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Abstract

In this note we study the robustness of Generalized PI (GPI)
control with respect to parametric uncertainties. We present
two cases of study: a second order linear system and the inertia
wheel pendulum. We propose a step by step procedure which
may be used in each particular application.

1 Introduction.

Generalized PI (GPI) control has been recently proposed for
linear systems [2, 3, 10]. Some applications to nonlinear sys-
tems have been reported by the authors [5, 6, 8]. Several good
experimental results have been reported for either linear and
nonlinear systems [9, 4, 7]. Further, a mixed control scheme
combining GPI and sliding modes has also been proposed [11].
GPI control is an interesting control scheme because �	� allows
state reconstruction instead of either state measurement or state
asymptotic estimation, 
�� its integral character introduces ro-
bustness with respect to additive external disturbances. How-
ever, the important question about its robustness with respect to
parametric uncertainties has remained unsolved. In this paper
we present an effort, if modest, to show that such GPI con-
trol robustness properties exist. An important feature of GPI
control is state reconstruction by means of the direct integra-
tion of the plant dynamic model. This suggests that a very ex-
act knowledge of the model parameters is necessary. However,
some simulation studies have shown good performance when
parametric uncertainties are present [6]. Moreover, the good
experimental results that have been published [9, 4, 7] repre-
sent an important evidence of the robustness of GPI control.
To the best knowledge of the authors, the first analysis about
GPI control robustness with respect to parametric uncertain-
ties has been presented in [6]. In that work the application
of GPI control to position regulation in flexible joint robots
has been presented. Robustness has been shown when uncer-
tainties are present in some specific parameters. The common
thread among the selected parameters is that they do not ap-

pear as factor of the input. The main reason for this restriction
is that any uncertainty in parameters multiplying the input in-
troduces additional terms depending on the input. This is an
inconvenient because the input depends on the reconstructed
states which introduce, again, terms depending on the input
and its time derivatives because of the parametric uncertain-
ties. Hence, these terms are difficult to handle in the resulting
closed loop dynamics. On the other hand, the second author
has recently found that, in the GPI control of linear systems,
the input can be synthesized as a linear filter. This suggests
that the input and some of its time derivatives can be expressed
in terms of the state derivatives. Hence, by substitution we can
write the closed loop dynamics in terms of the state variables
and the desired trayectory. Finally, the stability of the closed
loop system can by studied using the Lyapunov method. We
study the robustness of GPI control with respect to paramet-
ric uncertainties through two cases of study: a second order
linear system and the inertia wheel pendulum, a nonlinear sub-
actuated mechanical system. We propose to use a similar pro-
cedure in each particular application in order to try to prove
robustness with respect to parametric uncertainties when GPI
control is used. This paper is organized as follows. In section
2 the robustness analysis procedure that we propose is applied
to a second order linear system while the same procedure is ap-
plied to the inertia wheel pendulum in section 3. In section 4
we present some simulation results whereas in section 5 some
concluding remarks are given. Finally, a remark on notation:��� ���� and

��� ���� represent, respectively, the Euclidean norm
and the ��� norm, whereas �  � represents the absolute value of
a scalar number.

2 A second order linear system.

Consider the following second order SISO linear system:
���� ��� � ��� ��"!$#&%('*)+��� (1)

where #-,�/. , � and � are constant scalars, )0'1%3234 are the
output and the input, respectively. Suppose that parameters � ,
� , # are not exactly known and 5� , 5 � , 5# are their respective esti-
mates. We desire to track a time varying trajectory, �7698;: � , using
an output feedback control scheme. Hence, the following GPI



control law is proposed:

% � �
5#
�
5� �"! 5��� ��"! ��06 ����� 8 � �� � ��06 �(���	� 8;� � �06 �&�

�
������� 8;� � �06 ����������� ����� ��� 8;� � �06 ����������� (2)

� �� � ��5����� � ����� 5� �"! 5# ��� % ��� (3)

The relationship beetwen the actual output derivative, �� , and
the reconstructed output derivative, � �� , is given as:

�� � � �� !�8 5� � � ����� � ��� !�8 5� � � � � !�8 # � 5# ����� % ��� ! �� 8 . � (4)

In what follows we describe step by step the procedure that we
propose to show the robustness of GPI control.

Step 1 Replace the control law in the plant.

Using (2) in (1) yields:

5## �� � � �05
#
# � � � 5## ��"! 5� �"! 5��� ��"! ��06 ����� 8 � �� � ��06 � �

���	� 8;� � �06 � ������ �� 8;� � �06 ������� (5)

�
��� ����� ��� 8;� � �06 ���������
Step 2 Find a linear perturbed differential equation in terms
of the tracking error. Consider that parametric uncertainties
are small.

Suppose that the estimated values 5� , 5 � , 5# are close to the actual
values � , � , # , respectively. Hence:

5## � � !�� (6)

where � is a real number close to zero. Thus, we can use (4),
(5) and (6) to write:��� �! ! ��� ��� "# 7! �	� �� ! ���9�� ! ��� � � � � � �$� �! !

! 8 5� � �05## � ��"! 8 5 � � � 5## � � � "# �&% 8 5� � � �0��"! 8 5 � ��� � �� !
! 8 # � 5# �0�%�' 8 5 � ������� (7)

where we have defferentiated twice and defined the tracking
error as ����� � �06 .
Step 3 Use the plant model to reduce the order of the pertur-
bation.

Differentiating (1) twice, replacing � � �! , from the resulting ex-
pression, in (7) and recalling (6) yields:� � �! ! ��� � � "# ! �	� �� ! ���9�� ! ��� � � �

� 8 5 � ��� � � � "# ! % � 8 5 � ��� � 8 5 � ������� ! 8 5� � � � ' �� �
� 8 5� � � � 8 5 � �������0�� � 8 5# � # ��% �% � 8 5 � �������0�%�' (8)

Step 4 Find a realization of the control signal in terms of a
linear filter.

Using (2) and (3) gives:

5# % �% � 8 5 � ������� �%('7� 8 5� � 5 �
� ! 5 ����� � ��"! 8 ��5� 5 � ! 5�)����� �� !

! � � �! 6 ! ��� � � "# 6 ���	� �� ����� �� ����� � � (9)

where we have differentiated twice.

Step 5 Using the linear filter relization of the input, find the
closed loop dynamics.

Replacing (9) in (8) yields:

�* �,+ * !�-/. ' * � % � � "# ' ��9' ��9'#�0'21 (10)+ � 3445 . � . .
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8 5� ! 5 � 8 ��� � 5 � �1� ' ��+!
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Step 6 Use the robustness of exponentially stable systems to
show stability of the entire closed loop system.

Consider the following Lyapunov function candidate:= � �


* 1?> * (11)

where > is a constant, symmetric, positive definite matrix. Dif-
ferentiating once:

�= � �


* 1 8 > + !�+
1 > � * ! * 1 > -/. (12)

Note: � �A@B �C� �A@B !�� �A@B 6 ' � ��. ' � ' 
 '#D 'FE�G (13)

hence, . can be bounded as:

� . �IH �KJ 5# � #
5#ML NPO�Q � �	� ' ��� ' ��� �1��� 8 5� ! 5 � 8 ��� � 5 � �1�SR

! 8 5 � ��� ��% � � 8 5 � ������� ' ! 8 5� � � �S� � �� * ���� ! (14)

! � % � 8 5� � � � 8 5 � ����� � � 5# � #
5# 5� 8 ��� � 5 � � ' � �� * ���� !

! � 5
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# � #
5#

8 5� ! 5 � 8 ��� � 5 � �1� ' � � ��06 � !
! � % � 8 5� � � � 8 5 � ����� � � 5# � #

5# 5� 8 ��� � 5 � � ' � �&��06 �



Thus, �= can be bounded as:

�= H �


* 1 8 > + !�+ 1 > � * !�� � �� * �� �� !

!�� � �� * ���� �� % � � �! 6 '1� � "# 6 ' ��06�' ��06�' ���� (15)

where � � and � � are positive constants which are smaller for
smaller parametric uncertainties. Suppose that the gains ��� � ,��� , �	� and ��� are chosen such that matrix + given in (10) is
Hurwitz, then there exists a constant, symmetric, positive defi-
nite matrix

�
such that:

� � � �


8 > + !�+ 1 > � (16)

Hence, we can write:

�= H � 8 # " � � � � �� * �� �� !�� � �� * �� � �� % � � �! 6 '1� � "# 6 ' ��06�' ��06�' �� � (17)

where # "�� . is the minimum eigenvalue of matrix
�

and8 # " � � � � � . for small enough parametric uncertainties. On
the other hand, under the same condition � � is small too. If�� % � � �! 6 '1� � "# 6 ' ��06�' ��06�' ���� is bounded then there exists a ball cen-
tered at

* � . such that outside it the quadratic term dominates
the linear term in (17), and �=	� . outside that ball. This guar-
antees

�� * ���� is bounded. If, additionally, the desired trajectory

converges to some constant, i.e., if � �A@B 6 8;: ��
 . , � � � ' 
 '#D 'FE
then � 
 �0698;: � , for any initial condition. Thus, we can claim
that the proposed GPI control scheme is robust with respect to
small parametric uncertainties.

3 The inertia wheel pendulum.

Consider the inertia wheel pendulum dynamic model [1] (see
fig. 1): � 8� � ��!�� 8� � ��%"!��76 (18)� 8� � � ��� ��� �� � ! � � � �� !�� � !�� � � �� � � ��� '
� 8� � � � �)�#� �)� �� � � � � ��� '�� 8� � ��� 5� � �"! # 8� � �. � '

 � �  � ��� ' % �$� .% � '&�76 ��� %('. �
See [1] for a complete description of this model . In particular,
we have that: �(�#� � . , and �)�#�B� � � � �)� � � � � � . . Note that the
torque disturbance %)' appears at the pendulum joint. In [7] the
following controller is proposed for swinging up and balancing
of the inertia wheel pendulum:

% � �)�#��� � � � �)� � � � �
� �)� � J � � ��)�#��� � � � �)� � � � � 5� �*�"! # 8� ��� ! � " �

� " � � � 6 ����� 8 � � � � � � 6 � ��� � 8� � �  � 6 � �
�
� "  �� 8� � �  � 6 ��������� �  ��  �� 8� � �  � 6 ���,+����

(19)

Figure 1: The inertia wheel pendulum.

where � � � is given as:

� � � � � � ��)�#�B� � � ���)� � � � � ��� J ��5� �*�"! # 8� ���(� �)� �� � � % ����� (20)

The gains ��� , � � , � " ' � � are chosen such that the polynomial-(8 �	� � � � ! ���B� " ! � � � � ! � " � ! � � is Hurwitz. It is supposed
that the torque disturbance %)' is constant and is only applied
during short periods of time. It is important to remark that the
relationship beetwen the reconstructed velocity and the actual
velocity is given as:

� � � � � � ! � � 8 . � ! � � ��)�#��� � � � �)� � � � � ��� %(' ��� (21)

See [7] for further details on this controller.
In the present paper we suppose that no plant parameter is
known exactly, aside from the gravity constant � . Let .	�#� , . � � ,. � � , . � � and / be the estimates of �(�#� , � � � , �)� � , � � � and 5� ,
respectively. Hence, control law (19) is written as:

% � . �#�0. � � ��. � � . � �
�1. � � J . � �. �#�0. � � ��. � � � � � / �*�"! # 8� ��� ! � � �

(22)

� � � � � 6 ����� 8 � �2 � � � � 6 � ��� � 8� � �  � 6 �(�
��� " ��� 8� � �  � 6 ��������� � ��� ��� 8� � �  � 6 ���,+���� (23)� �2 � � ��� % �+53 � �"! # 8� � � � 53 � % ' ��� (24)

� � � � �2 � ! � � 8 . � !�4 " ��� %(' ��� !
! 8 53 � � 4 � ����� �"! # 8� � ����� ! 8 53 � � 4 � ����� % ��� (25)

53 � � . � �. �#�0. � � ��. � � . � � / �
53 � � . � �. �#�0. � � ��. � � . � �



4 � � � � ��)�#��� � � � �)� � � � � 5� �4 � � �)� ��)�#��� � � � �)� � � � �4 " � � � ��)�#��� � � � �)� � � � �
Note that 53 � and 53 � are the estimates of 4 � and 4 � , respec-
tively, and their values are close for small parameter uncertain-
ties. From the second row of (18) we get

� � and replace it in the
first row of the same equation. From the resulting expression
we get

� � :
� � � � 4 � �"! #78� ��� � 4 � % � 4 " %(' (26)

The control law (22) can be written as:

% � . � �
�1. � � / � �"! #78� ��� ! . �#��. � � ��. � � . � �

�1. � � � � (27)

Step 1 Replace the control law in the plant.

Using (26) and (27) yields:

� � � � �"! # 8� ��� ! �&� � � # %(' (28)

� � � � � ��)�#�B� � � � �)� � � � � 5� ��! �)� ��)�#��� � � � �)� � � � � . � �. � � / �
� � 4 �

53 �# � 4 "
Step 2 Find a linear perturbed differential equation in terms
of the tracking error. Consider that parametric uncertainties
are small.

Note that, if parameter uncertainties are small then � is a small
real number close to zero and � is a positive real number close
to the unity. Hence, we can write:

�
�
� � !�� � 53 �4 � (29)

where � is a real number close to zero. Thus, using (25), (23)
and (29) we can write (28) as:

�� ! ���7�� ! � � � ! � " ��� � ��� ! � � ��� ��� � ������� �
� � � � � ! �

�
�"! # 8� ��� � #

�
%(' !

! ��� J � � 8 . � !�4 " ��� %(' ��� ! 8 53 � � 4 � ����� �"! # 8� � ����� !
! 8 53 � � 4 � �� �� % ����� (30)

where we have defined the tracking error as ���� � �  � 6 .
Step 3 Use the plant model to reduce the order of the pertur-
bation.

Replacing
� � , from (26), in (30) and differentiating twice:� � �! ! ��� � � "# ! � � �� ! � " �� ! � � � �

� 8 � 4 � ! �
� �
� �� : � �"! #78� ��� !

! ��� 8 53 � � 4 � � �� : �"! # 8� ��� ! 8 53 � � 4 � ��% �% ! ��� �% ' (31)

where (29) has been used to show � 4 � � 53 � � 4 � and we recall%(' is constant.

Step 4 Find a realization of the control signal in terms of a
linear filter.

We can use (22), (23), (24) and differentiate twice to obtain:

53 � 8 �% ! ��� �% � � �+53 � � �� : � �"! # 8� ��� �  � �! � 6 �����  � "# � 6 !
! � � �� ! � " �� ! � � � ����� 53 � �� : �"! # 8� � � (32)

Step 5 Using the linear filter relization of the input, find the
closed loop dynamics.

Replacing (32) in (31):

�� ��� � !����7' � � % � � "# ' ���' ��9'#�0'21 (33)

� � 3445 . � . .
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� � �
53 � � 4 �
53 � 53 � ' 8 � �
	�� ��8� � � � � �� �"! # 8� ���1� !

! % ��� 8 53 � � 4 � � � 53 � � 4 �
53 � ��� 53 � ' � �	�� ��8� ��� !

! 53 � � 4 �
53 � % �  � �! � 6 �����  � "# � 6 ! � � �� ! � " �� ! � � �0'

Step 6 Use the robustness of exponentially stable systems to
show stability of the entire closed loop system.

We propose the following Lyapunov function candidate:= � � 1 > � (34)

where > is a constant, symmetric, positive definite matrix. Dif-
ferentiating once:

�= � �


� 1 8 > � !�� 1 > � � ! � 1 > ��� (35)

Note that:  �A@B � �C� �A@B !� �A@B � 6 ' � � . ' � ' 
 '#D 'FE�G (36)

Hence, the absolute value of � can be bounded as:

� � �IH J1� 53 � � 4 �53 � � NPO�Q � � � ' � " ' � � � !



! � 8 � 4 � ! �
� � �

53 � � 4 �
53 � 53 � � !

! ����� 8 53 � � 4 � � � 53 � � 4 �
53 � ��� 53 ��� � �� � ���� !

! � 5
3 � � 4 �

53 � � �)%  � �! � 6 ! ���  � "# � 6 ' � !
! �(% 8 � 4 � ! �

� � �
53 � � 4 �
53 � 53 � ' � � � � 6 � !

! �(% ��� 8 53 � � 4 � � � 53 � � 4 �
53 � ��� 53 � ' � � � � 6 � !

! �(% 8 � 4 � ! �
� � �

53 � � 4 �
53 � 53 � ' � �� � �� �� !

! �(% 8 � 4 � ! �
� � �

53 � � 4 �
53 � 53 � ' � � � �� 6 � !

! 
+�)% 8 � 4 � ! �
� �(�

53 � � 4 �
53 � 53 � ' � � � � 6 � �� � ����

Note that, if the gains �)� , � � , � " and � � are chosen such that
matrix � is Hurwitz then there exists a constant, symmetric and
positive definite matrix

�
, such that:

�


8 > � !�� 1 > � � � � (37)

Hence, we can write:

�= H ��� �� � ��
�� !�� � �� � ���� �� % � � 6�' � � 6�'  � "# � 6 '  � �! � 6 ' ���� !

!���� �� � ���� � � �� 6 � (38)

� � 8 # " � � � � � � �� � ���� � � " � � � 6 � �
where # "�� . is the minimum eigenvalue of matrix

�
, con-

stants � � , � � , � " , � � , ��� are smaller for smaller parameter
uncertainties. Thus � � . for small parameter uncertain-
ties, a small region

�� � ���� � . , and slow desired trajectories
�&� � 6 � � . 6 , for small positive constants . and . 6 . Then, if�� % � � 6�' � � 6�'  � "# � 6 '  � �! � 6 ' �� � is bounded, there exists a ball centered
in
� � . such that, outside it, the quadratic term (with re-

spect to
�� � ���� ) in (38) dominates the linear terms and �= � . .

Thus, boundedness of
�

is ensured. This means that the desired
trajectory is followed closely by the actual output. Moreover,
if the desired trajectory becomes constant the tracking error �
converges to zero. Finally, we can proceed as in [7], using the
fact that the input can be obtained as a linear filter, to show that
the zero dynamics: � � � � � ! � � � � � � % (39)

is stable. Hence, if %)' is zero the velocity of the wheel, � � , con-
verges to a constant whereas if %)' is a nonzero constant then the
velocity of the wheel grows with a constant rate to compensate
for such disturbance. As it was pointed out in [7], torque distur-
bances are allowed to appear only during finite periods of time.
Thus, we can claim that the proposed GPI control scheme is
robust with respect to small parametric uncertainties.

4 Simulation results.

In fig. 2 we present some simulation results when we use the
second order linear system (1) together with the GPI control

law (2). We used #�� 
 , � � D , � � E , 5#�� 
 # , 5 � � 
�� , 5� � 
 � ,��� � E9. , �	� ����.�. , ��� � E9.�.�. , ��� � � � .�.�.�. . The trajectory
to be tracked, � 6 , is generated using a step signal, of value

 , filtered using a third order linear system with the following
characteristic polynomial 8 � � ! 

	���)� ! � � � 8 � ! . � , with 	 �.(G � , �� ��� and . ��� . The dashed line represents the desired
trajectory �06 . Note that, as expected, the system output follows
closely the desired trajectory and convergence is obtained when
the latter becomes constant. In fig. 3 we present the simulation
results otained when we use the control law (27) to control the
inertia wheel pendulum (18). We used % ' � . , ��� ����. , � � �

 E9.�. , � " � D 
 .�.�. , � � � � ��.�.�.�. , / � � G � 5� , . �#� � � G � �)�#� ,. � � � � G � �)� � , . � � � � G � � � � , . � � � � G � � � � . For a description
of the desired trajectory as well as the value of the parameters
of the inertia wheel pendulum we refer the reader to [7]. Note
that the desired trajectory as well as the real trajectory are very
close because of the large value of the controller parameters
used. On the other hand, convergence is obtained when the
desired trajectory becomes constant, as expected. Also note
that the wheel velocity � � remains bounded and converges to a
constant. We present the evolution of the variable

*��
instead

of the applied torque % . To see the relationship between these
variables we refer the reader, again, to [7].

Figure 2: Second order linear system response.

5 Conclusions.

We have proposed an analysis procedure to show robustness of
GPI control with respect to parametric uncertainties. This study
is important because it shows that one of the disadvantages at-
tributed to GPI control, i.e., the lack of robustness when para-
metric uncertainties are present, does not exist or, at least, it is
not as dangerous as it was considered. We present our result
by means of two cases of study. Although a general procedure
for the 4 order case is not presented we think that a similar
procedure may be used in each particular application to try to
show robustness. Our stability results ensure that the desired
trajectory is closely followed by the actual output and that con-



Figure 3: Inertia wheel pendulum response.

vergence to zero of the tracking error is achieved if the desired
trajectory converges to a constant.
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