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Abstract

This contribution presents arecursive agorithm for state estimation of
nonlinear systems using ellipsoidal bounds on the process and obser-
vation noises. A novel approach based on state bounding techniques
and on the classical Extended Kalman Filter with switching gain is
proposed. A particular parameterization of the algorithm isintroduced
to increase performances and to characterize the set of state estimates
compatible with the noises bounds. Simulation results on a £fth-order
two-phase nonlinear model of an induction motor are also given.

1 Introduction

State estimation of stochastic dynamical systems has been extensively
studied during the last decades and the problem is usually solved by
assuming white and Gaussian noises on model and measurements.
However, when the statistical properties of the noises are unknown or
not satisfed, an alternative approach consists in considering that only
bounds on the possible magnitude of the disturbances are available,
the so-called set-membership estimation was £rst introduced in [1, 2]

using ellipsoidal bounding techniques. The aim is to determine a set
of state estimation vectors compatible with the bounds on the process
disturbance and measurement noise. Since these pioneer works, avast
literature is dedicated to this subject in the context of parameter identi-
£cation [3] or state estimation [4, 5, 6, 7]. However, to our knowledge,

very few works have been devel oped when the model is nonlinear like
most of real-life problems.

The goal of this paper is to outline arobust recursive algorithm based
on the classical Extended Kalman Filter for state estimation of non-
linear discrete-time systems with unknown but bounded disturbances
corrupting both the dynamical equation and the output vector. The
proposed algorithm can be decomposed into two steps : time updat-
ing, inspired from an ellipsoidal state bounding method developed in
[7] and observation updating that uses a switching estimation Kalman-
like gain matrix. The latter step may be seen as a generdization of a
parameter estimation algorithm for multi-output nonlinear systemsin-
troduced in [8]. Particular emphasisis given to the design of weight-
ing matrices that ensure consistency of the estimated states with the
input-output data and the noise constraints, and improve convergence

+33(0) 3. 82. 39. 62. 24 - Fax :
Yasm na. Beci s@ ut - | ongwy. uhp- nancy. fr

+33(0) 3. 82. 39. 62. 91

properties. Suffcient conditions for the decrease of a crucia param-
eter related to the size of the set of interest are established. Finaly,
the effectiveness of the proposed algorithm is demonstrated through a
numerical example.

2 Notationsand Problem Formulation

In this paper, we will use some standard notations:
e AnélipsoidinIR?, where s € IN*, isdefned asfollows
E(e,P) = {zeR’|(z—c) P (z—c) <1}
where ¢ € IR® is the center of thisellipsoid and P € IR°*®is
a symmetric positive defnite matrix that defnes its shape, size
and orientation in the IR® space.

e We also defne the exterior of the ellipsoid £(c, P), as

E(ce,P):={x eR°|z ¢ E(c,P)}
={zeR’|(z—c) P ' (x—c)>1}

o ||z]| = (a:Ta:)% is the Euclidean norm of the vector x;

o |||l = (z"Wz)? istheweighted Euclidean norm of the vec-
tor z (W is a symmetric positive deEnite matrix of appropriate
dimension);

e A\nin(M) and Amax (M) are the minimum and maximum eigen-
values of the |Tiq4ua|r‘e symmetric matrix M;

T

]
[All = omax(A) = v/ Amax (AT A);

o tr(A) =3 \i(A) isthetrace of the square matrix A,

e thesymbol := meansthat the RHS is defned to be equal to the
LHS.

Let us consider the following discrete-time nonlinear system
written in the state space :
xp = f(xh_1, uk—1) + Gr—1Wir—1 (19)
yr = h(x}, ug) + vg (1b)
where z; € IR" is the unknown state vector to be estimated,
ur_1 € IR™ isaknown control vector, v, € IR isameasur-
able system output vector, w1 € R? (¢ > n) and vy € R?
are unobservable bounded noise vectors with unknown statisti-
cal characteristicsthat may include the modelling inaccuracies,
the discretization errors or the computer round-off errors. vy, is
more likely to represent the measurement noise and wy, 1 can
be viewed as unknown but bounded inputs. Gj,_; € IR"*?isa
noise matrix. The only property verifed by v, and wy,_; are
v € £(0, Vi) <=0l Vit < 1, vk € IN*(23)
wi—1 € E(0, Wy—1)<=wi_ W, w1 <1, Vk € N*(2b)

isthe 2-norm of the matrix A. We also have

o [l4] = max
x#0



where W,_; € R?*? and V;, € IRP*? are known symmet-
ric positive deEnite matrices that specify the size and the ori-
entation of the ellipsoids containing all possible values of the
noise vectors wy,_1 and vy respectively. Wy_1 and V}, recect
known upper bounds on the unknown noise covariance matri-
ces. These ellipsoids must obviously not be too large in com-
parison with the state and output vectors.

Let £, € R™*"™ bethe state estimate at time k. Our aim in the
sequel is summarized by the following items

i. Design an estimation algorithm for the system (1)—(2)
that constrains the output error vector v, — h(Z, ux) tO
reach the interior of the ellipsoid (2a) enclosing all possi-
ble values of the disturbance vectors v, i.e., that ensures
limng, o0 (e — P&k, ur )" Vi (ye— P(@x, ug)) = 1. By
thisway, the decrease of the estimation error =), = x; — 2
will be favored;

ii. Quantify the set that contains the true state x;, as closely
aspossible;

iii. Formulate the suffcient conditions that ensure the de-
crease of some parameter characterizing the size of the
ellipsoid that contains the true state vector.

3 TimeUpdate

The time updating stage consists in calculating the prediction
state vector, called i, /.1, obtained by the use of the available
informations at the previous step time k& — 1, i.e., the estimate
Z—1 and the control wy_1 :

Tpyr—1 = f(Bh—1,uk-1)
In the other hand, the true state =}, evolves obeying to the plant
dynamics described by (1a) affected by the unknown noise

Wi —1-

Inthissection, we'll recall some useful resultsthat will allow us
to enclose the set containing the prediction state vector @y,
into an ellipsoid.

Consider two ellipsoids E(er, Pr) and
E(ca, P;) in R™ Their sum defned as
E(Cl,Pl) ©® g(CQ,PQ) = {.T € Rn, | r= 1+ T 1T €
E(c1,Pr), 2 € E(ca, P2)} isnot, in general, aregular set.
The following lemma de£nes ellipsoids that contain the set
E(er, Pr) ® E(ca, Pa).

Lemmal. [2] Theellipsoid (¢, P) where
c=2c +tco (3a)
P(v) = Pijy+ Pof1 - v) (30)
containsthesumé&(cy, P1) + E(co, Po) foral v €10,1]. =

Owing to this lemma, we obtan a family
Po(c1, Prco, Po) :={E(c, P(W)| c = ¢1 + 2, P(v) = Pify
+ P2j1 — ), 0 < v < 1} of lipsoids parameterized by v
among which, we should £nd the optimal one, that is, the one
of the smallest size with respect to some criteria. Two kinds of
measure of the size of an ellipsoid £(c, P) (size of the matrix
P) are often considered in the literature. The £rst one, f1(P)

is a function of its volume and the other one, f2(P) is related
to the sum of squared semi-lengths of its axes:

£(P) = Indet P
fQ(P) = tI‘P

(42)
(4b)

Theorem 1. [7] The functions f; and f. defned in (4a)
and (4b) are dtrictly convex and the optimal ellipsoid
E(c*, P*) bounding the set £(cy, P1) + E(ca, P) that mini-
mizes either f1 (P(v)) or fo(P(v)) is unique and belongs to
P.(c1, P1,ce, Py) and is such that

¢ =c1+e

P* = P(v")
where § _

V' = arg min f1(P(v))

V' =arg min fo(P(v)) 5
Furthermore, the minimization problem (5) has explicit solu-

tion for
V¥ =arg min t <P1 + s ) i (6)
= ar in tr| — =
g0<1/<1 v 1—v Vir Py 4+ +/tr Py -

For the proof of the theorem 1, we refer the reader to [7]. The
optimization of determinant criterion (4a) has no explicit so-
Iution. For this reason, we will consider the trace criterion as
the measure of the size of an ellipsoid, in the rest of the paper.
Hereafter, let usintroduce the following hypothesis

(H1) The nonlinear function f(x,uy) is differentiable with
respect to = and its Jacobian matrix computed at =z = £ is
bounded for all bounded €.

(H2) The nonlinear function f(x,uy) is twice differentiable
with respect to z and its n Hermitian matrices computed at
x = £ are bounded for al bounded .

We can now state the following lemma

Lemma 2. Assuming (H1)—(H2), if z;_, € £(0,0%_,Px_1)
and if the ellipsoid £(0, a,%_lPk,l) is bounded, then there ex-
istsey—1 € IRY suchthat z € 5($fk/k_1,Ui/k,lPk/kq(u))
with

or

Tpsp—1 = f(@r—1,uk-1) (7)
Pyji—1(p) = (Fr—1+er—11n) Prq (Fr—1 + Ek—lln)T/'u
+C WGl (1-p) @

Tk /ho1 = Ohei ©)

for all 0 < 1 < 1 and the value of 1 that minimizes the size of
the ellipsoid & (&, /1, Uﬁ/k,lpk/kfl(u)) according to (4b)
is given by

1

i = (80 (Fict +2xo1 L) Pt (B + 2 D)”)
1

x [(tr (Fir + ekoal) Poot (Fy1 + 1 1))

141
+03 1y (tr Gea Wi 1 Gy 2} (19

with F,_; € IR"*" isthe Jacobian matrix of the vector f :
Foo1 = F(ip_1,up-1) = 3L (@p-1,we—1)  (12)
and

2 max (&%)

= 12
25711165(2%71,02,11%71) ( )

Ek—1 ‘=



where
(Y — 1) TH1 (& up—1)
M) = A | 7B PalE )

(w - ik—l)THn(g;uk—l)
and H;(&,ux_1) is the n x n Hermitian matrix of the it"
component, fi(z,ur—1) @ € {1,2,...,n}), of the vector
fmyup—r)ate =€ € E(@p-1,08_ 1 Pp1):

T
Hi(&uer) = (&5 u)) 13)
]
Proof.
First, we introduce the estimation and prediction error vectors
551@71 = l’z_1 —i’kfl (14)
Tip—1 = T — Tpp—1 = T — f(@r—1, Uk—1)

= flxr—,up—1) + Gr1wp—1 — f(&r—1,ur—1)

= Fr1Zp-1+ pr—1 + Gr_1wr—1 (15)
where 1 isaresidual vector resulting from the £rst order lineariza-
tion of the function f around &5 —1 :

Or—1 = Q(Tp_1,Tr—1,Uk—1)
= f(wh_1,ur—1) — f(&x—1,ur) — Fro1Zp-1.
Thei'" component (: € {1,2,...,n}) of the linearization error vec-

tor i1 can be written as
Pip_1 (5512717-’2%717 uk—l) = %55717'&(57 uk*l)%kfl
forsome ¢ € E(Zx—1,05_1Pe_1), where H; (€, up_1) is defned in
(13). Thisallows usto introduce amatrix Ly—; € IR™*™ such that
Yr—1 = Lrp—1Tr—1

thus

F@i—1,ur—1) — f(&@r—1,ur-1) = (Fr—1 + Lg—1)Tr—1 (16)
and (15) becomes
Tpip—1 = (Fr—1+ Le—1)Tp—1 + Gr_1wi—1

T Hi(& up—1)
1 %5717'[2(57“1671)

Li_1 =L(&x 1, Tp—1,Uk—1) = 3 .

where

%g—lHn(gvukfl)

isan unknown matrix, where¢ € S(ik,l,aﬁ,lpk,l). Attimek—1:

(552—1 - Cﬁkfl)TPl;ll(CCZ—l - @k—l) < Uz—y 17
Taking into account only the informations available at the step time
k — 1, the élipsoid containing the state vector zj, at time k, is
E(Zrp—1, ai/k,lPk/k,l) where we have to determine the relations
between P /,_; and P, and between oy, /5,1 and o, 1. On one
hand, from (17) we have

Thoa (Fr—1+ Lk—l)T (Fr—1+ Li—1) Pr—1 (F—1 + Lk—l)T

X (Fo—1 + Li—1) Tr—1 < oi_1. (18)
Let
k1 = max
g} €E(EK_1,02_ 1 Pr_1
ek—1 1S bounded because the Hermitian matrices H; («) are bounded
and the ellipsoid £(Zx—1, 07 _1 Pe—1) iss0. We can rewrite (19) as
1

(xTLzﬂ,lkauv) 2

(19)

|L(&, k1, T, Ur—1)]|

max max
gy _€E(Bp_1,02_ Pp_y) TER?

(20) impliesthat for all z € R™
" (Pt + Liet) Pict (Feo + Lie—)” ) @
<7 <(Fk71 +ep—1ln) Po—1 (Fr—1 + Ekflln)T> z.(21)

By the use of (21), (18), (16) and (7), we can write that
f(mz—lvukfl) eé (i‘k/k—laai—lq)kfl) .

Ek—1 = 2Tr (20)

where @y 1 = (Fi_1 +ex_10n) Po1 (Fy_1 +ex_11,)" . Posing
Teo1 = Ge_1Wi_1GF_,, from (2b), we also have
Gr—1wig—1 € €(0,Tk_1).

Now, we have to express the ellipsoid enclosing the set S/, that
contains all possible values of zj, :

Sk/k—l = {1‘ € IR”| T =x1+ T2, T1 € 5(0,1—‘)@,1),

2 €8 (fi'k/k—ho'lzflq)kfl)} .
For this purpose, we use the Lemmma 1 and the Theorem 1. Thus, using
(1a), we can write:
- S S
(zk — Tr/p—1 = (zk — Zpyp—1) < 1.

This proves (7)—(9) of the Lemma 2. The obtention of (10) is straight-
forward by using (5)—(6). a

)T o} _ 1Py

4 Observation Update

In this section, we update the state prediction z;, /;,_, by taking
into account the measurement information at step & in order to
obtain the estimate z;,. We assume that

(H3) The nonlinear function h(z,uy) is differentiable with
respect to z and its Jacobian matrix computed at z = ( is
bounded for all bounded ¢.

For the estimation of the state vector zj of the system
(1a)—(1b), we use the Extended Kalman Filter structure de-
rived from [9] :

Tp=2p/p—1 + Kl (22)
Ky, = Py Hi (Hi Py Hi + M) (23)
Py =5 (In — KiHy)Pyji—1 (24
where
Ok =Yk — h(Tr/p—1, ur), (25)
Hio =22 (&5 -1, uk) (26)

and 0 < A < 1 is aforgetting factor (that could be time
varying) to be £xed by the user and A, is a weighing matrix
that we have to defEne and on which all the algorithm strate-
gy is built. Notice that, the prediction parameters z;,/,_, and
Py /1,1 are computed in previous section. I/, is given by
(M) and Prjp—1 = Prjr—1(py_) Where Pp i (p) and py
are defned in (8) and (10).
Lemma 3. Assuming (H1)-(H3), if 2_, belongsto a bounded
ellipsoid 5(07a,§/k_1Pk/k_1), then
i. Jep e RY: Vo € E(O,Ui/kilPk/k,l),

|h(zh, k) — h(E g1, ue) — HiZppoa || < e (27)
i. 2} € E(g, 02 Py)
where z;,, P, aredeEned in (22), (24) and o}, is given by
02 =202yt | AR = ST (Hi By HE+AAY) 765 (28)
and where R;, € R”*? isgiven by

Ry= (1+ €k\/ﬁ/\/ﬁ)vk+<l+ \/M/(ek\/ﬁ))ei]p (29)
| |

Proof.
i. As £(0,0% /51 Prjk—1) is bounded, we can always £nd a time-
varying scalar e, whichisall the smaller as£(0, oﬁ/k_lPk/k,l) is.

1. Let us consider the following Lyapunov function
Vi = I Py T (30)
wherez, isdeEnedin (14). Using (24) and (23) and after someroutine



algebra, the following relations are obvious
K, = P.HE Ay
Pyt = APy, + Hi Ay Hy.
Substituting the equation (31) in (22) and the latter in (30) yields
T
Vi = (ik/k_l - PngAk(;k) P! (fk/k—l - PngAk5k>(33)
Using (32) and (25), (33) becomes
Vi = AVi/k—1 + 0i A <HkPkHIz - A;Zl) Ak
+ (6, — kak/kq)T Ag 6k — HiTryn—1)  (34)

where Vi /i1 = Zjo/k—1 Py jy_1 Tk /k—1. By theaid of (14), (25) and
the output equation (1b), it comes that

(3D
(32

Ok — HiZpjp—1 = vk + Xk (35)
where x . isaresidual vector resulting from the £rst order linearization
of the function h around 4,/ 1 :

Xk = h(zk, un) — h(E/p—1, ur) — HrZg/p—1-
Using (24), (23) and the matrix inversion lemma, we obtain
-1
HoPoHE — A7 = -2 (Hkpk/k,lﬂf +AA,;1) A7 (36)
By inserting (35) and (36) in (34), we £nd
—1
Vi = Wikt = A0F (HePeit HE 4 M) 0
+ (v 4 x0) " Ak (0 + Xk) - (37)
Still applying the Theorem 1 to the ellipsoids deEned in (2a) and (27)

that enclose the measurement and the linearization error vectors re-
spectively, we can write

(vk + Xk)T (Vk/llk + 6ilp/(l - Z/k)> o (vk+xk) <1

with
Vg =V tr Vk/(\/tr Vi + Ek\/}_?)

here, we obtain the expression (29) of R), such that

(ve + xx)" Ry (vr + xa) < 1. (39)
We are able, at this stage, to defne o, :
op = sup Vi (39)

Fp_1 € E(0,02_ 1 Pr_1)
wp_1 € £(0, Wy, _1), vi € £(0, V)
Pr—1 € 5(015%,10%7113;“71)-, Xk € S(O~C%Ip)

Using the defnitions of the elipsoids £(0,07_,Py_1) and
5(0,a,§/k_lPk/k_1) containing Tr—1 and Zy 1 respectively, and
(39), we can write the following

2
sup Vijk—1 = Ok—1 (40)
Tp_1 € (0,08 _1Pp_1), wy_1 € E0, Wi_1)

Pp—1 € E(0,e2_102_1Pr_1)
Afterwards, by the aid of (37), (39)-(40), we £nd the following recur-
sion law for o2

max

0'2 =
k
Vk/k71§0i/k 17%65(07Vk),XkE“:(O,Ein)

-1

+ max (vr + xx)" Ak (v + X&) (41)

vE+xk €E(0,Ry)
Now, setting B
vk + Xk = RiTx (42)
where R, RY = Ry, it comes from (38) and (42) that
(vr +x1)" Ry " (v 4+ xi) =7r 7k < 1
and

T
max ve 4+ Xk) Ak (vp + x8) =
”k+Xk€5(Oka)( X ) ( X ) I

=T pT D = _ —
= max, iy TR e HRzAkRkH — |ARR:]. (43)
Prll= PR

_T 1T = —
max 7 Ry A RiTx
TRl <1

Finaly, the substitution of (43) in (41) yieldsto (28). O

5 Main Result

First, we consider the system (1)—(2), where the functions f
and h are linearized around the state estimate z;, and the state
prediction 2,/ respectively :

vy, = Froxp 1+ Gro1wip—1 (439)

yr = Hpxp + v (43b)
and we de£ne the state transition matrix ¢, ;) withr > s of
the system (43a)—(43b) asfollows

(b(r,s) = FraF ... F;, ¢(s,s) = I,
Now, let usintroduce the following additional assumptions :
(H4) The initia true state vector x belongs to a known
bounded suf£ciently small ellipsoid :
xh € E(20, 08 Py) = (xf — 20) Py H(xh — d0) < 0f

(H5) The system (43a)—(43b) is N-locally observable, i.e,
there exists a £nite integer N > 0 and two positive real num-
bersa and g8 suclrg thatforal &£ > 1

al, < Z (bz,k—N)HiTAiHifb(i,k—N) < BI,
i=k—N
for al #, &1 € A (a neighborhood of x7)

and for al M-tuple of input vectors Ug_ni—1) =
(Up—N, Uk—N41 - - uk—1) € U (k € IN¥), where X and U
are compact subsetsin R™ and R™** respectively.

(H5) is used to get rid of the conditions that we made at the
Lemmas 2 and 3 about the boundedness of £(0, o7, P;—1) and
£(0, U/%/kqpk/k—l)- We aso need (H4) in order to avoid high
linearization errors and consequently big values for ¢, _; and
¢;, defned in (12) and (27). Before we enunciate our main re-
sult, let us introduce the following de£nitions

Defnition 1. The stay-time of a vector z;,, € IR" ina subset S
of R"istheinterval T'={l,{+1,...,m—1,m}, (Il < m)
of consecutive samples, suchthat z, € Sforall k € T
DeEnition 2. All the stay-times of the vector 2z, intheset S are
£nite (or z; have no inEnite stay-time in §), if and only if, for
each integer ko for which z;, € S, there exists a £nite integer
7 suchthat zx,+r ¢ S.

Now, we decompose the IR? space spanned by the vector §;
into three regions :

D} = &£(0,Ri)NE0,Qk) (44a)
Dy = &£(0,Ry)NE0,Qr) (44D)
Dy = &(0, Ry) (44c)

-1
whereQ; = ||6kHR;1 (chpk/kle]Z) RkHHkPk/kle]zﬂ-

We aso decompose the elipsoid £(0, Ry) enclosing al the
vector sum of the measurement noise v, and the linearization
error ;. of the function / around 2y, /.1, into two regions :

DYYX = £(0,Ry) NE(0,S) (458)
DY = £(0,R)NE(0,S) (45b)
2 T
where S = 1361, sy EEPe e HE 6]

Theorem 2. If (H1) and (H3)—(H5) are satisfed, then
the state estimation algorithm for the system (1) — (2)
defned by (7)—(10), (11), (22)—(26) and (28)—(29),
where ¢, 1 and ¢, are positive real numbers such that



V€ € E(@k-1,0%_1Pu-1), V¢ € E(Zryh-1,0% 1 Prjr—1),
1f (& wrmr) —f (&, wm) —Frma (§—Fp1) || < epa ||l —Epa |l
and ||h(C, ur) — P&y, un) — Ho(C =2 || < er
guaranties that

i. the elipsoid &(&y, o2 P) contains all possible values of
xy forall k € IN*;

Furthermore, if the weighting matrix A;, of the estimation gain

matrix (23) is defned by

N (106 g1 1) (H Pyt HE) ™ if 0k 0 > 1
and Hy Py HI >0 (46)

0 otherwise.

then, the above mentioned algorithm also guaranties that

Ap=

ii. the output error vy, — Hyy of the linearized measure-
ment equation (43b) belongsto the ellipsoid £(0, Ry;) that
contains the vector sum of the measurement noise and the
linearization error vectors:

(yr — Hyier)" R (g — Hidw) < 1, (47)
Héhﬁn ORk = Vk»; (48)
k e
ii. Yw,_1 € 8(0,Wk_1),vvk S E(O,Vk) Cifo € 'D6, then

o2 < Xo?_, andif §, € DI, theno? = \o?_,;

iv. if 0 € D3, then 35, € R}, 67 < Aor_, and
vy € E(@y,0iP;) C E(&k,038P;) provided that
Uk + Xk € Df—b(;

V. Ywg_1 € E(0,Wi_1), Yo, € £(0,Vy), the élipsoid
E(&y, 01 Py) isbounded for all k € IN* provided that the
innovation vector §; have no infnite stay-timein Dg.

where D?_ (1.2,3) are respectively defned in (443), (44b) and

(44c) and D;’;L{Xl ») arede£ned in (45a) and (45b). n
Proof.

2. This property comes from Lemmas 2 and 3 and the hypothesis
(H1)—(H5).

12. We rewrite the linearized output error after some linear manipula-
tionsusing (24) and (23) :
-1

ye = Hiiw = A (HePep HE A+ ML) 6 (49)
and now, consider the weighted norm of the linearized output error
intervening in (47), in which we replace (49) and (46) :

2 .

HakHR;l if HékHR;l <1,
1 otherwise.

and the result (47) follows. As for (48), it comes straightforwardly
from the expression of Ry, in (29) and the ability of the upper bound
of the linearization error ¢, to go to zero when the estimation error
goes to zero that is, when the output error goes to zero (because the
system is assumed to be observable).

ii4. From (44a), we have 65, € D! < 8]l g <1

-1

010l 1, ey > D06l | (He P HE) 7 |
If [[0k|lz—1 > 1, ox deEned in (28) is rewritten by the mean of (9)

k
and (46) asfollows
o2 =Xo2 A (||5,€\|RT1 -1
< (|| (HePurHE) ™ i — 10l -1/

L k/k—14k k (HiPrjr—1HY) l kHRlzl :

So, it isclear that when 8, € DS, 02 < Aoz_,. Itisalso clear that if
5x € D3, that isif ||y, 1 < 1, then, using (9) and (46) again, we

(ye — Hrdn)" Ry (yx — Hidn) = {

s

have o? = \o?_,.

iv. For studying the case when §;, € D3 we have to reconsider the
defnition of o2 given in (39). In this case, we can not maximize
Vi with respect to the vector v, + x & when it spans all the ellipsoid
£(0, Ry,) because o7 — Aoi_; will be positive. The subset of the
ellipsoid £(0, Ry) containing vx, 4 X, in which 37 — A67_; < 0
is, therefore, of interest. We can, subsequently, redefne 5. as the
maximum of V}, on this subset. Firgt, let us rewrite Vj, by replacing
(46) in (37) for ||6k||R;1 >1:

Vi = AVik_1 + A (HakuR;l - 1)

el
Hkpk/kle]?) 1 || H(
Now, following the same reasoning we had when we deduced the ex-
pression (28) of o2, we obtain the following recursion law for 2

~2 2

O — AO’k,1 = Vk - )\Vk/k—1~
Next, putting . = wvi + x&, from (45a), it is clear that a suf-
£cient condition for 67 — A\oi_, < 0 is |rell,-1 < 1 and

k

2
X HUkJFXk”( H,Cpk/k,lHkT)*l/H(skHR;l .

165 e < 1, which

_ 2
Hy Py e HE) 1/||5k“(HkPk/k—ng‘)71

amounts to r, € DYTX. On the other hand, as the vector vy + x&
actually belongs to a set smaller than £(0, Ry) (DY C £(0, Ry)),
the following holds

2

0 = max Vi

g, 1—1 €E(0,67 _ Pryi—1)s ve Xk €D X

2
< max Vi = 0}

T E/k—1€€(0,02_ 1 Pryp_1)s v txx€E(0,Ry)

and consequently £(0, 5% Py,) C £(0, 07 Py).

v. The hypothesis (H5) guaranties that the matrix Py, isbounded [10],
that is there exists two positive scalars p and p such that

pl, < P, <pl,

And by virtue of iii of Theorem 2, we have also the decrease of a,%
when §;, € D? U D3. The only chance for o2 to become unbounded
occurs if 85 stays during an infnite time in D3. Otherwise, the el-
lipsoid & (&, o7 Py) is bounded for al k and all noise vectors. This
complets the proof of the theorem. ad

6 Illustrative Example

The numerical example that we consider in this section is a £fth-order
two-phase nonlinear model of an induction motor which was already
the subject of a large number of applications, especially in control
designs (see [11] and the references inside). It could be mentioned
that, unlike most of the works on induction motors where the rotor
speed is assumed to be known, only the stator currents are needed to
provide an estimate of both rotor auxes and angular speed.

Using an Euler discretization of step size h, the compl ete discrete-time
model in stator £xed (a, b) reference frameis given byl:

* * * * * *
Tiep1=T1 + h(=y21K + 23 + Kprspea, + ——uik) + wik
T, st
* * * * * *
L1 =Tk + h(—yx3 — Kprs,as, + T Tk + L. Ugk) + Wak
T S
T3 41 =235 + h(7= 271 — T T3k — PT5RTyk) + W3k
T s
* * * * * *
Tap41=Tak + h(f%k + PT5kT3k — Tmzlk) + Wak
7 T
* o x h pM * * * * TL
Tspr1=L5k + (JT(%MU% - $4k$1k) - 7) + Wsk
* r *
Y1=L1k + Vik, Y2k = Tak + V2k .
* * * * * *
where Ty, = (@l T3, T3 Tip Ti )

= (Qsak istk  Grak Ok wr )T represents the stator
currents, the rotor ouxes and the angular speed respectively,



uz = ( Uik U2k ) = ( Usak Usbk ) is the stator VOlta‘JeSCOn‘
trol vector, p isthe number of pair of poles, T, isthe load torque and

h isthe sampling period. The parameters 7., o, K and ~y are defned

_ L, M2 M _ Rg R, M?
asT, = Ron L.L,’ K = oLoLy> | = oL, T oL.LZ

where R, RN denote stator and rotor resistances; L, L, are stator
and rotor inductances and J is the rotor moment of inertia.
Simulations are performed using the same numerical values as

,0=1-—

in[11] : R, = 0189, Ry = 0.15Q, Ly = 0.0699 H,
L, = 0.0699H, M = 0.068H, J = 0.0586 kgm2, p = 1,
Tr, =0 Nm.

The input signals are Usak =  220cos(314kh) and
uspk = 220sin(314kh). The noises vectors wy_1 and v are
generated in such a way as to verify wi_ W, ' wi_1 < 1
and vaV,;lvk, where Wiy = 0.05 diag (x?k,l) and

ie{l,...,5}
Vi = 0.05 diag (y5). The bounds on the linearization errors
Jje{1,2}
2
ae chosen as e, = e = 1073 <H5k||R;1 —1> NSkl -
k

The forgetting factor \ is £xed to 1. The initial conditions are :
& = (200 200 50 50 300)”, Py = 10 and oy = 1 while the actual
initial state vector is: x5 = (000 00)”.

Figures (1(a))-(1(f)) show clearly the satisfying performances of the
proposed observer to track the true state with unknown bounded
noises, without the need of the rotor speed measurement and even
with bad initialisations (the transients were skipped). We can see, for
instance, that o7 is mostly decreasing on the estimation horizon. Its
infrequent and very small growths however is due to the few and brief
presence of 8y, in the set D3. We also notice that the weighted norm
of the innovation sequence is very often close to 1 so the objective of
the algorithm is achieved in away.

7 Conclusion

A recursive state bounding technique for nonlinear systems has
been presented. The objective of this algorithm was to deter-
mine, at each sample time, an ellipsoid that encloses the true
state and which is compatible with the bounds on the noi ses and
the linearization errors. As Kalman £ltering, the algorithm has
been decomposed into time updating and observation updating
steps. During the time update stage, an ellipsoid that encloses,
as “tightly” as possible, the vector sum of two ellipsoids, one
containing the true state of the previous sample and the other,
the state noises. The observation update step consists in cal-
culating the state estimate taking into consideration the current
measurement. It was shown how to design some weighting ma-
trix such that the output error could be as closer as possible to
the ellipsoid containing the measurement noise. Convergence
problems have been highlighted and suffcient conditions for
acceptable tracking performances has been given.
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