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Keywords: nonlinear control system, input-output equatiorifthe main purpose of this paper is to compare the different re-
state space realization, algebraic methods, geometric methadizability conditions and realization algorithms. To keep the

presentation simple, and since in [5, 4, 2] only the single-
Abstract input single-output (SISO) systems are studied, we consider

the SISO case. The main purpose of this paper is to demon-
Five different state space realizability conditions for nonline&trate that the realizability conditions, given in [5] are equiva-
single-input single-output high order input-output differentident to those in [6, 3] and yield the same results, at least for the
equation are compared and proved to be equivalent. Moreo®SO case. Moreover, we will demonstrate that the algorithms
the explicit formulas are provided for calculation of the difin [4, 2] can be understood as the methods to compute the basis
ferentials of the state coordinates which can be integratedf@s a subspace of one-forms. As for the differences between
obtain the state coordinates iff the necessary and sufficientfee geometric conditions [6] and the involutivity conditions [3]
alizability conditions are satisfied. for the multi-input multi-output case, see [3].

1 Introduction 2 The realization problem

The nonlinear realization problem for i/o differential equationkhe realization problem is defined as follows. Given the non-
has been the subject of several papers [2, 3, 4, 5, 6] where tiiffear system described by the i/o differential equation where
ferent approaches were provided to solve the problem. In [#)€ highest derivative of appears linearly

the intrinsic and coordinate-free necessary and sufficient real- (n) _ . (n—1) . - 5)

izability conditions were formulated in terms of integrability of vy =0y g,y YUy Ty ey u), )
certain sup;paces of pne-formsl, assopiated with the i/o mo 'ﬁh D /0ul®) 2 0, ands < n, find, if possible, the state coor-
and classified according to their relative degrees. The so hatesr € ™, x — ¢(y,...,y" V. u,...,u®) such that

fuon IS gonstructwg up to finding the integrating faCtOFS AN these coordinates the system takes the classical state space
integration of the integrable one-forms. The geometric neg-
essary and sufficient realizability conditions in [6] were formu- . _
lated in terms of the conditionally invariant distributions for the &= flz,u), y=hz,u), )
extended state space system, associated with the i/o equaiéfied the realization of (1). The solution of the realization
Neither [5] nor [6] discuss the computational aspects of tfgoblem in [5, 6, 4, 3] is formulated in terms of the extended
solution. On the other hand, the sufficient realizability condstate-space system, associated with (1), with the imput
tions obtained independently in [4] and [2] are both algorithm<**?), the statez = [y,...,y" "D u, .., u®]T € RFs+1
dependent. The realizability conditions are derived from ti@#d the vector field (z, v) defined as

algorithm, applied to the i/o differential equation, which con-
structs such a realization, if it exists. The approach is con-
structive, up to the solution of the partial differential equations.
Though there does not exist, in general, the classical state space

realization for nonlinear i/o differential equation, it is always, many papers on nonlinear control, system (3), (4) is treated
possible to write down the generalized state space realizatiQ,q realization of (1). The disadvantage ofékiended state
depending — besides the input —also upon the derivatives of the, -6 reqlizatioris that it uses thés + 1)th derivative of con-
input. Necessary and sufficient conditions are given in [3] ugy ,,(s+1) — explicitly and is not observable. For linear
der which there exists a generalized state transformation so ﬁ}%ems it is possible to find extended state coordinate transfor-
the der|v§t|ves of the th(.allnput are ellmlnated, and this res btion such that the system description in the new coordinates
may be viewed as conditions for classical state space realiggas not involve the explicit differentiation of the input and is
tion. Note that the conditions in [3] are expressed as integrahjliseraple. Since this is not always possible for nonlinear sys-
ity (_:ondltlons in terms of commutativity of certain vector f'e|d§ems, it is important to characterize the input-output models (1)
defined by the extended state space system. which do have a classical (observable) state space representa-
tion and as well the algorithm to find the state coordinates.

Zi=zig1, t=1,...,n—1, Z, = ¢(2) ©)

Znik = Znyk+1 K=1,...,8, Znisp1 =0. 4)



3 The solutions of the realization problem Now H;, = spany{w!™ " . W du, .. duls—F+D},
— _ [5+1] [5+1]
3.1 Algebraic solution of the realization problem k=1 s+1 andH. s =spanciw; ™. .own

o i ) , Remark. Though it is not necessary to represent the basis of
In [5] the realization problem is studied using the language gf, i, through the exact one-forms, in order to keep the cal-

d_iffer(_entiafl_f(_)rms. L?JK di”ﬁte the ﬁgld of r(?)erorgorphic func-cyjations more simple, it is advisable to define the new coor-
tions in a finite number of the variablgs, v'"), ¢ > 0}. OVer ginates at each intermediate step after checking the complete

the field C one can define a vector spae := spanc{dy | integrability of the subspac#l;. This approach also agrees
¢ € K}, spanned by the formal differentials of the elements gfii the algorithm given in subsection 4.3.

K. The relative degree of a one-formw < £* is defined to N _
be the least integer such that”) ¢ span,{dz}. If such an Proposition. The formulas (6) and (7) are equivalent.

integer does not exist, we set= co. A decreasing sequencep,ys. By the chain rule, for = 1,. .., s, we have
of subspace§H;, } of £* is defined by ’ o
Hi = spanyc{dz}, Hip1 = {w € Hy | & € Hy}, k> 1. Ls [L;flwy] (3/8u(5))} = Lrwl@/out)
®) +y Wl (L4(0/0u))
Obviously, H is the space of one-forms whose relative degree (8)

is greater than or equal o and the subspacés; are invariant As /") ¢ %, implies L}*lwl[r] € 'H,, it follows that
under state diffeomorphism.

L}‘lwz[r] (0/0u’*)) = 0. From the above and (8) we see that
Theorem 1 [5] The i/o differential equation (1) is locally real- v Il (s) r—1, [r] (s)

izable in the classical state space form (2) iff fox k < s+2 Liw; (0/0u'”) = =L} w; (Lf(a/au ‘ )) .9
the subspacel;, defined by (5) for the extended system (3), (4)

are completely integrable. The state coordinates can be fouRdpeated application of (9) enables us to write

by integrating the basis vectors #f. . ». Lrw@0fou®) = —LAWM(Lp0/0u®) = ... =
o o o (—1)kwl(LE(9/0u)).  This establishes the equality of
In principle, H,, 2 can be found using either Definition (5).formulas (6) and (7). -

or the algorithm, given in [1]. However, the algorithm in [1]

does not take into account the specific simple structure of the

extended system (3), (4). If we take this structure into accougt,

the following recursive algorithm can be obtained to compute

the basis of{;, from (5). The realization problem in [6] is studied us-

The algorithm for calculating the basis of Hs;,,. Define N9 the language Of. vgcto_r fields. The increas-
o 1 N ) ing sequence of distributions {Sx} of & =

Wi = WM = 4y=D i = 1,... n, and calculate recursively (n—1) (s+1)

i i LA spang{(9/9y),...,(0/y ), (0/0u),...,(0/0u )}

Geometric solution of the realization problem

fork=1,...,s is defined byS; = span {9/0ut**D}, and
9 Spa1 =S, +[f, S, Nkerdy Nkerdu], k>1 (20)
wl[kJrl] _ wz[k?] _ (_1)kw2[k?] (L]; ( )) du(s—k)7 (6)
Ouls where S denotes the involutive closure of the distributiSn
where and|f, S| denotes the distribution spanned by all Lie brackets
_— ot [f, X], with X a vector field contained i. Using the specific
Fo Z o) 0 +o() 0 n Z NO! 0 structure of the extended state space system (3), (4), it has been
— yi—1) Oy(n—1) — Ouli—1) proved by van der Schaft [7] th&t, C kerdu Nkerdy, k =

1,...,8+ 1,512 Nkerdu Nkerdy = Ss41. The distribution
is the vector field defined by the extended system (3), (4). TBe = 5, is the minimal involutive distributiors satisfying
kth step of the algorithm actually means that the one-f«ayfﬁ [g,S Nkerdy Nkerdu] C S, g€ S.
obtained at the previous step, will be orthogonalized with re-
spect to the vectorﬁelﬂ’}(&/au(s)). From direct computation

we get thato[* ") annihilates all the vectorfields, (9/9u(*)),
1=0,...,k. Alternatively, instead of (6), another formula ca

be derived to computez[k] which includes Lie derivatives of
one-forms, and not Lie derivatives of vectorfields as in (6)

Theorem 2 [6] The i/o differential equation (1) is locally re-
alizable in the classical state space form (2) iff all the distribu-
rEionsSl, ..., Ss12 are involutive.

3.3 Solution in terms of Lie brackets
(k+1] _  [kK] _ (7K, I[K] (s—k) _
Wi — i (wai ) (au(s)> du » k=18 The realizability conditions in [3] are formulated in terms of
(7) the involutivity of the vectorfields.



Theorem 3 [3] The i/o differential equation (1) is locally real- this partial differential equation has two independent solutions
izable in the classical state space form (2) iffoK ¢, » < s  r1(-) andry(-), then defining the new extended state coordi-
nates by these solutions as follows 1 = r1(+), 2, = r2(+)

¢ 0 yr 0 =0. (11) and leaving the other coordinates as before, we get the gener-
Fou ™™ ul® alized state equations with*~2) as the highest time deriva-
tive of control. Repeating the same procedure, we finally get
3.4 Algorithmic solution the classical state equations, if (13) can be solved at each in-

) ) ) .termediate step. Note that though obtained independently, the
In [4] the constructive algorithm up to the solution of the part'%llgorithm in [2] practically coincides with the one in [4].
differential equations has been presented for finding, if pos-

sible, the classical state space representation from the input- . ) .
output differential equation. The starting point for the algd? Main results: the equivalence of four methods
rithm is not the input-output equation (1), but the equati

0'F‘ne main purpose of this section is to prove the equivalence
where the highest derivative afappears already linearly pu'p P d

of the three different realizability conditions given in terms of
(n) _ : (n=1) o, (s—1)\,,(s) the subspaceX;, of one-forms, conditionally invariant distri-
y - a(y’y""7y 1u7u7"'7u )u (12) . . . P . .
1By, sy ™Dy, uGDY). butionsSy, gnd in involutivity of vectorﬂeld_s asin (11). Mort_a-
over, we will demonstrate, that the algorithm-based solutions
Note that linearity of (1) with respect to the highest derivativisom [4] and [2] can be understood as the method to compute
of u is the necessary condition for the basis for the subspaces of one-foftis k = 3,...,s+ 2.

(n) . .

S3 = spany {aug_l) + gi(s) . By((z—l) , 65(5)’ 6u<‘2+1) } 4.1 Relationship of the sequencegH, } and {S;}
Theorem 4 Assume that the distributiorts., k = 1,...,s5+2

to be involutive. The functio(z) in (3) now takes the form are all involutive. Then the subspaces of one-foff)san-

¢(2) = B(2) + a(z)u®). The algorithm in [4] derives system-nihilate the distributionsS}, that is My (S;) = 0 for k =

atically the new extended (generalized) state variables at each . ¢ 4 2.

step of the algorithm, if this is possible. If the partial differen-

tial equation
Proof. Consider the subspacgl; = spanc{dy,...,

a() or i or  _ 0 (13) dy™=Y . du,...,du®} which is obviously an annihilator of
oyn=1 T Gul—D Sy = spanyc {(0/0u*TV)}, Hy(S1) = 0. Next, we will show
thatH2(S2) = 0. According to formula (10)

has a solution, define the new coordinatethrough the so-
lution of this equation ag; = z;, if i # nandz, = P P
gy us ..., uGD). In the new coordinates Sy = span,c{ 5 {f, : }}
the extended state equations become Ouls*D) Oulst1)

2 = Zp, k=1,...,n—2 We denote for an arbitrary subspace of one-forhis =
Enct = P11 Enrs)s En = 32(E1, e Bt spang{w;, i = 1,...,p}, LyH = spang{Ljw;, i =
(14) 1,...,p} By (10)
and
. , Ha(S2) = Ha(S1+[f, 51]) = Ha(S1) + Ha([f, 51])
57,,_;'_7; = Zn+i+1, 7= 1, ceey Sy 2"_;,_5_;'_1 = (15) = HQ(Sl) + LfHQ(S1)

Equation (14) can be regarded as a generalized state space dg;.e botiHs © Hy andLHo C Hy, we haveHs(S,) = 0.

scription depending om and its time derivatives up to ordenys can proceed analogously taking into account (10) and the
s — 1. There is thus one differentiation less of the input thag thatHy 1 C Hp, LiHpsy C Hp bk =1,...,s+ 110

in (3). If (13) has no solution, then there does not exist a Stﬁ‘fﬁ)ve the theorem. -
space representation for (12).

Atthe nextstep, if51 (21, ..., Znys) andpz (21, ..., Znys) CAN Remark. If Sy, is not involutive, then the annihilator o

be put into the form (12), i. e. they are linear =", is not#,, but the largest completely integrable subset of
then the same procedure can be repeated to them to produge, .

a new generalized state space representation with?) as

the highest time derivative of the input. From the two func-

tions ¢, (-) and @, (-) we construct partial differential equa-Corollary 1 The subspace, k = 1,...,s + 2, defined by
tion a1 () (9r/0zn_1) + az(-)(Or/8zn) + (81 /0znis—1) = 0 (5) for the extended system (3), (4) are completely integrable
whereg;(-) = 6;(-) + o (-)uls=V, i = 1,2 andf;, a; do not  iff the distributionsSy, k = 1,..., s +2 defined by (10) for the
depend on the highest time derivative of the contélV). If ~extended system (3), (4) are involutive.



4.2 The relationship between the condition in terms of
one-forms and Lie brackets

Theorem 5 Integrability of the subspacés,, k = 1,...,s+2
is equivalent to condition (11).

Proof. Assume that all the subspacKs are integrable which
will yield that all the subspaceS;, k = 1,...,s + 2 are invo-
lutive. Then one can represe$it, fork =1,...,s+2as

b

(16)

0

Bulet

0 0

. k-1
Sk = spang {Lf Ly OuGtD’ gy ls+D)

From (16) and the involutivity o}, (11) follows.

Assume now that (11) holds, and define the distributions

} 17)

which are by (11) involutive fok = 1,...,s + 2. We will
show thatH;, is a maximal annihilator of the distributio,
which implies the complete integrability ;. From the defi-
nition of 1, we havet; ((9/0u*+1))) = 0, which means that

0
a0

0
7 OulstD)

o) = spalg {L];c_l

H1(o1) = 0. The remaining part of the proof is by induction

on k. We show thatt; (o) = 0 implies Hyt1(ok+1) = 0.
Note that fromHy (o) = 0 we getHiy1(ox) = 0 since
His1 C Hyi. Then fromH,, 1 (o)) = 0 we getHyiq (o) =
—'Hk{rl([f, or]). BY (17) ok41 = o + [f, 0k)- AS Hi41 C
Hyi, Hi+1 (o) = 0 which implies that 1 ([f, ox]) = 0 and
this is the desired conclusion.

4.3 Realization algorithm

walf] € H,. A natural choice is (see also (6))

>du<s—l> )

o

dy™=) + <dy<”—1)Lf
dy(nfl) — a(.)du(sfl)

0
ouls)

Note that the one-formv? annihilatesL ;(8/0u(*)) in (18).
So, if the one-formw!?’ is exact, the solution of (18) can be
obtained by integratingJ,[f]. Of course, the one-form (19)
is not necessarily an exact one-form. Hf; is completely
integrable, then it is possible to find the integrating factors
Ay, i = 0,....,n—1, B;j, j = 0,...,s — 2 such that
Ap 1wl 3772 Aydy® +3°575 B;dul? is exact and equal

to dr, ~ being the solution of (18). In the similar manner it
can be demonstrated that the second step of the algorithm con-
structs the exact basis vectors fh, if possible and so on.

]
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