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Abstract

Tuning rules are frequently used to choose the parameters of
PID controllers. However, they are often based on heuristics,
are limited to systems of a certain class, use dead time
approximations and ignore parameter uncertainties in the
modeled system. This work develops a systematic, universal
and transparent method to design a robust PID controller based
on the parameter space approach, which is extended to cope
with quasipolynomials.

1 Introduction

PID is the most common controller in industrial practice [2].
But a high percentage of PID control systems seems to be tuned
badly [6]. One major reason may be that today’s tuning meth-
ods are limited to very restricted conditions on the plant (con-
cerning model order, pole and zero location, neglected param-
eter uncertainty) [12]. Time delay systems, especially with un-
certain and immeasurable dead time, present one of the most
challenging problems for tuning a PID controller.

This paper develops a PID tuning method based on the param-
eter space approach [1]. So far, in [3] the synthesis step is
extended to time delay systems, but important results for the
practical application are still missing. Also, the analysis step is
not developed in the literature and results have not been com-
pared with existing tuning methods.

In [15] an analytical solution to find the Hurwitz stable PID
parameters for a first order system plus time delay is published;
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Figure 1: Single loop with PID controller and time delay sys-
tem

in [11] formulas to calculate some stability boundaries in the
dead time for certain classes of quasipolynomials are given.
However, both approaches are limited to very restricted cases.

2 Problem formulation

Consider a single loop containing a PID controller and a linear
time delay system (see Fig. 1), given by the transfer functions

PID(s,k) =
KI + KP s + KDs2

s (1 + TRs)
, (1)

G(s, L, q) =
A(s, q)

R(s, q)
e−sL, (2)

wherek = (KI ,KP ,KD)T are the controller parameters. (TR

ensures feasibility of the controller and filters noiseν; it is as-
sumed to be fixed prior to the controller design, e.g. by adding
a non dominant pole toR(s, q)). The unknown but constant
plant parameters are the dead timeL > 0 and the parameters
in the vectorq. They lie in anoperation domain

Q = { (L, q)T | L ∈ [L−;L+], qi ∈ [q−i ; q+
i ] }, (3)

whereq−i andq+
i are specified as the lower and upper limits of

parameterqi in q (analogL− andL+).

The problem of designing a robust PID controller is to find a set
of controller parametersk = k

∗, that meets the specification
for all values of(L, q)T ∈ Q. Specifications are assumed in the
form of Hurwitz stability(all roots of the characteristic function
are in the open left half plane (LHP)) andσ-stability (all roots
have a real part smaller then a real numberσ0).

The characteristic function of the loop in Fig. 1

P (s,k, L, q) = (KI + KP s + KDs2)A(s, q)+

+ s (1 + TRs)R(s, q)
︸ ︷︷ ︸

B(s,q)

esL, (4)

with polynomials

A(s, q) = a0(q)+a1(q) s + . . . + am(q) sm, (5)

B(s, q) = b0(q) +b1(q) s + . . . + bn(q) sn, (6)

with am(q) 6= 0, bn(q) 6= 0 belongs to the class ofquasipoly-
nomials[5, 13] due to the dead time. (Note thatb0(q) = 0 for



basic case of a PID controller (1). However, later ab0(q) 6= 0
may appear through transformations, see section 7.)

Theprincipal term condition[13] requires for Hurwitz stability
that in the case of PID control (KD 6= 0) the degrees fulfil
n ≥ m + 2. In the sequel we treat only this case (i.e. we
assume a properA(s, q)/R(s, q) for TR 6= 0.)

3 Parameter space approach

The parameter space approach is used to solve the problem in
two main steps. In thecontroller synthesisstep, we compute
the stable (either Hurwitz orσ-stable) region in the space of
controller parametersk for several representatives(L∗, q∗)T

out of Q (usually the vertices). A candidate for a robust con-
troller k

∗ is chosen from the intersection of stable regions.

This controller satisfies the specification for the representatives.
The second step, thecontrol loop analysis, is applied to test
the robust stability for the continuum of all values inQ. Now
we compute the stable region in the space of plant parameters
(L, q)T with fixed controllerk∗. If Q lies entirely in the stable
region, then a solution of the problem is found.

The calculation of a Hurwitz stable region in a parameter space
(either k or (L, q)T ) is based on the fact that the roots of
the quasipolynomial (4) with continuous coefficient functions
ai(q), bi(q) do not jump when the parameters are changed con-
tinuously. Thus, a stable quasipolynomial, whose roots alllie
in the LHP, becomes unstable if and only if at least one root
crosses the imaginary axis. The parameter values of the root
crossings form thestability boundariesin the parameter space,
which can be classified into three cases: thereal root bound-
ary (RRB), where a root crosses the imaginary axes at the ori-
gin (substitutes = 0 in the quasipolynomial), theinfinite root
boundary (IRB), where a root leaves the LHP at infinity (set
|s| → ∞) and thecomplex root boundary (CRB), where a pair
of conjugate complex roots crosses the imaginary axes (substi-
tute s = jω and sweep over all realω > 0). These stability
boundaries separate different regions in the parameter space.
To classify a region as Hurwitz stable it suffices to prove sta-
bility for one inner test point (e.g. by the Nyquist criterion).

4 Controller design algorithm

The proposed controller design procedure is summarized in the
following steps:

1. Specify the maximum real partσ from closed-loop sett-
ling time requirements.

2. Compute theσ-stable regions in controller parameter
space for representatives (usually the vertices) of theQ-
domain.

3. Determine the intersection of theσ-stable regions.

4. Choose a candidate controller out of the intersection.

5. Compute theσ-stable region in plant parameter space for
the candidate controller.

6. If the Q-domain lies entirely in theσ-stable region, then
the problem is solved.

σ-stability can be reduced to the Hurwitz case by the substitu-
tion s = v + σ0 which leads to a transformation in parameters
and polynomials (see section 7). So Hurwitz stability is con-
sidered first in the next paragraphs.

5 Controller synthesis

For each fixed representative(L∗, q∗)T the Hurwitz stability
boundaries of (4) in thek-space are determined. The RRB
turns out to be simply a straight line given by the equation

P (0,k) = KI A(0) + B(0) = 0 ⇔ KI = −
b0

a0
. (7)

(In the basic case we haveb0 = 0 and the RRB isKI = 0.)

More theoretical difficulties arise when calculating the IRB.
Quasipolynomials possess an infinite number of roots, which
can not be calculated analytically in the general case. How-
ever, the asymptotic location of roots far from the origin iswell
known [5]. It turns out that infinite root boundaries only ex-
ist, if the degree equationn = m + 2 is fulfilled (in case of
KD 6= 0). These are two straight lines

KD = ±
bn

am

. (8)

The calculation of the CRB starts analog to the delay free case
of polynomials [1]. The root conditionP (jω,k) = 0 can be
separated into a system of two equations for real and imaginary
part

(
RP (ω,k)
IP (ω,k)

)

=

(
RA −ω2RA

IA −ω2IA

)(
KI

KD

)

+

+

(
RB̃ − KP ωIA

IB̃ + KP ωRA

)

=

(
0
0

)

, (9)

where B̃(jω) = B(jω) ejωL∗

and R, I denote the real and
imaginary parts ofA, B̃ andP at (jω).

Clearly, the matrix multiplying(KI ,KD)T is singular. Thus,
the key idea is to fixKP = K∗

P and to evaluate the CRB in the
(KD,KI)-plane. A solution of (9) exists and only exists for
the real zerosωgi of

g(ω) = det

(
RA RB̃ − K∗

P ωIA

IA IB̃ + K∗
P ωRA

)

= ω K∗
P (R2

A + I2
A) + RAIB̃ − IARB̃ .

(10)

The zeros ofg(ω) are calledsingular frequencies. For eachi
appears a straight line as CRB in the(KD,KI)-plane, ruled by
the equation

KI = ω2
gi KD + K0

I (ωg), (11)
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Figure 2: FunctionKP (ω) (solid), its limit function (dashed),
singular frequencies forK∗

P = 1 (x-marks) and stabilizing
KP -interval (dash-dotted) ofG1(s).

whereK0
I (ωg) can be easily determined from the first or sec-

ond row of (9).

Thus, the stability boundaries RRB, IRB and CRB are straight
lines in the(KD,KI)-plane and partition the plane into convex
polygons. (Additionally, for each boundary line the side can be
determined which possesses the lower number of stable poles,
see [3].)

The singular frequencies may be determined by a graph of

KP (ω) =
−RAIB̃ + IARB̃

ω(R2
A + I2

A)
. (12)

Graphically, the singular frequencies for a fixedK∗
P are the

abscissa values of the intersections between theKP (ω)-plot
and the(KP = K∗

P )-line. Due to the dead time the number of
singular frequencies is infinite. Algorithms for the automatic
calculation of the singular frequencies can be found in [8].

The function KP (ω) and the resulting boundaries in the
(KD,KI)-plane for a fixedK∗

P = 1 are demonstrated in Fig. 2
and Fig. 3 for the example system (with ideal PID controller
TR = 0)

G1(s) =
1

s + 1
e−s. (13)

Stability checks of test points prove that the polygon around
P1 is stable (and it is the only one). Two questions arise: How
many singular frequencies have to be evaluated and whichKP -
values lead to a stable polygon?

1. For high frequencies, function (12) tends to a much sim-
pler limit function of the form

KP (ω)
ω→∞
−→ α ωβ trig(ωL∗), (14)

whereα andβ are real constants (β ≥ 1) andtrig is either
the sin or cos function. It can be shown, that singular
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Figure 3: Stability boundaries in(KD,KI)-plane forK∗
P = 1

of G1(s). The side of the lines with more unstable poles is
shaded.

frequencies which lie in a frequency range where (14) and
(12) are practically identical result in CRB lines which do
not contribute to boundaries of the stable polygon. So, it
suffices to compute and evaluate only a finite number of
low singular frequencies, given by the comparison of (14)
and (12).

2. The question of determining the interval ofKP which
leads to a stable polygon is analytically solved only for
a first order system plus time delay [15]. Following work
hypothesis for the general system (2) is stated:
Work hypothesis. Provided that there is a stabiliz-
ing PID controller, a Hurwitz stable polygon exists in the
(KD,KI)-plane, ifK∗

P lies in the interval ofKP that pro-
duces the highest possible number of singular frequencies.
The result of the hypothesis forG1(s) is depicted in Fig. 2.

The entire stable region ink-space can be computed by grid-
ding KP in its stabilizing interval and extracting the stable
polygon for each griddedK∗

P (see Fig. 4).

6 Control loop analysis

Now we determine the Hurwitz stable region in plant parameter
space by mapping the stability boundaries of the quasipolyno-
mial

P (s, L, q) = D(s, q) + B(s, q) esL, (15)

where

D(s, q) = (K∗
I + K∗

P s + K∗
D s2)A(s, q)

= d0(q) + d1(q) s + . . . + dm′(q) sm′
(16)

The case of mapping the boundaries to a plane ofL and one
additional parameterq is treated. If there are more uncertain
parameters, then they have to be gridded.
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Figure 4: Hurwitz stable controller parametersk of G1(s).

The RRB are linesq = q∗, whereq∗ are the solutions of the
equation

d0(q) + b0(q) = 0. (17)

If the degrees ofB(s, q) andD(s, q) fulfill n = m′, then the
solutions of the following equation lead to IRB

dm′(q) ± bn(q) = 0. (18)

The CRB conditionP (jω,L, q) = 0 can be split into a modulus
and a phase equation

∣
∣
∣
∣

D(jω, q)

B(jω, q)

∣
∣
∣
∣
= 1, (19)

L(ω, q, k) =
1

ω
(arg(D(jω, q)) − arg(B(jω, q))+

+ (2k − 1)π), k ∈
�
. (20)

The modulus equation does not depend onL and can be trans-
formed to a polynomial inω2. Thus, the equation can be solved
by finding the roots of a polynomial, but it is especially con-
venient if (19) can be solved symbolically forq (e.g. if q is
the dc-gain). With (20) the corresponding values forL can be
added to plot the CRB curves. The phase equation carries the
uncertaintyk (only k ≥ 0 generate nonnegativeL), so there is
an infinite number of CRB. However, ask grows, the curves
move due to (20) to higher dead times.

Fig. 5 shows the boundaries and the stable region for the exam-
ple quasipolynomial

P2(s, L,K) = K + (s2 + 0.25 s + 1) esL. (21)

In [11] this example serves for the calculation of some dead
time stability limits (corresponding tok = 1), which agree
with these presented here. However, Fig. 5 presents the stable
region completely forL / 22.
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Figure 5: Stability boundaries RRB (dashed) and CRB (solid,
k = 0, .. , 4) of P2(s, L,K).

7 PID design using σ-stability

The concept ofσ-stability can be used to speed up the transient
responses robustly. Concerning the synthesis step, this case
can be reduced to the Hurwitz case by substitutings = v + σ0.
Following transformations result

K ′
I = KI + KP σ0 + KDσ0

2,

K ′
P = KP + 2KDσ0,

K ′
D = KD,

A′(v) = A(v + σ0),

B′(v) = eσ0L∗

B(v + σ0).

(22)

Following the parameter space approach presented in section 3,
the smallest possible value forσ0 is determined for a given sys-
tem (2) and an operation domain (3), s. t. the intersection ofthe
stable regions belonging to the vertices ofQ is not empty. This
σ0 is approximated by an iterative approach: Beginning with
zero,σ0 is stepwise reduced and the functionKP (ω) is plot-
ted for each vertex, until the work hypothesis reveals that there
is no interval ofKP that stabilizes simultaneously all vertices.
With the lastσ0 having such a interval, the stablek-regions are
computed for all vertices, and a controllerk

∗ is taken out of the
intersecting region.

The analysis step can be reduced to he Hurwitz case, if the sec-
ond parameterq enters in form of a dc-gain into the quasipoly-
nomial. In that case, the transformations are

q′′ = q e−σ0L,

L′′ = L,

D′′(v) = D(v + σ0),

B′′(v) = B(v + σ0).

(23)
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Figure 6: Step responses of PID and IMC controlled loop of
G3(s, L) for nominal, maximal and minimalL.

8 Application to literature examples

We apply the proposed method to design PID controllers for
example systems of the literature and compare the results with
other PID tuning methods or control concepts. Whenever pos-
sible, we respect the following comparison laws: Copy the
plant model and the controller with all parameters. Prefer ro-
bust control methods and use the same operation domain. Ap-
ply the same criteria to evaluate the results. Take only literature
examples whose results can be reconstructed.

First the comparison is illustrated by the following systemand
operation domain

G3(s) =
1

1 + s
e−sL, Q3 : L ∈ [0.7 ; 1.3]. (24)

which serve as an example in [10] to develop anInternal Model
Control (IMC)controller.

The robust PID controller parameters areKI = 0.58, KP =
0.82, KD = 0.26 with TR = 0.1 and σ0 = −0.8. For a
comparison, in Fig. 6 the step responses for nominal, maximal
and minimal dead times are shown for the robust PID and IMC
controller. Clearly, by using the PID controller the overshoot,
settling time and oscillations are reduced, while the Integral
Square Error (ISE) is slightly higher.

The second example,

G4(s, L,K) =
K

(1 + 5s)3
e−sL,

Q4 : L ∈ [12 ; 18], K ∈ [0.9 1.1], (25)

is used to compare the proposed method with tuning rules
that are applied to the system in [14, 4]. Notice the intersec-
tions of theσ-stable regions and the tuning rule controllers
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Figure 7: Intersection (Iσ) of the σ-stable regions (σ0 =
−0.05) of the vertices ofQ4 for G4(s, L,K) and tuning rule
controllers. The tuning rules are sorted by the settling time af-
ter a reference step for the nominal plant, see [14, 4].

in Fig. 7. (The tuning rules are applied to the nominal plant
L = 15, K = 1). Clearly, the the tuning rules leading to
the lowest settling time lie close to the intersection region. In
[14, 4] it is stated that it depends heavily on the plant which
tuning rule produces the fastest settling time. However, the
proposed method finds a fast controller universally for all sys-
tems in the class (2) and guarantees robustness in the whole
operating domain.

Additionally, in [8] the proposed method is applied to a great
variety of systems (up to fourth order, stable and unstable,
with real and complex poles, with zeros) in different parameter
dependencies, which serve as benchmark problems for single
loop control strategies in the literature (IMC [10], tuningrules
etc. [14, 4, 9] and genetic optimization [7]). In all consid-
ered cases we achieve superior or at least similar results: The
overshoot of the robust PID controller is low, the transientre-
sponses are robustly fast, there are only small oscillations and
the responses for different operation points resemble largely.

9 Conclusions

The parameter space approach offers convincing results in the
synthesis of robust PID controllers for time delay systems.The
developed tuning method is systematic, universal and transpar-
ent and leads to superior or similar results than literatureexam-
ples. Exact stability (Hurwitz orσ-stability) regions can be de-
termined in the space of controller and plant parameters while
treating the dead time without approximation.

The development of an interactive graphical software package
based on the stated algorithm seems very promising to be a
helpful tool in daily engineer’s work. So the engineer wouldbe



able to re-tune the great amount of existing PID loops at low
cost in industry.
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