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Abstract

This paper focuses on a path-following problem for a suitable
class of Chaplygin-like non linear uncertain systems. A feed-
forward/feedback strategy is proposed where the feedforward
action is based on an exact dynamic inversion of the nominal
system and the feedback correction depends on the error of the
actual output with respect to the path to be followed. A conver-
gence analysis of the resulting dynamic inversion based con-
troller is presented and a simulation for a three dimensional
path following problem with a simple aircraft model is in-
cluded.

1 Introduction

Chaplygin-type nonholonomic systems are known to be an im-
portant class of mechanical systems (see [1, 4]) that includes,
for example, the kinematic models of various vehicles for pla-
nar or aerial navigation; related motion planning techniques
have been reported in [5, 6, 7] mainly exploiting the geometric
phase idea.

In paper [3] a special motion planning is addressed for a class
of Chaplygin-like nonholonomic systems that exhibit a time-
varying drift term in the so-called ”fiber” equation: namely,
given an-dimensional path on the fiber space the problem is
to find the feedforward input that force the system to follow
exactly the given path. In this paper we deal with an uncertain
model(see (10)) and propose a controller (see (12) that makes
use of the error between the real position and the path location.
We give an estimate of such error in terms of the norm of the
initial error and the bounds of the uncertainties (see (19)) that
shows the robustness of the control action. We generalize an
idea already used in [2] in a similar two-dimensional problem
for a car like-vehicle. The developed strategy can be applied to
the maneuver regulation problem of autonomous aerial vehicle
where a displaced point has to follow a given path.

2 Problem formulation

The general problem may be introduced by an example. Let
the motion of the center of gravityP (t) of an aircraft be given
by the following equations:

Ṗ (t) = v(t)




cos θ1(t) cos θ2(t)
sin θ1(t) cos θ2(t)

sin θ2(t)



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Figure 1: Aircraft simplified model with the pointQ.

where v(t) is a given smooth positive function defined in
[0, +∞[ andθ1(t), θ2(t) are the angular polar coordinates of
P (t). Choose a pointQ(t) rigidly linked to P (t), that is
‖Q(t) − P (t)‖ = d > 0 and the coordinates of the vec-
tor Q(t) − P (t) are given byθ1(t) + θ̄1, θ2(t) + θ̄2 where
θ̄1 and θ̄2 are two constants such that−π

2 < θ̄1 < π
2 and

− π
2 < θ̄2 < π

2 . ThereforeQ(t) is given by:

Q(t) = P (t) + d




cos(θ1(t) + θ̄1) cos(θ2(t) + θ̄2)
sin(θ1(t) + θ̄1) cos(θ2(t) + θ̄2)

sin(θ2(t) + θ̄2)




and its motion is governed by the following equations:

Q̇ = v(t)

0@ cos θ1(t) cos θ2(t)
sin θ1(t) cos θ2(t)

sin θ2(t)

1A+

+d

0@ − sin(θ1(t) + θ̄1) cos(θ2(t) + θ̄2) − cos(θ1(t) + θ̄1) sin(θ2(t) + θ̄2)
cos(θ1(t) + θ̄1) cos(θ2(t) + θ̄2) − sin(θ1(t) + θ̄1) sin(θ2(t) + θ̄2)

0 cos(θ2(t) + θ̄2)

1A ·
·
�

θ̇1(t)
θ̇2(t)

�
.

Now if we setz(t) = (θ1(t) + θ̄1, θ2(t) + θ̄2)T and make
the change of variableu = A(z)ż, where A(z) =(

d cos z2 0
0 d

)
, then the previous system becomes:

8>>>>>>>><>>>>>>>>:
Q̇ = v(t)

0@ cos(z1(t)− θ̄1) cos(z2(t)− θ̄2)
sin(z1(t)− θ̄1) cos(z2(t)− θ̄2)

sin(z2(t)− θ̄2)

1A+

+

0@ − sin z1(t) − cos z1(t) sin z2(t)
cos z1(t) − sin z1(t) sin z2(t)

0 cos z2(t)

1Au(t)

ż = A−1(z)u(t).

(1)



Therefore ifΩ is an open subset ofRn−1, the previous system
fits in the following general framework:





ẋ(t) = F (t, z(t)) + G(z(t))u(t)
ż(t) = H(z(t))u(t)
x(0) = x0, z(0) = z0

(2)

whereF : [0, +∞[×Ω → Rn, G : Ω → Rn×n−1, H : Ω →
R(n−1)×(n−1) are continuous maps having the following prop-
erties:

• F , G, H are bounded lipschitz map with lipschitz con-
stants respectivelyLF , LG, LH , G(z) is aC1 n× (n− 1)
orthonormal matrix and

−∞ < inf
t≥0, z∈Ω

{‖F (t, z)‖} ≤ sup
t≥0,z∈Ω

{|F (t, z)‖} < +∞,

• det(F (t, z)), G(z)) 6= 0, det H(z) 6= 0, ∀t ≥ 0, ∀z ∈
Ω andsupz∈Ω{‖H−1(z)‖} , CH−1 < +∞

• F (t,z)T

‖F (t,z)‖G
⊥(z) ≥ cosβ, ∀t ≥ 0,∀z ∈ Ω

where0 < β < π
2 andG⊥(z) is an unitary vector orthogonal to

the(n− 1) columns ofG(z), in other words the angle between
the vectorsF (t, z) andG⊥(z) is always less than a fixed angle
β.

Remark that in the case of the aircraft,H is a bounded lipschitz
map if we takeΩ = R×] − π

2 + ε, π
2 − ε[, whereε is any real

number such that0 < ε < π
2 . The systems of type (2) are called

Chaplygin systems and are an important class of mechanical
systems (see for instance [1, 4]) which includes the kinematic
models of various vehicles for planar and aerial navigation.

To introduce the problem, letγ : [0, +∞[→ Rn be a given
C2 arc length parametrized curve(‖γ̇‖ = 1,∀λ ≥ 0) and set
κ̄ = supλ≥0{κ(λ)}, whereκ(λ) , ‖γ̈(λ)‖.
In the paper [3] we found sufficient conditions onx0, z0, and
κ̄ which guarantee that there exist a controlu and a maximal
interval [0, tM [ such that the problem (2) is solved on[0, tM [,
x(t) ∈ Γ = γ([0, +∞[), ∀t ∈ [0, tM [ (with ‖ẋ(t)‖ > 0)
furthermore tM = +∞ and x([0, +∞[) = Γ otherwise
limt→tM d(z(t), ∂Ω) = 0, that isx(t) follows the pathΓ with
a positive speed and covers allΓ unlessz(t) does converge to
the boundary∂Ω of Ω, (d(z(t), ∂Ω) = infw∈∂Ω{‖z(t) − w‖}
with the convention thatd(z(t), ∂Ω) = +∞ if ∂Ω = ∅).
To recall precisely this result we have to introduce the follow-
ing matrixes, set∀z ∈ Ω:

X(z) = −(G⊥(z))T dG

dz
(z)H(z), Sx(z) =

X(z) + XT (z)
2

(3)

(Sz is the symmetric part ofX). SinceG is a Lipschitz map
andH is bounded, there exists a positive constantM such that

‖X(z)w‖ ≤ M‖w‖, ∀w ∈ Rn−1, ∀z ∈ Ω. (4)

Furthermore we will suppose for the following that there exists
a constantm > 0 such that

wT Sx(z)w ≥ m‖w‖2, ∀w ∈ Rn−1, ∀z ∈ Ω. (5)

Then by the result exposed in ([3]), we can deduce the follow-
ing theorem.

Theorem 1 (The open loop case)

In the previous hypotheses and notations, suppose that

γ(0) = x0, γ̇T (0)G⊥(z0) > 0, κ̄ < m. (6)

Then there exists a maximal interval[0, tM [ and a controlu(t)
such that the problem (2) is solvable on[0, tM [, (‖ẋ(t)‖ > 0),
x(t) ∈ Γ = γ([0, +∞[), ∀t ∈ [0, tM [; furthermore iftM <
+∞ then limt→tM

d(z(t), ∂Ω) = 0 and x([0, tM [) $ Γ; if
tM = +∞ thenx([0, +∞[) = Γ; thereforetM = +∞ and
x([0, +∞[) = Γ if Ω = Rn−1.

Furthermore the controlu is given by the following dynamic
inversion based controller:





µ̇ = Fγ̇(µ, ζ) , µ(0) = 0
ζ̇ = −H(ζ)FG(µ, ζ) , ζ(0) = z0

u = −FG(µ, ζ)
(7)

where we have set,∀λ ≥ 0, ∀z ∈ Ω with γ̇T (λ)G⊥(z) 6= 0:

Fγ̇(λ, z) =
FT (t, z)G⊥(z)
γ̇T (λ)G⊥(z)

,

FG(λ, z) = GT (z)(F (t, z)− Fγ̇(λ, z)γ̇(λ)).
(8)

Remark thatF (t, z) = γ̇(λ)Fγ̇(λ, z) + G(z)FG(λ, z), since

∀w ∈ Rn, w = γ̇(λ)
wT G⊥(z)

γ̇T (λ)G⊥(z)
+

+G(z)GT (z)(w − wT G⊥(z)
γ̇T (λ)G⊥(z)

γ̇(λ)).
(9)

For istance in the case of the aircraft, if at the initial timex0 =
γ(0), the speeḋγ(0) is not orthogonal toQ(0)−P (0) (remark
thatG⊥(z0) = Q(0)−P (0)

‖Q(0)−P (0)‖ ) and the curvature ofγ is not too

high, namely less than1d ,(remark thatX(z) =
(

1
d 0
0 1

d

)
)

then there exists a controlu such that pointQ(t) will follow
all the pathΓ unlessz(t) does converge to the boundary of
Ω = R×]− π

2 + ε, π
2 − ε[.

In general the real motion of the system is not equal to the ideal
one described by system (2), to simulate the real behavior we
suppose that it is given by the following perturbed system





ẋ(t) = F (t, z(t)) + G(z(t))u(t) + ex(t)
ż(t) = H(z(t))u(t) + ez(t)
x(0) = x0, z(0) = z0

(10)

where the uncertainties are performed by the continuous vector
mapsex andez satisfying the condition:

‖ex(t)‖ ≤ Bx, ‖ez(t)‖ ≤ Bz, ∀t ≥ 0. (11)

Furthermore we allow that at the initial timex(0) may be dif-
ferent fromγ(0). Therefore if we use the control given by
the generator (7),x(t) may not belong anymore toΓ, that is,
d(x(t), Γ) = infλ≥0{‖x(t)− γ(λ)‖} > 0.



To overcome this problem, the idea is to build a new inver-
sion based generator of the control function, correcting the con-
troller (7) by means of the errorE(t) = x(t)−γ(µ(t)) between
the actual positionx(t) and the estimated oneγ(u(t)) and the
error(z(t)− ζ(t)) in the following way:




µ̇ = Fγ̇(µ, ζ) + χEγ̇ , µ(0) = 0
ζ̇ = −H(ζ)(FG(µ, ζ) + χEG) + θ(z − ζ), ζ(0) = z0

u = −(FG(µ, ζ) + χEG)
(12)

whereχ andθ are positive gain parameters andEγ̇ andEG are
the decomposition ofE with respect to the orthogonal system
(γ̇, G) namely

Eγ̇ =
ET (t)G⊥(ζ(t))
γ̇(µ(t))G⊥(ζ(t))

,

EG(t) = G⊥(ζ(t))(E(t)− γ̇(µ(t))Eγ̇(t))

(remark thatE(t) = γ̇(µ(t))Eγ̇(t) + G(ζ(t))EG(t)). There-
fore the controlled motion ofx(t) is given by the following
closed loop system




ẋ = F (t, z) + G(z)u + ex , x(0) = x0

ż = H(z)u + ez , z(0) = z0

µ̇ = Fγ̇(µ, ζ) + χEγ̇ , µ(0) = 0
ζ̇ = −H(ζ)(FG(µ, ζ) + χEG) + θ(z − ζ), ζ(0) = z0

u = −(FG(µ, ζ) + χEG).
(13)

The closed loop system (13) provides a feedforward/feedback

Controller System

Error calculation

γ

u x

z

x

E ζ µ

γ

z

Figure 2: Robust path-following scheme.

strategy where the feedforward term is determined by a dy-
namic generator based on an exact dynamic inversion over the
nominal system and the feedback is mainly achieved by cor-
recting the generator with the componentsEγ̇ andEG of the
error E (with respect to the system(γ̇(µ(t)), G(ζ(t))) be-
tween the real positionx(t) and the estimated oneγ(µ(t)).
A similar technique has been used also in a two-dimensional
path-following problem for a car-like vehicle (see paper [2]).

3 The main results

We can state now the following convergence theorem which is
a straight consequence of the more technical (but more general)
robustness theorem3.

Theorem 2 (The closed loop case) In the previous hypotheses
and notations, suppose that:

γ(0) = x0, γ̇T (0)G⊥(z0) > 0, κ̄ < m.

If the uncertainty boundsBx andBz are such that:

0 ≤ Bx < inf
t≥0,z∈Ω

{‖F (t, z)‖} cosβ, 0 ≤ Bz(< +∞)

(14)
then there exists̄θ > 0, such that∀θ > θ̄, ∀χ > 0 there exists a
maximal interval[0, tM [ (0 < tM ≤ +∞) where the open-loop
system (13) is solvable on[0, tM [ and

d(x(t),Γ) ≤ 2
χ

(Bx + Bz), ∀t ∈ [0, tM [.

Therefore∀ε > 0, the closed-loop system (13) withθ = θ̄ and
χ = 2(Bx+Bz)

ε is solvable on[0, tM [ and

d(x(t),Γ) ≤ ε, ∀t ≥ 0.

FurthermoretM < +∞ only if limt→tM
d(z(t), ∂Ω) = 0 or

limt→tM
d(ζ(t), ∂Ω) = 0, thentM = +∞ if for instanceΩ =

Rn−1.

Proof.

It comes out directly from Theorem3 sinceE(0) = x(0) −
γ(0) = 0.¤
The main result of the paper is the following theorem of robust-
ness in terms of the initial errorE(0) = x(0) − γ(0) and the
boundsBx, Bz of the uncertainties that gives a deep insight to
the behaviour of the outputx(t) of the closed-loop system (13),
with respect to the trajectoryΓ = γ([0, +∞[).

Theorem 3 In the previous notations and hypotheses, suppose
that

γ̇T (0)G⊥(z0) > 0 (15)

κ̄ < m. (16)

Bx < inf
t≥0,z∈Ω

{‖F (t, z)‖} cosβ, 0 ≤ Bz(< +∞) (17)

Let χ̄ be such that

χ̄‖E(0)‖+ Bx < inf
t≥0,z∈Ω

{‖F (t, z)‖} cos β (18)

then there exists̄θ > 0 (independent on̄χ if E(0)=0) such that
∀θ ≥ θ̄, ∀χ with 0 < χ ≤ χ̄, there exists a maximal inter-
val [0, tM [ (0 < tM ≤ +∞) where the closed-loop system is
solvable and the following estimate holds:

d(x(t), Γ) ≤ ‖E(t)‖ ≤ ‖E(0)‖e−χ
2 t+

2
χ

(Bx+Bz),∀t ∈ [0, tM [

(19)
(for a sharper estimate see (26)), then (18) holds for anyχ > 0
if x(0) = γ(0), that isE(0) = 0. FurthermoretM < +∞
only if limt→tM

d(z(t), ∂Ω) = 0 or limt→tM
d(ζ(t), ∂Ω) = 0,

thereforetM = +∞ if, for instance,Ω = Rn−1.



Proof.

Let us define the following constants:




iF = inft≥0,z∈Ω{‖F (t, z)‖}
A = 2M(CF +χ̄‖E(0)‖+2(Bx+Bz(1+CH−1 )))

iF cos β−(χ̄‖E(0)‖+Bx)

R = min{cos(arcsin((m2 + A2)−
1
2 κ̄)+

+arctan A
m ), γ̇T (0)G⊥(0)}.

(20)

By (15), the definition ofR and the local existence theory for
ordinary differential systems,∀θ > 0,∀χ : 0 < χ ≤ χ̄
there existsε > 0, x ∈ C1([0, ε],Rn), z ∈ C1([0, ε],Ω),
ζ ∈ C1([0, ε], Ω), µ ∈ C1([0, ε],R) which solve (13) on[0, ε]
and γ̇T (µ)G⊥(ζ) ≥ R

2 , F (t, ζ)T G⊥(ζ) + χET G⊥(ζ) >
0, ‖E(t)‖ ≤ ‖E(0)‖ + 2(Bx + Bz) + 1, remark that
F (0, z0)T G⊥(z0)+ χ̄ET (0)G⊥(z0) ≥ iF cosβ− χ̄‖E(0)‖ >
0, by (17).

Set

tM = sup{ε|(13)is solvable, γ̇(µ)G⊥(ζ) ≥ R

2
,

F (t, ζ)T G⊥(ζ) + ET G⊥(ζ) > 0,

‖E(t)‖ ≤ ‖E(0)‖+
2
χ

(Bx + Bz) + 1 on [0, ε]},
(21)

thereforetM > 0, in particular we get thatµ andζ are lipschitz
maps andµ is a monotone strictly increasing map (sinceµ̇(t) >
0) on [0, tM [. we will show that we can find āθ such that
∀θ ≥ θ̄, ∀χ : 0 < χ ≤ χ̄

γ̇T (µ)G⊥(ζ) > R, on [0, tM [, (22)

F (t, ζ)T G⊥(ζ) + χET G⊥(ζ) > C on [0, tM [, (23)

‖E(t)‖ ≤ ‖E(0)‖e−χ
2 t +

2
χ

(Bx + Bz) on [0, tM [. (24)

This will imply, by the local existence theorem for ordi-
nary differential systems and a maximality argument, that
tM = +∞ otherwise limt→tM d(z(t), ∂Ω) = 0 or
limt→tM

d(ζ(t), ∂Ω) = 0 and the theorem has been proved.
To this goal we need the following Lemma whose proof will be
omitted for sake of brevity.

Lemma 1 In the previous hypotheses there existsθ̄ > 0 such
that∀θ ≥ θ̄,∀χ : 0 < χ ≤ χ̄

‖z(t)− ζ(t)‖ ≤ Bz

ϕ(θ, χ)
, on [0, tM [ (25)

‖E(t)‖ ≤ ‖E(0)‖e−χ(1−(1+ 2
R )

LGBz
ϕ(θ,χ) )t+

+[χ(1− (1 +
2
R

)
LGBz

ϕ(θ, χ)
)]−1·

·(Bx + Bz

LF + (1 + 2
R )CF LG

ϕ(θ, χ)
) ≤

≤ ‖E(0)‖e−χ
2 t +

2
χ

(Bx + Bz), on [0, tM [

(26)

whereϕ(θ, χ) = θ−(1+ 2
R )LH(CF +χ‖E(0)‖+2(Bx+Bz));

namely it suffices that̄θ verifies the following inequality:

ϕ(θ̄, χ̄) > max{2(1+
2
R

)LGBz, LF +(1+
2
R

)CF LG}, (27)

therefore ifx(0) = γ(0), that is‖E(0)‖ = 0, then the choice
of θ̄ is independent of̄χ; for instance (27) holds if:

θ̄ > 2(1+
2
R

)[(LF +LG)(CF +Bz)+LHBz+LF +χ̄LH‖E(0)‖].
(28)

Now, continuing the proof of Theorem 3, (26) implies di-
rectly (24), to verify (23) we can suppose, unless of increasing
θ̄, that

ψ(θ̄, χ̄) , [(1− (1 +
2
R

))
LGBz

ϕ(θ̄, χ̄)
]−1(Bx+

+Bz

LF + (1 + 2
R )CF LG

ϕ(θ̄, χ̄)
) <

< iF cosβ − χ̄‖E(0)‖;

(29)

for instance, if χ̄‖E(0)‖ + 2(Bx + Bz) < iF cos β, then
it suffices thatθ̄ verifies (28). Therefore, by (26),∀θ ≥ θ̄,
∀χ : 0 < χ ≤ χ̄

‖E(t)‖ ≤ ‖E(0)‖+
ψ(θ̄, χ̄)

χ
, on [0, tM [ (30)

and

F (t, ζ)T G⊥(ζ) + χET G⊥(ζ) ≥ iF cos β − χ‖E‖ ≥
≥ iF cos β − χ̄‖E(0)‖ − ψ(θ̄, χ̄) , C > 0

therefore (23) holds. To prove (22), we remark first of all that
it is equivalent to show that

γ̇T (λ)G⊥(ζ(µ−1(λ))) > R, ∀λ ∈ [0, λM [ (31)

whereλM = supt∈[0,tM [{µ(t)}. By differentiating we get:

d

dλ
(γ̇T (λ)G⊥(ζ(µ−1(λ)))) = γ̈G⊥ + γ̇T dG⊥

dz

dζ

dt

dµ−1

dλ
=

= γ̈T G⊥ + γ̇T (−G(G⊥)T dG

dz
)·

·(Hu + θ(z − ζ))
γ̇G⊥

FT G⊥ + χET G⊥
=

= γ̈T G⊥ + (γ̇T G⊥)(GT γ̇)·

·( Xu

FT G⊥ + χET G⊥
+ θ

XH−1(z − ζ)
FT G⊥ + χET G⊥

).

sincedG⊥
dz = −G⊥ dG

dz . But

Xu

FT G⊥ + χET G⊥
=

XGT

FT G⊥ + χET G⊥
·

·[(FT G⊥

γ̇T G⊥
γ̇ − F )− χ(E − ET G⊥

γ̇T G⊥
γ̇)]+

= X(
GT γ̇

γ̇T G⊥
− GT (F + χE)

(F + χE)T G
],



therefore:

d

dλ
(γ̇T G⊥) = κνT G⊥ + (GT γ̇)T X(GT γ̇)+

−(γ̇T G⊥)(GT γ̇)T X

(
GT (F + χE)
(F + χE)T G

− θ
H−1(z − ζ)

FT G⊥ + χET G⊥

)

whereκ(λ) = ‖γ̈‖ andν(λ) is an orthogonal vector tȯγ(λ).
Remark that ifN(λ) is an n × (n − 1) orthonormal matrix
whose columns generate the subspace orthogonal toγ̇(λ), we
have that

‖νT G⊥‖ ≤ ‖NT G⊥‖ = (1− ‖γ̇G⊥‖2) 1
2 = ‖GT γ̇‖

therefore

d

dλ
(γ̇T G⊥) ≥ −κ̄‖νG⊥‖+ m‖GT γ̇‖2+

−M

C
(γ̇T G⊥)‖GT γ̇‖(‖F‖+ χ‖E‖+ θCH−1‖z − ζ‖) ≥

≥ ‖GT γ̇‖(m‖GT γ̇‖ − (γ̇T G⊥)
M

C
(CF +

+χ‖E(0)‖+ 2(Bx + Bz) +
θ

ϕ(θ, χ)
CH−1Bz)− κ̄),

by (23), (4), (5), (24) and (25). Furthermore, suppose thatθ̄ is
such that θ̄

ϕ(θ̄,χ̄)
≤ 2, that is

θ̄ > 2(1 +
2
R

)LH(CF + χ̄‖E(0)‖+ 2(Bx + Bz)), (32)

remark that both (28) and (32) hold if

θ̄ > 2(1 +
2
R

){(LF + LG)(CF + Bz)+

+LH(Bx + Bz) + LF + χ̄‖E(0)‖},
(33)

then

d

dλ
(γ̇T G⊥) ≥ ‖GT γ̇‖(m‖GT γ̇‖ − (γ̇T G⊥)Ā− κ̄) (34)

whereĀ = M(CF +χ̄||E(0)‖+2(Bx+Bz)(1+CH−1 ))

iF cos β−χ̄‖E(0)‖−ψ(θ̄,χ̄)
. Now sup-

pose, unless of increasinḡθ, thatĀ < A or equivalently that

ψ(θ̄, χ̄) < Bx +
1
2
(iF cos β − χ̄‖E(0)‖ −Bx) (35)

which is the case if, for instance, (28) holds andχ̄‖E(0)‖ +
4(Bx + Bz) < iF cosβ. If we denote byα(λ) the an-
gle between vectorṡγ(λ) and G⊥(ζ(µ−1)), we have that
γ̇(λ)G⊥(ζ(µ−1(λ)(λ))) = cos α(λ); then from (34) we get

(− sin α)α̇ ≥ sin α(m sin α− Ā cosα− κ̄), ∀λ ∈ [0, λM [

which implies that

α̇ ≤ −m sin α + Ā cosα− κ̄ a. e. on[0, λM [

that is

d

dλ
(α− ᾱ) ≤ −(m2 + Ā2)

1
2 sin(α− ᾱ)+ κ̄ a. e. on[0, λ̄M [

whereᾱ = arctan Ā
m . Thereforeα(λ) ≤ α̂ < π

2 , ∀λ ∈ [0, λ̄[
whereα̂ is any real number such that

max{(α(0)− ᾱ), arcsin((m2 + Ā2)−
1
2 κ̄)} ≤ α̂− ᾱ <

π

2
− ᾱ;

remark thatα(0) = arccos(γ̇(0)T G⊥(0)) < π
2 , by (15) and

(m2 + Ā2)−
1
2 κ̄ < sin(π

2 − ᾱ), by (16), being(1+( Ā
m

2
))−

1
2 =

sin(π
2 − arctan Ā

m ) = sin(π
2 − ᾱ). Since arcsin((m2 +

Ā2)−
1
2 κ̄)+arctan Ā

m < arcsin((m2 +A2)−
1
2 κ̄+arctan A

m <

arcsin((1 + A2

m2 )−
1
2 + arctan A

m = π
2 (being Ā < A and

κ̄
m < 1) we can takêα = max{arcsin((m2 + A2)−

1
2 K̄) +

arctan A
m , α(0)}, in other wordscosα(λ) ≥ cos α̂ = R

(see definition (20)) therefore (22) holds and the theorem is
proved.¤.

Remark 1 Suppose that4(Bx + Bz) < iF cos β, from the
proof of theorem3 we deduce the following procedure to de-
termine the values of the gains̄χ and θ̄:

1) takeχ̄ such thatχ̄‖E(0)‖+ 4(Bx + Bz) < iF cosβ

2) takeθ̄ > 2(1+ 2
R ){(LF +LG)(CF +Bz)+LH(Bx+Bz)+

LF + χ̄‖E(0)‖} where R is given by (20).

4 Simulation

Consider the simplified airplane model (1) with̄θ1 = θ̄2 = 0
and add the bounded noise termsex1 , ex2 , ex3 , ez1 , ez2 to the
state equation:




Q̇ = v(t)




cos(z1(t)) cos(z2(t))
sin(z1(t)) cos(z2(t))

sin(z2(t))


+

+



− sin z1(t) − cos z1(t) sin z2(t)
cos z1(t) − sin z1(t) sin z2(t)

0 cos z2(t)


u(t) +




ex1

ex2

ex3




ż = A−1(z)u(t) +
(

ez1

ez2 ,

)

x1(0) = 10, x2(0) = 0, x3(0) = 0, z1(0) = 0, z2(0) = 0.
(36)

wherev = 150m
s , d = 10m, the noise terms are sine func-

tion with frequency4 Hz and‖ex1‖, ‖ex2‖, ‖ex3‖ < 0.1 m
s2 ,

‖ez1‖, ‖ez2‖ < 0.01 rad
s2 . System (36) is in the form (10).

The reference trajectory is an helix with arc-length
parametrization:

x1 = r cos(λ
r

√
1− α)

x2 = r sin(λ
r

√
1− α)

x3 = αλ.

wherer is the radius and0 < α < 1 is a form parameter. We
choser = 20 andα = 0.5.

Figure 4 shows the reference and the output trajectory and the
error functionE(t) = x(t)− γ(µ(t)).

5 Conclusions:

We have proposed a dynamic controller which combines a
feedforward inversion based action with a feedback error cor-
rection for the control of a suitable class of nonlinear uncertain
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Figure 3: Helix example.

system. We have investigated its robust behaviour with respect
to the initial error and the noise terms bounds and have pro-
vided a convergence result which depends on the curvature of
the path to be followed.
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