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Abstract

This contribution presents a recursive algorithm for state estimation of
nonlinear systems using ellipsoidal bounds on the process and obser-
vation noises. A novel approach based on state bounding techniques
and on the classical Extended Kalman Filter with switching gain is
proposed. A particular parameterization of the algorithm is introduced
to increase performances and to characterize the set of state estimates
compatible with the noises bounds. Simulation results on a £fth-order
two-phase nonlinear model of an induction motor are also given.

1 Introduction

State estimation of stochastic dynamical systems has been extensively
studied during the last decades and the problem is usually solved by
assuming white and Gaussian noises on model and measurements.
However, when the statistical properties of the noises are unknown or
not satis£ed, an alternative approach consists in considering that only
bounds on the possible magnitude of the disturbances are available,
the so-called set-membership estimation was £rst introduced in [1, 2]
using ellipsoidal bounding techniques. The aim is to determine a set
of state estimation vectors compatible with the bounds on the process
disturbance and measurement noise. Since these pioneer works, a vast
literature is dedicated to this subject in the context of parameter identi-
£cation [3] or state estimation [4, 5, 6, 7]. However, to our knowledge,
very few works have been developed when the model is nonlinear like
most of real-life problems.
The goal of this paper is to outline a robust recursive algorithm based
on the classical Extended Kalman Filter for state estimation of non-
linear discrete-time systems with unknown but bounded disturbances
corrupting both the dynamical equation and the output vector. The
proposed algorithm can be decomposed into two steps : time updat-
ing, inspired from an ellipsoidal state bounding method developed in
[7] and observation updating that uses a switching estimation Kalman-
like gain matrix. The latter step may be seen as a generalization of a
parameter estimation algorithm for multi-output nonlinear systems in-
troduced in [8]. Particular emphasis is given to the design of weight-
ing matrices that ensure consistency of the estimated states with the
input-output data and the noise constraints, and improve convergence

properties. Suf£cient conditions for the decrease of a crucial param-
eter related to the size of the set of interest are established. Finally,
the effectiveness of the proposed algorithm is demonstrated through a
numerical example.

2 Notations and Problem Formulation

In this paper, we will use some standard notations :

• An ellipsoid in IRs, where s ∈ IN∗, is de£ned as follows
E(c, P ) := {x ∈ IRs| (x − c)T P−1(x − c) ≤ 1}

where c ∈ IRs is the center of this ellipsoid and P ∈ IRs×s is
a symmetric positive de£nite matrix that de£nes its shape, size
and orientation in the IRs space.

• We also de£ne the exterior of the ellipsoid E(c, P ), as
E(c, P ) := {x ∈ IRs| x /∈ E(c, P )}

= {x ∈ IRs| (x − c)T P−1(x − c) > 1}
• ‖x‖ = (xT x)

1
2 is the Euclidean norm of the vector x;

• ‖x‖W = (xT Wx)
1
2 is the weighted Euclidean norm of the vec-

tor x (W is a symmetric positive de£nite matrix of appropriate
dimension);

• λmin(M) and λmax(M) are the minimum and maximum eigen-
values of the square symmetric matrix M ;

• ‖A‖ = max
x �=0

‖Ax‖
‖x‖ is the 2-norm of the matrix A. We also have

‖A‖ = σmax(A) =
√

λmax(AT A);
• tr(A) =

∑
i λi(A) is the trace of the square matrix A;

• the symbol := means that the RHS is de£ned to be equal to the
LHS.

Let us consider the following discrete-time nonlinear system
written in the state space :

x∗
k = f(x∗

k−1, uk−1) + Gk−1wk−1 (1a)

yk = h(x∗
k, uk) + vk (1b)

where x∗
k ∈ IRn is the unknown state vector to be estimated,

uk−1 ∈ IRm is a known control vector, yk ∈ IRp is a measur-
able system output vector, wk−1 ∈ IRq (q ≥ n) and vk ∈ IRp

are unobservable bounded noise vectors with unknown statisti-
cal characteristics that may include the modelling inaccuracies,
the discretization errors or the computer round-off errors. vk is
more likely to represent the measurement noise and wk−1 can
be viewed as unknown but bounded inputs. Gk−1 ∈ IRn×q is a
noise matrix. The only property veri£ed by vk and wk−1 are

vk ∈ E(0, Vk)⇐⇒vT
k V −1

k vk ≤ 1, ∀k ∈ IN∗ (2a)

wk−1 ∈ E(0,Wk−1)⇐⇒wT
k−1W

−1
k−1wk−1 ≤ 1, ∀k ∈ IN∗(2b)



where Wk−1 ∈ IRq×q and Vk ∈ IRp×p are known symmet-
ric positive de£nite matrices that specify the size and the ori-
entation of the ellipsoids containing all possible values of the
noise vectors wk−1 and vk respectively. Wk−1 and Vk re¤ect
known upper bounds on the unknown noise covariance matri-
ces. These ellipsoids must obviously not be too large in com-
parison with the state and output vectors.

Let x̂k ∈ IRn×n be the state estimate at time k. Our aim in the
sequel is summarized by the following items

i. Design an estimation algorithm for the system (1)−(2)
that constrains the output error vector yk − h(x̂k, uk) to
reach the interior of the ellipsoid (2a) enclosing all possi-
ble values of the disturbance vectors vk, i.e., that ensures
limk→∞(yk− h(x̂k, uk))T V −1

k (yk− h(x̂k, uk)) = 1. By
this way, the decrease of the estimation error x̃k = x∗

k−x̂k

will be favored;

ii. Quantify the set that contains the true state x∗
k as closely

as possible;

iii. Formulate the suf£cient conditions that ensure the de-
crease of some parameter characterizing the size of the
ellipsoid that contains the true state vector.

3 Time Update

The time updating stage consists in calculating the prediction
state vector, called x̂k/k−1, obtained by the use of the available
informations at the previous step time k − 1, i.e., the estimate
x̂k−1 and the control uk−1 :

x̂k/k−1 = f(x̂k−1, uk−1)

In the other hand, the true state x∗
k evolves obeying to the plant

dynamics described by (1a) affected by the unknown noise
wk−1.

In this section, we’ll recall some useful results that will allow us
to enclose the set containing the prediction state vector x̂k/k−1

into an ellipsoid.

Consider two ellipsoids E(c1, P1) and
E(c2, P2) in IRn. Their sum de£ned as
E(c1, P1) ⊕ E(c2, P2) := {x ∈ IRn, | x = x1 + x2 : x1 ∈
E(c1, P1), x2 ∈ E(c2, P2)} is not, in general, a regular set.
The following lemma de£nes ellipsoids that contain the set
E(c1, P1) ⊕ E(c2, P2).

Lemma 1. [2] The ellipsoid E(c, P ) where

c = c1 + c2 (3a)

P (ν) = P1/ν + P2/(1 − ν) (3b)

contains the sum E(c1, P1) + E(c2, P2) for all ν ∈ ]0, 1[. ■

Owing to this lemma, we obtain a family
Pν(c1, P1, c2, P2) := {E(c, P (ν)| c = c1 + c2, P (ν) = P1/ν
+ P2/(1 − ν), 0 < ν < 1} of ellipsoids parameterized by ν
among which, we should £nd the optimal one, that is, the one
of the smallest size with respect to some criteria. Two kinds of
measure of the size of an ellipsoid E(c, P ) (size of the matrix
P ) are often considered in the literature. The £rst one, f1(P )

is a function of its volume and the other one, f2(P ) is related
to the sum of squared semi-lengths of its axes :

f1(P ) = ln detP (4a)

f2(P ) = trP (4b)

Theorem 1. [7] The functions f1 and f2 de£ned in (4a)
and (4b) are strictly convex and the optimal ellipsoid
E(c∗, P ∗) bounding the set E(c1, P1) + E(c2, P2) that mini-
mizes either f1 (P (ν)) or f2(P (ν)) is unique and belongs to
Pν(c1, P1, c2, P2) and is such that

c∗ = c1 + c2

P ∗ = P (ν∗)
where

ν∗ = arg min
0<ν<1

f1(P (ν))
or

ν∗ = arg min
0<ν<1

f2(P (ν)) (5)

Furthermore, the minimization problem (5) has explicit solu-
tion for

ν∗ = arg min
0<ν<1

tr
(

P1

ν
+

P2

1 − ν

)
=

√
tr P1√

tr P1 +
√

tr P2

(6)
■

For the proof of the theorem 1, we refer the reader to [7]. The
optimization of determinant criterion (4a) has no explicit so-
lution. For this reason, we will consider the trace criterion as
the measure of the size of an ellipsoid, in the rest of the paper.
Hereafter, let us introduce the following hypothesis
(H1) The nonlinear function f(x, uk) is differentiable with
respect to x and its Jacobian matrix computed at x = ξ is
bounded for all bounded ξ.
(H2) The nonlinear function f(x, uk) is twice differentiable
with respect to x and its n Hermitian matrices computed at
x = ξ are bounded for all bounded ξ.
We can now state the following lemma

Lemma 2. Assuming (H1)−(H2), if x∗
k−1 ∈ E(0, σ2

k−1Pk−1)
and if the ellipsoid E(0, σ2

k−1Pk−1) is bounded, then there ex-
ists εk−1 ∈ IR∗

+ such that x∗
k ∈ E(x̂k/k−1, σ

2
k/k−1Pk/k−1(µ))

with

x̂k/k−1 = f(x̂k−1, uk−1) (7)

Pk/k−1(µ) = (Fk−1 + εk−1In) Pk−1 (Fk−1 + εk−1In)T
/µ

+Gk−1Wk−1G
T
k−1/

(
σ2

k−1(1 − µ)
)

(8)

σ2
k/k−1 = σ2

k−1 (9)

for all 0 < µ < 1 and the value of µ that minimizes the size of
the ellipsoid E(x̂k/k−1, σ

2
k/k−1Pk/k−1(µ)) according to (4b)

is given by

µ∗
k−1 =

(
tr (Fk−1 + εk−1In) Pk−1 (Fk−1 + εk−1In)T

) 1
2

×
[(

tr (Fk−1 + εk−1In) Pk−1 (Fk−1 + εk−1In)T
) 1

2

+σ−1
k−1

(
tr Gk−1Wk−1G

T
k−1

) 1
2
]−1

(10)

with Fk−1 ∈ IRn×n is the Jacobian matrix of the vector f :
Fk−1 := F (x̂k−1, uk−1) = ∂f

∂x (x̂k−1, uk−1) (11)
and

εk−1 := 1
2 max

ξ,ψ∈E(x̂k−1,σ2
k−1Pk−1)

ρ(ξ, ψ) (12)



where

ρ(ξ, ψ) := λmax


(ψ − x̂k−1)TH1(ξ, uk−1)
(ψ − x̂k−1)TH2(ξ, uk−1)

...
(ψ − x̂k−1)THn(ξ, uk−1)


and Hi(ξ, uk−1) is the n × n Hermitian matrix of the ith

component, fi(x, uk−1) (i ∈ {1, 2, . . . , n}), of the vector
f(x, uk−1) at x = ξ ∈ E(x̂k−1, σ

2
k−1Pk−1) :

Hi(ξ, uk−1) :=
(

∂
∂x

∂fi

∂x (ξ, uk−1)
)T

(13)
■

Proof.
First, we introduce the estimation and prediction error vectors

x̃k−1 := x∗
k−1 − x̂k−1 (14)

x̃k/k−1 := x∗
k − x̂k/k−1 = x∗

k − f(x̂k−1, uk−1)

= f(x∗
k−1, uk−1) + Gk−1wk−1 − f(x̂k−1, uk−1)

= Fk−1x̃k−1 + ϕk−1 + Gk−1wk−1 (15)
where ϕk−1 is a residual vector resulting from the £rst order lineariza-
tion of the function f around x̂k−1 :

ϕk−1 := ϕ(x∗
k−1, x̂k−1, uk−1)

= f(x∗
k−1, uk−1) − f(x̂k−1, uk) − Fk−1x̃k−1.

The ith component (i ∈ {1, 2, . . . , n}) of the linearization error vec-
tor ϕk−1 can be written as

ϕik−1(x
∗
k−1, x̂k−1, uk−1) = 1

2
x̃T

k−1Hi(ξ, uk−1)x̃k−1

for some ξ ∈ E(x̂k−1, σ
2
k−1Pk−1), where Hi(ξ, uk−1) is de£ned in

(13). This allows us to introduce a matrix Lk−1 ∈ IRn×n such that
ϕk−1 = Lk−1x̃k−1

thus
f(x∗

k−1, uk−1) − f(x̂k−1, uk−1) = (Fk−1 + Lk−1)x̃k−1 (16)
and (15) becomes

x̃k/k−1 = (Fk−1 + Lk−1)x̃k−1 + Gk−1wk−1
where

Lk−1 = L(ξ, x∗
k−1, x̂k−1, uk−1) :=

1

2


x̃T

k−1H1(ξ, uk−1)
x̃T

k−1H2(ξ, uk−1)
...

x̃T
k−1Hn(ξ, uk−1)


is an unknown matrix, where ξ ∈ E(x̂k−1, σ

2
k−1Pk−1). At time k−1 :

(x∗
k−1 − x̂k−1)

T P−1
k−1(x

∗
k−1 − x̂k−1) ≤ σ2

k−1. (17)
Taking into account only the informations available at the step time
k − 1, the ellipsoid containing the state vector x∗

k at time k, is
E(x̂k/k−1, σ

2
k/k−1Pk/k−1) where we have to determine the relations

between Pk/k−1 and Pk−1 and between σk/k−1 and σk−1. On one
hand, from (17) we have

x̃T
k−1 (Fk−1 + Lk−1)

T
[
(Fk−1 + Lk−1) Pk−1 (Fk−1 + Lk−1)

T
]−1

× (Fk−1 + Lk−1) x̃k−1 ≤ σ2
k−1. (18)

Let
εk−1 = max

ξ,x∗
k−1∈E(x̂k−1,σ2

k−1Pk−1)
‖L(ξ, x∗

k−1, x̂k−1, uk−1)‖ (19)

εk−1 is bounded because the Hermitian matrices Hi(x) are bounded
and the ellipsoid E(x̂k−1, σ

2
k−1Pk−1) is so. We can rewrite (19) as

εk−1 = max
ξ,x∗

k−1∈E(x̂k−1,σ2
k−1Pk−1)

max
x∈IRn

(
xT LT

k−1Lk−1x

xT x

) 1
2

.(20)

(20) implies that for all x ∈ IRn

xT
(
(Fk−1 + Lk−1) Pk−1 (Fk−1 + Lk−1)

T
)

x

≤ xT
(
(Fk−1 + εk−1In) Pk−1 (Fk−1 + εk−1In)T

)
x.(21)

By the use of (21), (18), (16) and (7), we can write that
f(x∗

k−1, uk−1) ∈ E (
x̂k/k−1, σ

2
k−1Φk−1

)
.

where Φk−1 = (Fk−1 + εk−1In) Pk−1 (Fk−1 + εk−1In)T . Posing
Γk−1 = Gk−1Wk−1G

T
k−1, from (2b), we also have

Gk−1wk−1 ∈ E(0, Γk−1).

Now, we have to express the ellipsoid enclosing the set Sk/k−1 that
contains all possible values of x∗

k :
Sk/k−1 := {x ∈ IRn| x = x1 + x2, x1 ∈ E(0, Γk−1),

x2 ∈ E (
x̂k/k−1, σ

2
k−1Φk−1

)}
.

For this purpose, we use the Lemma 1 and the Theorem 1. Thus, using
(1a), we can write :(

x∗
k − x̂k/k−1

)T
(

σ2
k−1Φk−1

µ
+

Γk−1

1 − µ

)−1 (
x∗

k − x̂k/k−1

) ≤ 1.

This proves (7)−(9) of the Lemma 2. The obtention of (10) is straight-
forward by using (5)−(6). ❑

4 Observation Update

In this section, we update the state prediction x̂k/k−1 by taking
into account the measurement information at step k in order to
obtain the estimate x̂k. We assume that
(H3) The nonlinear function h(z, uk) is differentiable with
respect to z and its Jacobian matrix computed at z = ζ is
bounded for all bounded ζ.
For the estimation of the state vector x∗

k of the system
(1a)−(1b), we use the Extended Kalman Filter structure de-
rived from [9] :

x̂k = x̂k/k−1 + Kkδk (22)

Kk = Pk/k−1H
T
k (HkPk/k−1H

T
k + λΛ−1

k )−1 (23)

Pk = 1
λ (In − KkHk)Pk/k−1 (24)

where
δk = yk − h(x̂k/k−1, uk), (25)

Hk = ∂h
∂x (x̂k/k−1, uk) (26)

and 0 < λ < 1 is a forgetting factor (that could be time
varying) to be £xed by the user and Λk is a weighing matrix
that we have to de£ne and on which all the algorithm strate-
gy is built. Notice that, the prediction parameters x̂k/k−1 and
Pk/k−1 are computed in previous section. x̂k/k−1 is given by
(7) and Pk/k−1 = Pk/k−1(µ∗

k−1) where Pk/k−1(µ) and µ∗
k−1

are de£ned in (8) and (10).
Lemma 3. Assuming (H1)-(H3), if x∗

k−1 belongs to a bounded
ellipsoid E(0, σ2

k/k−1Pk/k−1), then

i. ∃εk ∈ IR∗
+: ∀x∗

k ∈ E(0, σ2
k/k−1Pk/k−1),∥∥h(x∗

k, uk) − h(x̂k/k−1, uk) − Hkx̃k/k−1

∥∥≤ εk (27)

ii. x∗
k ∈ E(x̂k, σ2

kPk)
where x̂k, Pk are de£ned in (22), (24) and σk is given by

σ2
k =λσ2

k/k−1+ ‖ΛkRk‖−λδT
k

(
HkPk/k−1H

T
k +λΛ−1

k

)−1
δk (28)

and where Rk ∈ IRp×p is given by

Rk =
(
1+ εk

√
p/
√

tr Vk

)
Vk+

(
1+

√
tr Vk/(εk

√
p)

)
ε2kIp (29)

■
Proof.
i. As E(0, σ2

k/k−1Pk/k−1) is bounded, we can always £nd a time-
varying scalar εk which is all the smaller as E(0, σ2

k/k−1Pk/k−1) is.

ii. Let us consider the following Lyapunov function

Vk := x̃T
k P−1

k x̃k (30)

where x̃k is de£ned in (14). Using (24) and (23) and after some routine



algebra, the following relations are obvious

Kk = PkHT
k Λk (31)

P−1
k = λP−1

k/k−1 + HT
k ΛkHk. (32)

Substituting the equation (31) in (22) and the latter in (30) yields

Vk =
(
x̃k/k−1 − PkHT

k Λkδk

)T

P−1
k

(
x̃k/k−1 − PkHT

k Λkδk

)
(33)

Using (32) and (25), (33) becomes

Vk = λVk/k−1 + δT
k Λk

(
HkPkHT

k − Λ−1
k

)
Λkδk

+
(
δk − Hkx̃k/k−1

)T
Λk

(
δk − Hkx̃k/k−1

)
(34)

where Vk/k−1 = x̃T
k/k−1P

−1
k/k−1x̃k/k−1. By the aid of (14), (25) and

the output equation (1b), it comes that

δk − Hkx̃k/k−1 = vk + χk (35)

where χk is a residual vector resulting from the £rst order linearization
of the function h around x̂k/k−1 :

χk := h(x∗
k, uk) − h(x̂k/k−1, uk) − Hkx̃k/k−1.

Using (24), (23) and the matrix inversion lemma, we obtain

HkPkHT
k − Λ−1

k = −λΛ−1
k

(
HkPk/k−1H

T
k + λΛ−1

k

)−1

Λ−1
k (36)

By inserting (35) and (36) in (34), we £nd

Vk = λVk/k−1 − λδT
k

(
HkPk/k−1H

T
k + λΛ−1

k

)−1

δk

+ (vk + χk)T Λk (vk + χk) . (37)

Still applying the Theorem 1 to the ellipsoids de£ned in (2a) and (27)
that enclose the measurement and the linearization error vectors re-
spectively, we can write

(vk + χk)T
(

Vk/νk + ε2kIp/(1 − νk)
)−1

(vk + χk) ≤ 1

with
νk =

√
tr Vk/

(√
tr Vk + εk

√
p
)

here, we obtain the expression (29) of Rk such that

(vk + χk)T R−1
k (vk + χk) ≤ 1. (38)

We are able, at this stage, to de£ne σk :

σ2
k := sup

x̃k−1 ∈ E(0, σ2
k−1Pk−1)

wk−1 ∈ E(0, Wk−1), vk ∈ E(0, Vk)

ϕk−1 ∈ E(0, ε2
k−1σ2

k−1Pk−1), χk ∈ E(0, ε2kIp)

Vk (39)

Using the de£nitions of the ellipsoids E(0, σ2
k−1Pk−1) and

E(0, σ2
k/k−1Pk/k−1) containing x̃k−1 and x̃k/k−1 respectively, and

(39), we can write the following

sup
x̃k−1 ∈ E(0, σ2

k−1Pk−1), wk−1 ∈ E(0, Wk−1)

ϕk−1 ∈ E(0, ε2
k−1σ2

k−1Pk−1)

Vk/k−1 = σ2
k−1 (40)

Afterwards, by the aid of (37), (39)-(40), we £nd the following recur-
sion law for σ2

k

σ2
k = max

Vk/k−1≤σ2
k/k−1,vk∈E(0,Vk),χk∈E(0,ε2

k
Ip)

Vk

= λσ2
k/k−1 − λδT

k Λk

(
HkPk/k−1H

T
k Λk + λI

)−1

δk

+ max
vk+χk∈E(0,Rk)

(vk + χk)T Λk (vk + χk). (41)

Now, setting
vk + χk = R̄kr̄k (42)

where R̄kR̄T
k = Rk, it comes from (38) and (42) that

(vk + χk)T R−1
k (vk + χk) = r̄T

k r̄k ≤ 1

and

max
vk+χk∈E(0,Rk)

(vk + χk)T Λk (vk + χk) = max
‖r̄k‖≤1

r̄T
k R̄T

k ΛkR̄kr̄k

= max
‖r̄k‖=1

r̄T
k r̄k

r̄T
k R̄T

k ΛkR̄k r̄k

r̄T
k

r̄k
=

∥∥∥R̄T
k ΛkR̄k

∥∥∥ = ‖ΛkRk‖. (43)

Finally, the substitution of (43) in (41) yields to (28). ❑

5 Main Result

First, we consider the system (1)−(2), where the functions f
and h are linearized around the state estimate x̂k and the state
prediction x̂k/k−1 respectively :

x∗
k = Fk−1x

∗
k−1 + Gk−1wk−1 (43a)

yk = Hkx∗
k + vk (43b)

and we de£ne the state transition matrix φ(r,s) with r > s of
the system (43a)−(43b) as follows

φ(r,s) = Fr−1Fr−2 . . . Fs, φ(s,s) = In

Now, let us introduce the following additional assumptions :
(H4) The initial true state vector x∗

0 belongs to a known
bounded suf£ciently small ellipsoid :

x∗
0 ∈ E(x̂0, σ

2
0P0) ⇐⇒ (x∗

0 − x̂0)T P−1
0 (x∗

0 − x̂0) ≤ σ2
0

(H5) The system (43a)−(43b) is N-locally observable, i.e.,
there exists a £nite integer N > 0 and two positive real num-
bers α and β such that for all k ≥ 1

αIn ≤
k∑

i=k−N

φT
(i,k−N)H

T
i ΛiHiφ(i,k−N) ≤ βIn

for all x̂k, x̂k/k−1 ∈ Xk (a neighborhood of x∗
k)

and for all M -tuple of input vectors U(k−N,k−1) =
(uk−N , uk−N+1 . . . , uk−1) ∈ U (k ∈ IN∗), where X and U
are compact subsets in IRn and IRm×N respectively.
(H5) is used to get rid of the conditions that we made at the
Lemmas 2 and 3 about the boundedness of E(0, σ2

k−1Pk−1) and
E(0, σ2

k/k−1Pk/k−1). We also need (H4) in order to avoid high
linearization errors and consequently big values for εk−1 and
εk de£ned in (12) and (27). Before we enunciate our main re-
sult, let us introduce the following de£nitions
De£nition 1. The stay-time of a vector zk ∈ IRr in a subset S
of IRr is the interval T = {l, l + 1, . . . , m − 1,m}, (l < m)
of consecutive samples, such that zk ∈ S for all k ∈ T .

De£nition 2. All the stay-times of the vector zk in the set S are
£nite (or zk have no in£nite stay-time in S), if and only if, for
each integer k0 for which zk0 ∈ S, there exists a £nite integer
τ such that zk0+τ /∈ S.

Now, we decompose the IRp space spanned by the vector δk

into three regions :

Dδ
1 := Ē(0, Rk) ∩ Ē (0, Qk) (44a)

Dδ
2 := Ē(0, Rk) ∩ E (0, Qk) (44b)

Dδ
3 := E(0, Rk) (44c)

where Qk = ‖δk‖R−1
k

∥∥∥(
HkPk/k−1H

T
k

)−1
Rk

∥∥∥HkPk/k−1H
T
k .

We also decompose the ellipsoid E(0, Rk) enclosing all the
vector sum of the measurement noise vk and the linearization
error χk of the function h around x̂k/k−1, into two regions :

Dv+χ
1 := E(0, Rk) ∩ E (0, Sk) (45a)

Dv+χ
2 := E(0, Rk) ∩ Ē (0, Sk) (45b)

where Sk = ‖δk‖2

(HkPk/k−1HT
k )−1 HkPk/k−1H

T
k /‖δk‖R−1

k

.

Theorem 2. If (H1) and (H3)−(H5) are satis£ed, then
the state estimation algorithm for the system (1) − (2)
de£ned by (7)−(10), (11), (22)−(26) and (28)−(29),
where εk−1 and εk are positive real numbers such that



∀ξ ∈ E(x̂k−1, σ
2
k−1Pk−1), ∀ζ ∈ E(x̂k/k−1, σ

2
k/k−1Pk/k−1),

‖f(ξ, uk−1)−f(x̂k−1, uk−1)−Fk−1(ξ−x̂k−1)‖ ≤ εk−1‖ξ−x̂k−1‖
and

∥∥h(ζ, uk) − h(x̂k/k−1, uk) − Hk(ζ −x̂k/k−1)
∥∥ ≤ εk

guaranties that

i. the ellipsoid E(x̂k, σ2
kPk) contains all possible values of

x∗
k for all k ∈ IN∗;

Furthermore, if the weighting matrix Λk of the estimation gain
matrix (23) is de£ned by

Λk=


λ

(
‖δk‖R−1

k
−1

) (
HkPk/k−1H

T
k

)−1
if ‖δk‖R−1

k
> 1

and HkPk/k−1H
T
k > 0

0 otherwise.

(46)

then, the above mentioned algorithm also guaranties that

ii. the output error yk − Hkx̂k of the linearized measure-
ment equation (43b) belongs to the ellipsoid E(0, Rk) that
contains the vector sum of the measurement noise and the
linearization error vectors :

(yk − Hkx̂k)T
R−1

k (yk − Hkx̂k) ≤ 1, (47)

lim
‖δk‖→0

Rk = Vk; (48)

iii. ∀wk−1 ∈ E(0,Wk−1), ∀vk ∈ E(0, Vk) : if δk ∈ Dδ
1, then

σ2
k < λσ2

k−1 and if δk ∈ Dδ
1, then σ2

k = λσ2
k−1;

iv. if δk ∈ Dδ
2, then ∃σ̄k ∈ IR∗

+, σ̄2
k < λσ̄2

k−1 and
x∗

k ∈ E(x̂k, σ̄2
kPk) ⊆ E(x̂k, σ2

kPk) provided that
vk + χk ∈ Dv+χ

1 ;
v. ∀wk−1 ∈ E(0,Wk−1), ∀vk ∈ E(0, Vk), the ellipsoid

E(x̂k, σ2
kPk) is bounded for all k ∈ IN∗ provided that the

innovation vector δk have no in£nite stay-time in Dδ
2.

where Dδ
i∈{1,2,3} are respectively de£ned in (44a), (44b) and

(44c) and Dv+χ
j∈{1,2} are de£ned in (45a) and (45b). ■

Proof.
i. This property comes from Lemmas 2 and 3 and the hypothesis
(H1)−(H5).
ii. We rewrite the linearized output error after some linear manipula-
tions using (24) and (23) :

yk − Hkx̂k = λ
(
HkPk/k−1H

T
k Λk + λIp

)−1

δk (49)

and now, consider the weighted norm of the linearized output error
intervening in (47), in which we replace (49) and (46) :

(yk − Hkx̂k)T R−1
k (yk − Hkx̂k) =

{
‖δk‖2

R−1
k

if ‖δk‖R−1
k

≤ 1,

1 otherwise.

and the result (47) follows. As for (48), it comes straightforwardly
from the expression of Rk in (29) and the ability of the upper bound
of the linearization error εk to go to zero when the estimation error
goes to zero that is, when the output error goes to zero (because the
system is assumed to be observable).
iii. From (44a), we have δk ∈ Dδ

1 ⇔ ‖δk‖R−1
k

≤ 1

and ‖δk‖(HkPk/k−1HT
k )−1

k

> ‖δk‖R−1
k

∥∥∥(
HkPk/k−1H

T
k

)−1
Rk

∥∥∥.

If ‖δk‖R−1
k

> 1, σk de£ned in (28) is rewritten by the mean of (9)

and (46) as follows

σ2
k = λσ2

k−1 + λ
(
‖δk‖R−1

k
− 1

)
×

(∥∥∥∥(
HkPk/k−1H

T
k

)−1

Rk

∥∥∥∥ − ‖δk‖2

(HkPk/k−1HT
k )−1/‖δk‖R−1

k

)
.

So, it is clear that when δk ∈ Dδ
1 , σ2

k < λσ2
k−1. It is also clear that if

δk ∈ Dδ
3 , that is if ‖δk‖R−1

k
≤ 1, then, using (9) and (46) again, we

have σ2
k = λσ2

k−1.
iv. For studying the case when δk ∈ Dδ

2 we have to reconsider the
de£nition of σ2

k given in (39). In this case, we can not maximize
Vk with respect to the vector vk + χk when it spans all the ellipsoid
E(0, Rk) because σ2

k − λσ2
k−1 will be positive. The subset of the

ellipsoid E(0, Rk) containing vk + χk, in which σ̄2
k − λσ̄2

k−1 < 0
is, therefore, of interest. We can, subsequently, rede£ne σ̄k as the
maximum of Vk on this subset. First, let us rewrite Vk by replacing
(46) in (37) for ‖δk‖R−1

k
> 1 :

Vk = λVk/k−1 + λ
(
‖δk‖R−1

k
− 1

)
×

(
‖vk + χk‖2

(HkPk/k−1HT
k )−1−‖δk‖2

(HkPk/k−1HT
k )−1/‖δk‖R−1

k

)
.

Now, following the same reasoning we had when we deduced the ex-
pression (28) of σ2

k, we obtain the following recursion law for σ̄2
k

σ̄2
k − λσ̄2

k−1 = Vk − λVk/k−1.

Next, putting rk = vk + χk, from (45a), it is clear that a suf-
£cient condition for σ̄2

k − λσ̄2
k−1 < 0 is ‖rk‖R−1

k
≤ 1 and

‖δk‖R−1
k

‖rk‖2

(HkPk/k−1HT
k )−1/‖δk‖2

(HkPk/k−1HT
k )−1 ≤ 1, which

amounts to rk ∈ Dv+χ
1 . On the other hand, as the vector vk + χk

actually belongs to a set smaller than E(0, Rk) (Dv+χ
1 ⊂ E(0, Rk)),

the following holds

σ̄2
k = max

x̃k/k−1∈E(0,σ̄2
k−1Pk/k−1), vk+χk∈Dv+χ

1

Vk

≤ max
x̃k/k−1∈E(0,σ2

k−1Pk/k−1), vk+χk∈E(0,Rk)
Vk = σ2

k

and consequently E(0, σ̄2
kPk) ⊂ E(0, σ2

kPk).
v. The hypothesis (H5) guaranties that the matrix Pk is bounded [10],
that is there exists two positive scalars p and p such that

pIn ≤ Pk ≤ pIn

And by virtue of iii of Theorem 2, we have also the decrease of σ2
k

when δk ∈ Dδ
1 ∪ Dδ

3 . The only chance for σ2
k to become unbounded

occurs if δk stays during an in£nite time in Dδ
2 . Otherwise, the el-

lipsoid E(x̂k, σ2
kPk) is bounded for all k and all noise vectors. This

complets the proof of the theorem. ❑

6 Illustrative Example

The numerical example that we consider in this section is a £fth-order
two-phase nonlinear model of an induction motor which was already
the subject of a large number of applications, especially in control
designs (see [11] and the references inside). It could be mentioned
that, unlike most of the works on induction motors where the rotor
speed is assumed to be known, only the stator currents are needed to
provide an estimate of both rotor ¤uxes and angular speed.

Using an Euler discretization of step size h, the complete discrete-time
model in stator £xed (a, b) reference frame is given by :

x∗
1k+1=x∗

1k + h(−γx∗
1k +

K

Tr
x∗

3k + Kpx∗
5kx∗

4k +
1

σLs
u1k) + w1k

x∗
2k+1=x∗

2k + h(−γx∗
2k − Kpx∗

5kx∗
3k +

K

Tr
x∗

4k +
1

σLs
u2k) + w2k

x∗
3k+1=x∗

3k + h(
M

Tr
x∗

1k − 1

Tr
x∗

3k − px∗
5kx∗

4k) + w3k

x∗
4k+1=x∗

4k + h(
M

Tr
x∗

2k + px∗
5kx∗

3k − 1

Tr
x∗

4k) + w4k

x∗
5k+1=x∗

5k + h(
pM

JLr
(x∗

3kx∗
2k − x∗

4kx∗
1k) − TL

J
) + w5k

y1k=x∗
1k + v1k, y2k = x∗

2k + v2k

where x∗
k = ( x∗

1k x∗
2k x∗

3k x∗
4k x∗

5k )T

= ( isak isbk φrak φrbk ωk )T represents the stator
currents, the rotor ¤uxes and the angular speed respectively,



uT
k = ( u1k u2k ) = ( usak usbk ) is the stator voltages con-

trol vector, p is the number of pair of poles, TL is the load torque and
h is the sampling period. The parameters Tr , σ, K and γ are de£ned
as Tr = Lr

RrN
, σ = 1 − M2

LsLr
, K = M

σLsLr
, γ = Rs

σLs
+ RrM2

σLsL2
r

where Rs, RrN denote stator and rotor resistances; Ls, Lr are stator
and rotor inductances and J is the rotor moment of inertia.
Simulations are performed using the same numerical values as
in [11] : Rs = 0.18 Ω, RrN = 0.15 Ω, Ls = 0.0699 H,
Lr = 0.0699 H, M = 0.068 H, J = 0.0586 kgm2, p = 1,
TL = 0 Nm.
The input signals are : usak = 220 cos(314kh) and
usbk = 220 sin(314kh). The noises vectors wk−1 and vk are
generated in such a way as to verify wT

k−1W
−1
k−1wk−1 ≤ 1

and vT
k V −1

k vk, where Wk−1 = 0.05 diag
i∈{1,...,5}

(x2
ik−1) and

Vk = 0.05 diag
j∈{1,2}

(y2
jk). The bounds on the linearization errors

are chosen as εk = εk = 10−3

(
‖δk‖R−1

k
− 1

)2

/‖δk‖R−1
k

.

The forgetting factor λ is £xed to 1. The initial conditions are :
x̂0 = (200 200 50 50 300)T , P0 = 106 and σ0 = 1 while the actual
initial state vector is : x∗

0 = (0 0 0 0 0)T .
Figures (1(a))-(1(f)) show clearly the satisfying performances of the
proposed observer to track the true state with unknown bounded
noises, without the need of the rotor speed measurement and even
with bad initialisations (the transients were skipped). We can see, for
instance, that σ2

k is mostly decreasing on the estimation horizon. Its
infrequent and very small growths however is due to the few and brief
presence of δk in the set Dδ

2 . We also notice that the weighted norm
of the innovation sequence is very often close to 1 so the objective of
the algorithm is achieved in a way.

7 Conclusion

A recursive state bounding technique for nonlinear systems has
been presented. The objective of this algorithm was to deter-
mine, at each sample time, an ellipsoid that encloses the true
state and which is compatible with the bounds on the noises and
the linearization errors. As Kalman £ltering, the algorithm has
been decomposed into time updating and observation updating
steps. During the time update stage, an ellipsoid that encloses,
as “tightly” as possible, the vector sum of two ellipsoids, one
containing the true state of the previous sample and the other,
the state noises. The observation update step consists in cal-
culating the state estimate taking into consideration the current
measurement. It was shown how to design some weighting ma-
trix such that the output error could be as closer as possible to
the ellipsoid containing the measurement noise. Convergence
problems have been highlighted and suf£cient conditions for
acceptable tracking performances has been given.
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