain
the sin or cos function. It can be shown, that singulaparameters, then they have to be gridded.

Kp(w) T qwh trig(wL™), (14)
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Figure 4: Hurwitz stable controller parametérsf G (s).

Figure 5: Stability boundaries RRB (dashed) and CRB (solid,
k=0,..,4) of Py(s, L, K).

The RRB are lineg = ¢*, whereq* are the solutions of the
equation

d b =0. 17 . . -

0(9) + bola) 77 PID design using o-stability
If the degrees of3(s, ¢) and D(s, ¢) fulfill n = m’, then the  he concept of-stability can be used to speed up the transient
solutions of the following equation lead to IRB responses robustly. Concerning the synthesis step, this ca
B can be reduced to the Hurwitz case by substitutirgv + o¢.
dm(q) % bn(q) = 0. (18) " Following transformations result

The CRB conditionP(jw, L, ¢) = 0 can be splitinto a modulus

! 2
and a phase equation K; = K;+ Kpog+ Kpoo®,

Ky = Kp + 2K poo,

’qu,(I) ‘ — 1’ (19) K/D - KD, (22)
| e Aw) = Alw+o0),
L(w,q, k) = ~ (arg(D(jw, q)) — arg(B(jw, ¢))+ B'(v) = ¢”L" B(v + 0¢).

+(2k—1)r), keZ. (20)

The modulus equation does not dependioand can be trans- Following the parameter space approach presented in s&tio

formed to a polynomial in?. Thus, the equation can be solvedne smallest possible value fog is determined for a given sys-

by finding the roots of a polynomial, but it is especially conl€™M (2) and an operation domain (3), s. t. the intersectidheof

venient if (19) can be solved symbolically fgr(e.g. ifq is Stable regions belonging to the vertice<.pis not empty. This
the dc-gain). With (20) the corresponding values fotan be 0 IS @pproximated by an iterative approach: Beginning with
added to plot the CRB curves. The phase equation carries ffE°: 9o iS Stepwise reduced and the functiéfy(w) is plot-
uncertaintyk (only k > 0 generate nonnegative), so there is ted for each vertex, until the work hypothesis reveals thertet

an infinite number of CRB. However, dsgrows, the curves is no interval of K p that stabilizes simultaneously all vertices.
move due to (20) to higher dead times. ’ With the lasto, having such a interval, the staliteregions are

computed for all vertices, and a controlkgt is taken out of the
Fig. 5 shows the boundaries and the stable region for the-exaftersecting region.

ple quasipolynomial i , ,
The analysis step can be reduced to he Hurwitz case, if the sec

Py(s,L,K) = K + (s> +0.255 4 1) el (21) ond parameteq enters in form of a dc-gain into the quasipoly-
nomial. In that case, the transformations are
In [11] this example serves for the calculation of some dead
time stability limits (corresponding té = 1), which agree " —ooL 1
. . = D =D 2
with these presented here. However, Fig. 5 presents thke stab q” 1€ ’ ”(U) (v+00), (23)
region completely for. < 22. L =1L, B"(v) = B(v + 00).



Robust PID controller
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Figure 6: Step responses of PID and IMC controlled loop gfigure 7: IntersectionI(;) of the o-stable regionsdy, =

Gs(s, L) for nominal, maximal and minimal. —0.05) of the vertices ofQ, for G4(s, L, K) and tuning rule
controllers. The tuning rules are sorted by the settlingtaf:
ter a reference step for the nominal plant, see [14, 4].

8 Application to literature examples

We apply the proposed method to design PID controllers for _ i ) )
example systems of the literature and compare the resuthis Wt Fi9- 7. (The tuning rules are applied to the nominal plant

other PID tuning methods or control concepts. Whenever pds-= 15, K = 1). Clearly, the the tuning rules leading to

sible, we respect the following comparison laws: Copy tfge Iowgs_t settling time_lie close to the i_ntersection ragim .
plant model and the controller with all parameters. Preder rl14, 4] it is stated that it depends heavily on the plant which

bust control methods and use the same operation domain. Afing rule produces the fastest settling time. Howeves, th

ply the same criteria to evaluate the results. Take onlglitee proposed method finds a fast controller universally for ydts
examples whose results can be reconstructed. tems in the class (2) and guarantees robustness in the whole

operating domain.
First the comparison is illustrated by the following systena

operation domain Additionally, in [8] the proposed method is applied to a grea

variety of systems (up to fourth order, stable and unstable,
with real and complex poles, with zeros) in different partame
dependencies, which serve as benchmark problems for single
loop control strategies in the literature (IMC [10], tunindes
etc. [14, 4, 9] and genetic optimization [7]). In all consid-
ered cases we achieve superior or at least similar resutis: T
The robust PID controller parameters dte = 0.58, Kp = overshoot of the robust PID controller is low, the transient
0.82, Kp = 0.26 with T, = 0.1 andoy = —0.8. For a sponses are robustly fast, there are only small oscillatéom
comparison, in Fig. 6 the step responses for nominal, madxintae responses for different operation points resembleharg
and minimal dead times are shown for the robust PID and IMC
controller. Clearly, by. usi_ng the PID controller t.he oversth 9 Conclusions
settling time and oscillations are reduced, while the Irgkg
Square Error (ISE) is slightly higher. The parameter space approach offers convincing resultein t
synthesis of robust PID controllers for time delay systehte
developed tuning method is systematic, universal andpeans
K ; ent and leads to superior or similar results than literatuesn-
— 3¢ ples. Exact stability (Hurwitz os-stability) regions can be de-
(1+5s) termined in the space of controller and plant parametertewhi
Qa: Le[12;18], K €[0.91.1], (25) (eating the dead time without approximation.

1
G3(s) = Hse*% Qz: Lel0.7;1.3. (24)

which serve as an example in [10] to develogdraernal Model
Control (IMC) controller.

The second example,
G4(S, L, K) =
is used to compare the proposed method with tuning rul€se development of an interactive graphical software pgeka

that are applied to the system in [14, 4]. Notice the intersegased on the stated algorithm seems very promising to be a
tions of theo-stable regions and the tuning rule controllerkelpful tool in daily engineer’'s work. So the engineer wolid



able to re-tune the great amount of existing PID loops at Idd4] T. SchaarVergleich von verschiedenen Einstellregéln f
cost in industry. PID-Regler Fachhochschule #n, Fachbereich Elek-
trische Energietechnik, 1998. Diplomarbeit.
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