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Abstract

This paper focuses on a path-following problem for a suitable
class of Chaplygin-like non linear uncertain systems. A feed-
forward/feedback strategy is proposed where the feedforward
action is based on an exact dynamic inversion of the nominal
system and the feedback correction depends on the error of the
actual output with respect to the path to be followed. A conver- > X
gence analysis of the resulting dynamic inversion based con-

troller is presented and a simulation for a three dimensional

platg ;ollowing problem with a simple aircraft model is in-  Figure 1: Aircraft simplified model with the poii@.
cluaead.

1 Introduction where v(t) is a given smooth positive function defined in
[0, 4+00[ @and b4 (t), O2(t) are the angular polar coordinates of
Chaplygin-type nonholonomic systems are known to be an itR{t). Choose a point)(t) rigidly linked to P(t), that is
portant class of mechanical systems (see [1, 4]) that includg®(t) — P(t)]|| = d > 0 and the coordinates of the vec-
for example, the kinematic models of various vehicles for pléer Q(t) — P(t) are given by, (t) + 61, 62(t) + 6, where
nar or aerial navigation; related motion planning techniqués and 6, are two constants such thatZ < 6; < Z and
have been reported in [5, 6, 7] mainly exploiting the geometric I< 0y < 2. ThereforeQ(t) is given by:
phase idea.

of Chaplygin-like nonholonomic systems that exhibit a time- Q(t) = sin(61(t) + 601) cos(02(t) + 62)
varying drift term in the so-called “fiber” equation: namely, sin(62(t) + 62)

given an-dimensional path on the fiber space the problem is

to find the feedforward input that force the system to follownd its motion is governed by the following equations:
exactly the given path. In this paper we deal with an uncertain

model(see (10)) and propose a controller (see (12) that makes & = o) ( Soe oLy cos b2l ) N

use of the error between the real position and the path location. sin 62 ()

We give an estimate of such error in terms of the norm of the, ( e S HSIPLE Wher S5 1A O oy (TS B E Sy S L ) ,
initial error and the bounds of the uncertainties (see (19)) that 0 . cos(62(t) + 02)

shows the robustness of the control action. We generalize an (8-

idea already used in [2] in a similar two-dimensional problem

for a car like-vehicle. The developed strategy can be applied to

the maneuver regulation problem of autonomous aerial vehilew if we setz(t) = (6,(t) + 61,62(t) + 6,)7 and make

In paper [3] a special motion planning is addressed for a class ( ( cos(1(t) + 01) cos(fa(t) + 62) )
P(t) +d

where a displaced point has to follow a given path. the change of variablex = A(z)Z, where A(z) =
. < dc%s 2 2 ) , then the previous system becomes:
2 Problem formulation

The general problem may be introduced by an example. Let ‘ cos(z1(t) — 01) cos(z2(t) — 62)
the motion of the center of graviti(¢) of an aircraft be given Q=v()| sin(z1(t) —61)cos(z2(t) —62) | +
by the following equations: sin(z2( 2)

—sinzi(t) —cosz

t) —
t) sin z2 Q)
. ( cos 01 (t) cos B2(t) ) + | coszi(t) —sinz ((t)) sin 22(( )) ) u(t)
P(t)=wv(t) | sin6y(t)cosba(t) 0 cos z(t)

sin 05 (t) 2= A" (2)u(t).

\



Therefore if() is an open subset &"~!, the previous system Then by the result exposed in ([3]), we can deduce the follow-

fits in the following general framework: ing theorem.
L(t) = F(t, 2(t)) + G(z(t))u(t)
{ A(t) = H(z(t))u(t) ©) Theorem 1 (The open loop case)
z(0) = zo, 2(0) =z In the previous hypotheses and notations, suppose that
Whe_r(l-:‘F :_[(i, +oo[xQ - R", G :Q — .]Rnxnﬂ, H ;.Q - 1(0) =20, AT(O)G () > 0, F<m. ©)
R(»=1x(n=1) gre continuous maps having the following prop-
erties: Then there exists a maximal interj&l ¢,,[ and a controhu(t)

such that the problem (2) is solvable @n¢,[, (||£(¢)] > 0),
e [, G, H are bounded lipschitz map with lipschitz conz(t) € T' = ([0, +o00[), Vt € [0, tp[; furthermore |ftM <

stants respectivelr, Lg, Ly, G(z)isaC' nx (n—1) +oo thenlim,_.;,, d(z(t),092) = 0 and z([0,tx]) S C T if

orthonormal matrix and tym = +oo thenz([0, +o0]) = T'; thereforety, = 400 and
coo< inf {|FtL A} < sup {|F(t2)||} < +oo, L0 Hoe) =Tif =R
120, 2€0 £20,2€0Q Furthermore the controk is given by the following dynamic
o det(F(t,2)),G(2) £ 0, det H(z) # 0,¥¢ > 0,V ¢ inversion based controller:
Qandsup,co{|[H ' (2)|]} £ Cpy-1 < +00 fr="Fs(p,¢) ,p(0)=0
o TEALGL(2) > cosf, Yt 0,Vz€Q { gz :gc(ffg)(“’ <) 4=z %

where0 < 3 < Z andG™(z) is an unitary vector orthogonal to

1 .
the (n — 1) columns ofG(z), in other words the angle between where we have setA > 0, ¥z € 2 with " (MG (2) # 0:

the vectord’ (¢, z) andG~(z) is always less than a fixed angle FT(t,2)G(2)
. F; )‘7 - .’—7
8 A2 = ST NE) ®)
Remark that in the case of the aircrdﬂ,is a bounded lipschitz _ AT o .
map if we take? = Rx] — Z + ¢, 2 — €[, wheree is any real Fah2) = G R)(F(E 2) = B (0 2)5 ().

number suchthdt < e < 3 The systems of type (2) are calledRemark that” (¢, 2) = YNV Fy (X, 2) + G(2)Fa(), 2), since
Chaplygin systems and are an important class of mechanical

systems (see for instance [1, 4]) which includes the kinematic N . wl G (z)
models of various vehicles for planar and aerial navigation. Vwe R",w = V(A)W+

To introduce the problem, let : [0, +oo[— R™ be a given T wlGL(z) |

C2 arc length parametrized curyé4|| = 1,¥A > 0) and set +G(2)G (2)(w — WV(A))-

R = supy>o{r(\)}, wheres(X) £ [|5(N)]. A i ¢ it atth |
For istance in the case of the aircraft, if at the initial time=

In the paper [3] we found sufficient conditions op, zo, and : :

k which guarantee that there exist a contzahnd a maximal 7(0), the speeeyg)()o;s not orthogonal @) (0) — P(0) (remark

interval [0, ;[ such that the problem (2) is solved @], that G (20) = y&)- o)n) and the curvature of is not too

z(t) € T = ~([0,400]), ¥t € [0,tp] (With ||2(2)]] > 0) . _ (%0

furthermorety; = +oo and z([0,+o0[) = T otherwise high, namely less thag,(remark thatX (z) = 0o 2 )

limy ¢, d(z(t),00) = 0, that isz(¢) follows the pathl” with  then there exists a contral such that pointQ(t) will follow

a positive speed and covers Blunlessz(t) does converge to all the pathl’ unlessz(t) does converge to the boundary of

the boundary)(2 of 2, (d(z(t), 02) = infuecon{l[2(t) —wl|} Q=Rx]—Z +¢ % —¢[.

with the convention thad(z(¢), 092) = +oo if 9 = ). _ _ .
_ _ _ In general the real motion of the system is not equal to the ideal
To recall precisely this result we have to introduce the follovene described by system (2), to simulate the real behavior we

C)

ing matrixes, setz € suppose that it is given by the following perturbed system
i X(2) + XT() a}‘() F(t, 2()) + G(2(1))u(t) + ex(t)
X() = -G ), s, - TOEEE) S ) + el (10
3)

where the uncertainties are performed by the continuous vector

(S, is the symmetric part oX). SinceG is a Lipschitz map mapse, ande, satisfying the condition:

andH is bounded, there exists a positive constahsuch that
|X(2)w| < Mljw|, YweR"™, VzeQ. (4) lez(®) < Ba, le(®)[| <B., vt=0.  (11)

Furthermore we will suppose for the following that there exisrsurthermore we allow that at_the initial timg(0) may b_e dif-
a constantn. > 0 such that erent from~(0). Therefore if we use the control given by
the generator (7)(t) may not belong anymore @, that is,

w? Sy (2)w > mlw|?, YweR"™ VzeQ. (5) d(x(t),I) =infyso{|z(t) —y(\)|} > 0.



To overcome this problem, the idea is to build a new invelfthe uncertainty bound®, and B, are such that:
sion based generator of the control function, correcting the con-

troller (7) by means of the errdi (t) = x(¢) —y(u(t)) between  0< B, < _inf {||F(t,2)|}cosB, 0 < B.(<+o0)
the actual position:(¢) and the estimated ongu(t)) and the £20,2€0

i i . - - (14)
error (z() — ¢(#)) in the following way. then there exist8 > 0, such thatvd > 6, Vx > 0 there exists a
o= Fy(11,¢) + XEy, p(0)=0 maximal interval0, ¢,,[ (0 < tas < +00) where the open-loop
{ ¢ = —H(O)(Fa(u, ) + xEq) +0(z— ), ¢(0) =z system (13) is solvable df, t,[ and
u=—(Fa(n, Q)+ xEc) 9
(12) A(@(t),T) < < (Bs + Bz), V€ [0t

whereyx andd are positive gain parameters afid andE are

the decomposition of? with respect to the orthogonal system ] _
(%, G) namely Thereforeve > 0, the closed-loop system (13) with= ¢ and

x = 2B=4B:) s solvable or{0, ¢ ;] and
g ETOG(C®)
F(u(t))GH(C(1) d(z(t),T) < ¢,¥t > 0.
Eg(t) = GH(CO)E() — (1) B4 (1))

®) Furthermoret,; < +oo only if lim;_¢,, d(2(t),00) = 0 or
(remark thatF(t) = 4 (u(t))E4(t) + G(C(t))Eg(t)). There- limg_,, d(¢(t),09) = 0, thenty, = +oc if for instance) =
fore the controlled motion of(¢)
closed loop system

is given by the following R"~'.

T=F(t,2)+GRu+e, ,z(0)=mxg Proof.

i=H(zute. ,2(0)=z It comes out directly from Theorem since E(0) = z(0) —

1= Fy(p, Q) + xEy, p(0)=0 ~(0) = 0.0

¢ =—HOFa(pC) +xEa) +0(z=0), 0) =20 tof th s the following th  robust
w=—(Fa(u,C) + xEg). e main result of the paper is the following theorem of robust-

(13) ness in terms of the initial errdf(0) = z(0) — v(0) and the

The closed loop system (13) provides a feedforward/feedbR&NdsB., B: of the uncertainties that gives a deep insight to
the behaviour of the output(t) of the closed-loop system (13),

u | x  with respect to the trajectoy = ([0, +-o0]).
— ,'Y, > Controller . System ZV
I "~ Theorem 3 In the previous notations and hypotheses, suppose
2 E ¢ |u that
y v 4T(0)G* (20) > 0 (15)
X — Error calculation [ X
k< m. (16)

Figure 2: Robust path-following scheme.

strategy where the feedforward term is determined by a dy- Bz < tg(i)r.,lzfesz{HF(t’Z)H}cos B 0< Bi(<+o0) (17)

namic generator based on an exact dynamic inversion over the

nominal system and the feedback is mainly achieved by cor-_ _

recting the generator with the componets and E¢ of the et be such that

error E (with respect to the systerfty(u(t)), G(((¢))) be-

tween the real position:(¢) and the estimated one(u(t)).

A similar technique has been used also in a two-dimensional

path-following problem for a car-like vehicle (see paper [2]). then there exist§ > 0 (independent ory if E(0)=0) such that
VO > 0, ¥x with 0 < x < ¥, there exists a maximal inter-

3  The main results val [0,tp[ (0 < tpr < +o0) where the closed-loop system is
solvable and the following estimate holds:

We can state now the following convergence theorem which is

a straight consequence of the more technical (but more general < < _xt 2
obLtess thaonem ﬁ?@Jﬁ_HE@H_HEwwe2+XU%+BJNHJQMA

KIEO) +B. < _inf {IF(t.2)[}cosg  (18)

(19)
Theorem 2 (The closed loop case) In the previous hypothesg8r @ sharper estimate see (26)), then (18) holds for gny 0
and notations, suppose that: if z(0) = «(0), that is E(0) = 0. Furthermoret,; < +oo

only if limy_,, d(2(¢),99) = 0 or lim;_,, d(¢(¢), Q) = 0,
~(0) = =y, ﬁ/T(O)Gl(zo) >0, k<m. thereforet,; = +oo if, for instance) = R* L.



Proof.

Let us define the following constants:

ir = infi>oco{l|F(t 2)[|}

A = 2MCrAXIEO)[+2(Ba+B-(1+Cp-1)))
= i cos - (RIEO)T B2 |

R = min{cos(arcsin((m? + A?)"2k)+

+arctan 2),47(0)G*(0)}.

(20)

wherep(6, x) = 0—(1+%) L (Cr+x[ E(0)[|+2(B,+B.));
namely it suffices that verifies the foIIowing inequality:

(p(@, )>maX{2(1+R)LgBZ7LF+(1+ )CFLc;} (27)

therefore ifz(0) = ~(0), that is||£(0)|| = 0, then the choice
of § is independent of; for instance (27) holds if:

_ 9 )
By (15), the definition off and the local existence theory forf > 21+ ) [(Lr+La)(Cr+B:)+ Ly B+ Lp+X L | E(0)]].

ordinary differential systemsyd > 0,Vx : 0 < x < ¥
there existse > 0, z € C}([0,€,R"), z € CL([0,¢],9),
¢ € CL([0,¢€],9), u € C([0,¢],R) which solve (13) or{0, €]
and TG (Q) > 4. Ft OTGH(Q) + XETGH(Q) >
0, |[E®)| < [EO) + 2(By + B.) + 1, remark that
F(0,20)" G*(20) +XET(0)G*(20) > i cos B— x| E(0)]| >
0, by (17).

Set
far = sup{el (13)is solvable (1) G (C) > 1,
F(t, <>TGL<<) ETGH(¢) >0,

IE@I < [EO) + ~

(21)
(B + B.) + 1on|0,¢€},

thereforety, > 0, in partlcular we get that and¢ are lipschitz
maps ang: is a monotone strictly increasing map (singe) >
0) on [0,¢x[. we will show that we can find 4 such that
VO >0,Vx:0<x <X

VT(M)GL (C) > Rv on [O’ tM[’ (22)
F(t,0)TGH() + xETGH(¢) > C on[0,ta], (23)
I < |BO)]e 3 + %(Bx +B.) on[0,twl (24)

This will imply, by the local existence theorem for ordi-
nary differential systems and a maximality argument, that?

ty = +oo otherwise lim;_,, d(2(t),02) = 0 or

lim;_¢,, d(¢(t),0Q) = 0 and the theorem has been proved.
To this goal we need the following Lemma whose proof will be

omitted for sake of brevity.

Lemma 1 In the previous hypotheses there exists 0 such
thatVd > 60, ¥Vx : 0 < x < x

B,

I20) = €Ol < o, om0l (29

IE®)|| < [EO)]e X0+ 7565 4

2 LeB. .
(1= 1+ )=

(26)

L X))CFLG> <

< EO)le ¥t + %(Bm +B.), on[0,tu]

(28)

Now, continuing the proof of Theorem 3, (26) implies di-
rectly (24), to verify (23) we can suppose, unless of increasing
0, that

WD) 2 (1= (14 ) 8% Bk
+B, Lp+(1+ %)CFLG) _ (29)
(0, %)

<ipcosf—x[E(0)];

for instance, if x||E(0)| + 2(B, + B.) < ipcosf, then
it suffices thatd verifies (28). Therefore, by (266 > 6,
Vx:0<x<x

IE@I < [EO)] + ——=, on[0,tx]

¥(0, %) x) (30)
X

and
F(t,0)"GH(¢) + xETG(¢) > ipcos B — x||E|| >
> ipcos 3 — x[|E(0)]| - ¢(8,x) £ C >0

therefore (23) holds. To prove (22), we remark first of all that
it is equivalent to show that

FTNGH(C(u™
whereAy, = sup,¢po ., ({12()}. By differentiating we get:

YA) >R, YA€, [ (31)

B ) dGL d¢ dpu—?
T 1 1 el | T ag _
4 (TG ) = 56 + 5T e A
.. . dG
=51+ (-GG )
G+ _
(Hu+0(z C))FTGJ-—kxETGJ- =
= 5TGE 1 (57GH)(GT3)
( Xu Lo XH Yz-¢) )
FTG+ 4+ xETG+  ~ FTGL 4+ xETG+”
since% = -G+ But
Xu B XGT _
FTGL + yETGL  FTGL 4+ yETGt
FTG+ ETG+ .
(= TGJ_,Y F) - (E—WV)H
(GG,
=AGrer T FomTa”



therefore:

d
— (TG = kTG + (GTAH)TX(GTH)+

X
: : G'(F + xE) H (2 - ()
—(ENE)X ((F BTG FTaT XETGL)

wherex(\) = ||¥|| andv()) is an orthogonal vector t§()\).

Remark that ifNV(\) is ann x (n — 1) orthonormal matrix
whose columns generate the subspace orthogordlXp we

have that

TG < INTGH = (1= [|FGH?)2 = 1G]]
therefore

d
SETGY) 2 —RIGH| + mlGTH P+

M

e GTEONGTANIFN + X Bl + 0Cy -1 |1z — <)) >
> ||GTA|[(m]|GTH - (vTGl)g(CFJr
0
+x|E(0)|| + 2(By + B,) + ————Cy-1B,) — &),
X[ E0)]] + 2( ) 00" ) —R)

by (23), (4), (5), (24) and (25). Furthermore, suppose fiat

such that—2— < 2, that is
<P(9;X)

_ 2
0>2(1+=
>(+R)

remark that both (28) and (32) hold if

Lu(Cr +XIIEQO) +2(B; + B:)), (32)

g 21+ %){(LF + L) (Cr + B.)+
+Luy(By + B.) 4+ Lr + X[ E(0)|},

(33)

then

GG > |G mlETH| - (TGNA—R)  (34)

M(Cr+X[|EO)|+2(Bs+B2)(1+Cy—1)) _
Tr cos B—XTEO) w00 - NOW sup
pose, unless of increasidgthatA < A or equivalently that

where A =

U(0.X) < Be t S ipcosf—XIEO)] - B.) (39

which is the case if, for instance, (28) holds apitZ(0)]| +
4(B; + B,) < ipcosf@. If we denote bya(\) the an-
gle between vectors/(\) and G+(¢(x~1)), we have that
FA)GH(C(uH(A)(N)) = cos a(N); then from (34) we get
(—sina)d > sina(msina — Acosa — &), VA € [0, A\
which implies that

& < —msina+ Acosa— & a.e. ofi0, \y]

thatis

d

la-a) < —(m*+ A% sin(a—a)+&  a. e on0, Ay

wherea = arctan— Thereforen(\) < a < 7, YA € [0,

) <
whered is any real "umber such that

max{(a(0) — a), arcsin((m? + A%) 2 R)} < d—a <

S

T
57 %
remark thata(0) = arccos((0)"G+(0)) < %, by (15) and
(m?+ A2)~}7 < sin(Z — ), by (16), being1+ (47))~+ =
sin(§ — arctan;) = sin(3 — @). Sincearcsin((m? +
A?)~ 2/1)+arctan < arcsin((m?+ A?)~ %/?H—arctan% <
arcsin((1 + ;:‘L—i) 2 4+ arctan2 = I (beingA < A and

£ < 1) we can takev = max{arcsin((m? + A2)_%]_()
arctan— ,a(0)}, in other wordscosa(A) > cos& = R
(see definition (20)) therefore (22) holds and the theorem is
proved.

Remark 1 Suppose that(B, + B,) < ipcosf, from the
proof of theorenB we deduce the following procedure to de-
termine the values of the gaigsandé:

1) takey such thaty||E(0)|| + 4(B; + B.) < ir cos
2)taked > 2(1+ 2){(Lr+Lg)(Cr+B.)+Ly(By+B.)+
Lr + x||E(0)]|} where R is given by (20).

4 Simulation
Consider the simplified airplane model (1) with = 6, = 0

and add the bounded noise terms, e,,, €4, €2, , €2, 10 the
state equation:

_ cos(z1(t)) cos(z2(t))
Q=v(t) | sin(z1(t))cos(22(t))
sin(zz2(t))

—sinzy(t) —cosz(t)sin zo(t) €,
+ coszi(t) —sinzi(t)sinza(t) | u(t) + [ ex

0 cos 23(t) €xq
e 0+ <

(36)
wherev = 1502‘ d = 10m, the noise terms are sine func-
tion with frequency4 Hz and e, ||, [les, |, lez, ]| < 0.1,

llex ]I, e, || < 0.01%2¢. System (36) is in the form (10).

The reference trajectory is an helix with arc-length
parametrization:

x1 = rcos(2/1— )
xg = rsin(’;(\/ —a)
T3 = Q.

wherer is the radius an@ < « < 1 is a form parameter. We
choser = 20 anda = 0.5.

Figure 4 shows the reference and the output trajectory and the
error functionE (t) = x(t) — y(u(t)).

5 Conclusions:

We have proposed a dynamic controller which combines a
feedforward inversion based action with a feedback error cor-
rection for the control of a suitable class of nonlinear uncertain
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Figure 3: Helix example.

1.6 1.8

system. We have investigated its robust behaviour with respect
to the initial error and the noise terms bounds and have pro-
vided a convergence result which depends on the curvature of
the path to be followed.
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