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Abstract

The widely studied class of minimum phase observable nonlin-
ear systems with output dependent nonlinearities is considered.
The problem of tracking any smooth bounded output reference
signal is addressed, when the system is perturbed by additive
disturbances generated by an unknown stable linear exosystem
whose order is known. An output feedback solution is pre-
sented which achieves asymptotic tracking for any initial con-
dition of the closed loop system and of the exosystem, without
requiring any persistency of excitation condition.

1 Introduction

The class of nonlinear observable systems considered in this
paper is modeled by the equations������	�
��������������������������! !"$#%���! !"��&�('$���)�* !"$+�,�(-.�
��� �/ !" (1)

in which the triple �0���1���2��-.��� is in observer canonical form
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with � a Hurwitz vector of degree J ( J is the relative degree),
i.e. all the zeros of the polynomial �KE2L #NM E � :1:1: �O� #NMQP LR��� #
have negative real part (without loss of generality we assume�FE�� 8 ); ������!�TS  P �����F�1U1U1U1�� # �����WVYX is a known vector of
smooth functions; the matrices ' and � are unknown (only the
dimension Z of the exosystem is supposed to be known) but are
such that the overall system is observable, i.e. the pair[ �	���7 ']\ � G -.� 7�I

(3)

is observable and ' is a stable matrix. This hypothesis allows
for additive sinusoidal disturbances: in this case, the eigenval-
ues of ' are on the imaginary axis.

This class of observable nonlinear systems has been widely
studied when there are no disturbances ( �?� 7 ): geometric
conditions for the existence of a state diffeomorphism trans-
forming a system into (1) with �^� 7 are given in [?]; it
is shown in [?] how to track any given smooth bounded out-
put reference signal � + with bounded derivatives �`_ Pba+ , . . . , �c_ E a+
globally and exponentially by output feedback; it is shown in
[?] how to achieve robust output feedback stabilization and set
point regulation; it is shown in [?] how to design a robust regu-
lation when the control which solves the regulator equations is
immersible into a linear observable system. In [?] arbitrary dis-
turbance attenuation by output feedback is obtained for a class
of nonlinear systems with output dependent nonlinearities and
additive disturbances. The problem of rejecting unknown si-
nusoidal disturbances has been recently addressed in several
papers ([?, ?, ?, ?]): linear stable systems are considered in [?];
minimum phase linear systems with unknown parameters are
studied in [?]; in [?] the class of systems (1) is addressed with
the aim of driving the output to zero; in [?] the same class with
uncertain parameters is considered and the regulation problem
is solved; the regulator problem for linear systems (not neces-
sarily minimum phase) is solved in [?].

In this paper, we allow for additive disturbances � in (1) gen-
erated by an unknown stable linear exosystem whose order is
known and pose the tracking problem by output feedback; we
would like to reject asymptotically the disturbance � and to
track asymptotically a given smooth bounded output reference
signal while in [?] the reference output is zero and in [?] it is
generated by an exosystem. We will show that by using ap-
propriate filtered transformations the problem may be recasted
into an equivalent one for which nonlinear adaptive techniques
apply, so that output tracking can be achieved globally without
requiring any persistency of excitation condition.

2 Main result

In this section the following problem is addressed and solved.

Definition 2.1 The global tracking problem with disturbance
rejection is said to be solvable for system (1), if there exists
an output feedback control such that for any given smooth
bounded output reference signal � + ��d
� with bounded deriva-

tives �c_ Pba _ e a+ , . . . , �c_ E a+ ��d
� , for any initial condition and for any
unknown pair of matrices �f'$�g��� , all the closed loop signals
are bounded and the tracking error �h��d
�%iO� + ��d
� tends asymp-



totically to zero.

Theorem 2.1 Consider system (1). If:

1) � is a Hurwitz vetcor of degree J , i.e. all the zeros of the
polynomial �FE2L #NM E � :1:1: � � #NMQP L�� � # have negative real
part (without loss of generality, we assume �1E�� 8 );

2) ������ is a known vector of smooth functions;

3) the unknown matrices ' and � are such that the pair[ �	���7 ' \ , G�-.� 7 I
is observable;

4) ' is a stable matrix (i.e. � ��d
� is bounded for any initial
condition � � 7 � ) with known order Z ;

then the global tracking problem with disturbance rejection is
solvable.

Proof. With reference to system (1), if the relative degree J �8
, we introduce the input-filtered transformation ( ��  !" E MQP )
��� �
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���� �/i E� �
	 � �
 S �fV ��

� MQP (5)

with �
 S J V � ��
 S ��i 8 V �(�	� �
 S �fV � �� � MQP �
 S �fVW� J� � ���
and ��

�
,
8�� � � J i 8 , arbitrary positive reals. We obtain from

(1), (4) and (5) ��� �(�	� ���� �
 �� P ���������������,� -.� �� (6)��&� '$� (7)

where �
 � �
 S 8 V is, by construction, a Hurwitz vector of degree
1 with �
 P � 8 , by virtue of assumption 1). If J � 8 , we
simply set �
 � � , �� P � � , �� � � . Consider the output-filtered
transformation� P � �� P��� � �� � i�� � MQP � � ������� (8)�� � 45556
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and, by virtue of assumption 2), the new control variable�9� �� P �� P ��������� P U (10)

From (7), (8), (9) and (10), we have�� �(�	� � � �
 � ������9� -.� ��� � '$� U (11)

By virtue of hypothesis 3), system (11) is observable and there
exists a linear change of coordinates

� � G! P  � I [ ��<\�"�� [ ��<\ �#�  "$#%$ + (12)

transforming (11) into the observer canonical form�� �(�	�&�	�(' � �� P �
 � "� �	�&�	�(' � � 
 ��9� -.�&� (13)

in which the matrices ��� and -.� are now � � � Z �*) � � � Z � and8 ) � � � Z � , respectively. Since � P � � P � � , it follows that the
first row of  P is  PgP � S 8 � 7 �1U1U1UK� 7 VYX , so that the first element
of  P �
 � 


is

 P � 8 . The vectors ' and



are unknown

since  P depends on the unknown matrix ' . Let us consider
the filtered transformation (

� �
,
8�������� � Z i 8 are arbitrary

positive reals, �RS �fVQ !" � )

�� �+� i #%$ +� � 	 �-,
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with

. S � � Z V � G 7 U1U1U 7>8 I1X
. S � i 8 V ���	� . S � V � � � MQP . S � VW� � ������� � Z U

The constants ,
�

are given byG 8 , � :1:1: , #%$ + I1X � G . S 8 V :1:1: . S � � Z V I MQP 

and are unknown since the vector



is unknown. From (13),

(14) and (15), we obtain��� �(�	� ��	�(' � � . �2��� #%$ +� � 	 �-,
� �hS ��i 8 V���9� -.� �� (16)

with . � . S 8 V`� S 8 � . � �1U1U1UK� . #%$ + VYX such thatL #%$ + MQP � . � L #%$ + M � � :1:1: � . #%$ + MQP L.� . #%$ +� #%$ + MQP3�
	 P �fL.� �

� �RU (17)



Finally, we consider the output-filtered transformation� P � �� P � �� � � ��
� i #%$ +� � 	 P �

� MQP S �fV ' � � � ������� � Z (18)
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with � � being the i-th column of the � � � Z i 8 �-) � � � Z i 8 �
identity matrix, which transforms (16) into�� ���	��� � . � � � #%$ +� � 	 �-,

� �hS �Qi 8 V � #%$ +� � 	 P '
� � P S �fV �(' P ����,�(-.��� U (20)

Make the linear change of coordinates�9��� P� � ��� � $�P i . � $�P � P � 8�� � � � � Z i 8 U (21)

In the new coordinates, we have��9��� P � . � � �(' P � ��� � #%$ +� � 	 �-,
� �hS ��i 8 V � #%$ +� � 	 P '

� � P S �fV��,�
	���� �. � (22)

with
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We now consider the case J � 8 and define the following dy-
namic output feedback controller ( �� � � i � + )��� � iO P �����$i�� P

�9� i�� �� � �� + i��� P i . � � i��' P � i #%$ +� � 	 � �,
� �hS ��i 8 V

i #%$ +� � 	 P �'
� � P S �fV���,��	����� �. ���' P ��� P � ����' � ��� � �� � P S �fVW� � � � ��� � Z��, � ��� #%$ + $ � MQP �hS �Qi 8 V ��`� � � � � � � Z (23)

in which � � , 81� � � � � � � Z � i 8 , are positive adaptation gains.
The error dynamics are given by ( ������ i��� , �' � � ' � i��' � ,�,
� � , � i �, � )���,� i�� �� � �� P � �' P � � #%$ +� � 	 � � �'

� � P S �fV � �, � �hS �Qi 8 V����� ��	 ����' P � i�� P ��N���' � � i�� � �� � P S �fVW� � � � � � � Z��, � � i�� #%$ + $ � MQP �hS ��i 8 V ��c� � � � ��� � Z U (24)

Consider the function� � 8
� �� � ��� �� X�� �� � 8� #%$ +� � 	 P �'

��� � � 8� #%$ +� � 	 � �, �
�

� #%$ + $ � MQP (25)

with � solution of 	�X � � � 	 � i��! 7 and � � 7 . Its time
derivative along (18) is such that�� � i�� �� � � �� �� P i"� �� X � �� (26)

which implies by a proper choice of � that for a suitable � � 7�� � i��$#### [ �� �� \ ####
�

(27)

so that �� , �� , �' � , �, � are bounded. Therefore, �h��d
� is bounded and,
consequently, from (9), (19) and (22), ����d
� , ��S �fV ��d
� and �h��d
� are
bounded. Moreover, ��Q��d
� is also bounded from (23). Since
in system (1) � is a Hurwitz vector of degree one and �h��d
� is
bounded, it follows that ����d
� is also bounded. This fact may be
verified by making the change of coordinates�,� � P�� � � � � $�P iO� � $�P � P � 81� � ��� i 8 (28)

which maps (1) into��,� �� P ��� � � �� P �������O����� X P ����,� 45556
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with � X� being the i-th row of matrix � . From the first equation
in (29), we have��� 
 �
 d iO� � � iO P ������i � X P � i �� P (30)



and from (10) and (15) (recall that we are considering J � 8 )�
��
	�� . #NM

� S � i��fV 
 � �hS �fV
 d � � � � ���� P ��������� P �81� � ��� � Z i 8 (31)

which substituted in (30) gives (
81� � ��� � Z i 8 )�

��
	�� . #NM

� S � � Z i��fV 

� �hS �fV
 d � � 
 �
 d iO� � � i � X P �i �� P ��� P U (32)

Since �h��d
� , �� P ��d
� , � P ��d
� and � ��d
� (by virtue of assumption 4))
are bounded, and the polynomialsL #%$ + M � � . #%$ + M � $�P S � � Z i��fV�L #%$ + M

�
$�P%� :1:1:� . #%$ + S � � Z i��fVW� 8�� � � � � Z i 8

are Hurwitz, it follows that �hS �fV ��d
� , 8 � � � � � Z i 8 , are
bounded and, from (23), �`��d
� and �$��d
� are also bounded. There-
fore, from (15), �RS �fV ��d
� are bounded,

8 � � � � � Z i 8 . By
virtue of (24),

��� and
��� are bounded so that � �� � � �� X ���� is uni-

formly continuous. From (27), we can write

� e
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 � � i 8� � e� �� ��� � 
 � � 8� S � � 7 ��i � ��d
�WV
which, applying Barbalat’s Lemma [?], implies

� � �e	��
 ��`��d
�C� 7 U
If the relative degree is

8  J ��� , we set

�9� � � � �� (33)

and assume � � as the fictitious control input. The subse-
quent steps closely follow the control design procedure used
in [?] with the modifications suggested in [?] to avoid over-
parametrization. �
3 Example

In order to illustrate the control design presented in the previous
section, we consider the following system�� P � � � �O� � �O� P�� � � ��� P � � ��� � � i�� � P�,� � P U (34)

In this case we have J � � and we assume that the frequency �
of the sinusoidal disturbance affecting system (34) is unknown.
The matrix � � S 8 � 7 V X is assumed to be known so that some
simplifications in the control design, with respect to the general

case, are allowed. By means of the input-filtered transforma-
tion ��� � i �� ��/�O��� P ��� P � �� � � � � i �� (35)

we obtain ��� P � �� � � ��/�O� � �O� P��� � � �� ���,� �� P U (36)

The use of the output-filtered transformation� P � �� P � � � � �� � i���� � i �� ��i �� � � (37)

and the definition of a new variable�,� �� �O� � ��� (38)

allow us to obtain the system�� P � � � ��� �O� P�� � � �� ��9� � P�� P ��� ��� � � i�� � P U (39)

We now perform the linear change of coordinates� P � � P� � � � � �O� P� � � � � ��� � P��� ���
� �

(40)

yielding
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The input-filtered transformation��RS 8 V � i � P �RS 8 V ����� P S � V � i � P � P S � V ��� � S � V�� � S � V � i ��� � � S � V ����� P S � V � i � P � P S � V ��� � S � V�� � S � V � i ��� � � S � V ��� � S � V�� � S � V � i � � � � S � V ����hS 8 V � �RS 8 V�hS � V � � P S � V�hS � V � � P S � V
�� �+��i �� �

	 � ,
� ���
	 �/. S � V0�

� MQP S ��i 8 V (42)



maps (41) into

���>���	� ��	� 4556 7i��77
@ AAB � � . �2��� �� �

	 � ,
� �hS �Qi 8 V��

�,�(-.� �� U (43)

By means of the output-filtered transformation� P � �� P ��� � � �� � i�� � MQP S � V S �fV �bi�� ����S � V � 46 i . � 8H7i .� 798i . � 7=7 @B ��S � V � 46 � 77 @B (44)

we obtain�� �(�	��� � . �2� � �� �
	 � ,

� �hS ��i 8 V i �%� P S � V���9� -.��� (45)

which by the linear change of coordinates�,��� P� � ��� � $�P i . � $�P � P � 8�� � � � (46)

is further transformed into��,� � P � . � � ��� � �� �
	 � ,

� �hS ��i 8 V i �%� P S � V��,��	���� �. � (47)

with

	 � 46 i . � 8H7i .� 798i . � 7=7 @B � �. � 46 .� i . ��. �Di . � .�i . � . �
@B U

We define � � ��/� � � and consider � � as the control input,
choosing

� � � i�� �� � �� + i��� P i . � � i �� �
	 � �,

� �hS ��i 8 V � ��%� P S � V��� ��	����� �. � U (48)

The overall error dynamics are���,� i�� �� �� P � �� � �� �
	 � �,

� �hS ��i 8 V i ��%� P S � V��� ��	 �����,� �� i �� � �*i �� ��/�O��� � � �� � ��	i �� �� i �� �� �O��� � � ���� �� � � �� i � �� + i �� + � ��� P � . � ��� �� �
	 �
��, � �hS ��i 8 V � �� �

	 � �,
� ��`S ��i 8 V i ��� � P S � V i �� �� P S � V

� �/i �� ��/� ���i � �� + i �� + � ��� P � �� �
	 �
��, � �hS ��i 8 V

Figure 1: Simulation results.

� �� �
	 � �,

� ��`S ��i 8 V i ��� � P S � V i �� �� P S � V � � � P � . � ��!��� �� �
	 � ,

� �hS ��i 8 V i �%� P S � V��K� � � � � � . � � (49)

The control � and the parameter estimates are thus defined as

� � �� �� i �� � � �� + � �� + i ��� P i �� �
	 �
��, � �hS �Qi 8 Vi �� �

	 � �,
� ��hS ��i 8 V � � ��%� P S � V � �� �� P S � V

i�� �� P � . � � ��� � �� �
	 � �,

� �hS ��i 8 Vi ��%� P S � V��K� � � � � � . � �$i � P �� i � ��� � � ��� �� � i�� P � P S � V �� i � � � � � � . � � � P S � V ����, � �
� ��� �hS ��i 8 V ���� � � � � � � . � � �hS ��i 8 V ������ � � � � �
Some numerical simulations have been carried out with refer-
ence to the following parameters: � � � , � P ��� , � � �	� ,�� � 8 , � P � 8 , ��� � � , � � � � , � � � � 7 7 , 8 � � � � , � � � ,� + ��d
��� 8 i�
��� d . The initial conditions were assumed to be
zero except for the disturbance � P � 7 � � 7 U � �
� � � 7 � � 7 . The
results of the simulations are illustrated in fig. 1, where the time
histories of the tracking error �� , the control input � , the output
reference � + and the disturbance � P are reported.



4 Conclusions

The problem of tracking any smooth bounded output reference
signal for minimum phase nonlinear systems with output de-
pendent nonlinearities and additive unknown sinusoidal dis-
turbances has been addressed and solved globally by output
feedback, i.e. for any initial condition. While the system is
supposed to be known, only the order of the linear exosystem
which generates the unknown disturbances is required to be
known. A second order nonlinear example illustrates the de-
sign techniques and the achievable performance.
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