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Abstract

Five different state space realizability conditions for nonlinear
single-input single-output high order input-output differential
equation are compared and proved to be equivalent. Moreover,
the explicit formulas are provided for calculation of the dif-
ferentials of the state coordinates which can be integrated to
obtain the state coordinates iff the necessary and sufficient re-
alizability conditions are satisfied.

1 Introduction

The nonlinear realization problem for i/o differential equations
has been the subject of several papers [2, 3, 4, 5, 6] where dif-
ferent approaches were provided to solve the problem. In [5],
the intrinsic and coordinate-free necessary and sufficient real-
izability conditions were formulated in terms of integrability of
certain subspaces of one-forms, associated with the i/o model
and classified according to their relative degrees. The solu-
tion is constructive up to finding the integrating factors and
integration of the integrable one-forms. The geometric nec-
essary and sufficient realizability conditions in [6] were formu-
lated in terms of the conditionally invariant distributions for the
extended state space system, associated with the i/o equation.
Neither [5] nor [6] discuss the computational aspects of the
solution. On the other hand, the sufficient realizability condi-
tions obtained independently in [4] and [2] are both algorithm-
dependent. The realizability conditions are derived from the
algorithm, applied to the i/o differential equation, which con-
structs such a realization, if it exists. The approach is con-
structive, up to the solution of the partial differential equations.
Though there does not exist, in general, the classical state space
realization for nonlinear i/o differential equation, it is always
possible to write down the generalized state space realization
depending – besides the input – also upon the derivatives of the
input. Necessary and sufficient conditions are given in [3] un-
der which there exists a generalized state transformation so that
the derivatives of the the input are eliminated, and this result
may be viewed as conditions for classical state space realiza-
tion. Note that the conditions in [3] are expressed as integrabil-
ity conditions in terms of commutativity of certain vector fields
defined by the extended state space system.

The main purpose of this paper is to compare the different re-
alizability conditions and realization algorithms. To keep the
presentation simple, and since in [5, 4, 2] only the single-
input single-output (SISO) systems are studied, we consider
the SISO case. The main purpose of this paper is to demon-
strate that the realizability conditions, given in [5] are equiva-
lent to those in [6, 3] and yield the same results, at least for the
SISO case. Moreover, we will demonstrate that the algorithms
in [4, 2] can be understood as the methods to compute the basis
for a subspace of one-forms. As for the differences between
the geometric conditions [6] and the involutivity conditions [3]
for the multi-input multi-output case, see [3].

2 The realization problem

The realization problem is defined as follows. Given the non-
linear system described by the i/o differential equation where
the highest derivative ofy appears linearly

y(n) = ϕ(y, ẏ, . . . , y(n−1), u, u̇, . . . , u(s)), (1)

with ∂ϕ/∂u(s) 6≡ 0, ands ≤ n, find, if possible, the state coor-
dinatesx ∈ IRn, x = ψ(y, . . . , y(n−1), u, . . . , u(s)) such that
in these coordinates the system takes the classical state space
form

ẋ = f(x, u), y = h(x, u), (2)

called the realization of (1). The solution of the realization
problem in [5, 6, 4, 3] is formulated in terms of the extended
state-space system, associated with (1), with the inputv =
u(s+1), the statez = [y, . . . , y(n−1), u, ..., u(s)]T ∈ IRn+s+1

and the vector fieldf(z, v) defined as

żi = zi+1, i = 1, . . . , n− 1, żn = ϕ(z) (3)

żn+k = zn+k+1 k = 1, . . . , s, żn+s+1 = v. (4)

In many papers on nonlinear control, system (3), (4) is treated
as the realization of (1). The disadvantage of theextended state
space realizationis that it uses the(s + 1)th derivative of con-
trol u(s+1) = v explicitly and is not observable. For linear
systems it is possible to find extended state coordinate transfor-
mation such that the system description in the new coordinates
does not involve the explicit differentiation of the input and is
observable. Since this is not always possible for nonlinear sys-
tems, it is important to characterize the input-output models (1)
which do have a classical (observable) state space representa-
tion and as well the algorithm to find the state coordinates.



3 The solutions of the realization problem

3.1 Algebraic solution of the realization problem

In [5] the realization problem is studied using the language of
differential forms. LetK denote the field of meromorphic func-
tions in a finite number of the variables{z, v(t), t ≥ 0}. Over
the fieldK one can define a vector spaceE∗ := spanK{dϕ |
ϕ ∈ K}, spanned by the formal differentials of the elements of
K. The relative degreer of a one-formω ∈ E∗ is defined to
be the least integer such thatω(r) 6∈ spanK{dz}. If such an
integer does not exist, we setr = ∞. A decreasing sequence
of subspaces{Hk} of E∗ is defined by

H1 = spanK{dz},Hk+1 = {ω ∈ Hk | ω̇ ∈ Hk}, k ≥ 1.
(5)

Obviously,Hk is the space of one-forms whose relative degree
is greater than or equal tok, and the subspacesHk are invariant
under state diffeomorphism.

Theorem 1 [5] The i/o differential equation (1) is locally real-
izable in the classical state space form (2) iff for1 ≤ k ≤ s+2
the subspacesHk defined by (5) for the extended system (3), (4)
are completely integrable. The state coordinates can be found
by integrating the basis vectors ofHs+2.

In principle,Hs+2 can be found using either Definition (5),
or the algorithm, given in [1]. However, the algorithm in [1]
does not take into account the specific simple structure of the
extended system (3), (4). If we take this structure into account,
the following recursive algorithm can be obtained to compute
the basis ofHs+2 from (5).

The algorithm for calculating the basis ofHs+2. Define
ω

[0]
i = ω

[1]
i = dy(i−1), i = 1, . . . , n, and calculate recursively

for k = 1, . . . , s

ω
[k+1]
i = ω

[k]
i − (−1)kω

[k]
i

(
Lk

f

∂

∂u(s)

)
du(s−k), (6)

where

f =
n−1∑

i=1

y(i) ∂

∂y(i−1)
+ ϕ(·) ∂

∂y(n−1)
+

s+1∑

i=1

u(i) ∂

∂u(i−1)

is the vector field defined by the extended system (3), (4). The
kth step of the algorithm actually means that the one-formω

[k]
i ,

obtained at the previous step, will be orthogonalized with re-
spect to the vectorfieldLk

f (∂/∂u(s)). From direct computation

we get thatω[k+1]
i annihilates all the vectorfieldsLl

f (∂/∂u(s)),
l = 0, . . . , k. Alternatively, instead of (6), another formula can
be derived to computeω[k]

i which includes Lie derivatives of
one-forms, and not Lie derivatives of vectorfields as in (6)

ω
[k+1]
i = ω

[k]
i −

(
Lk

fω
[k]
i

) (
∂

∂u(s)

)
du(s−k), k = 1, . . . , s.

(7)

Now Hk = spanK{ω[k−1]
1 , . . . , ω

[k−1]
n , du, . . . , du(s−k+1)},

k = 1, . . . , s + 1, andHs+2 = spanK{ω[s+1]
1 , . . . , ω

[s+1]
n }.

Remark. Though it is not necessary to represent the basis of
eachHk through the exact one-forms, in order to keep the cal-
culations more simple, it is advisable to define the new coor-
dinates at each intermediate step after checking the complete
integrability of the subspaceHk. This approach also agrees
with the algorithm given in subsection 4.3.

Proposition. The formulas (6) and (7) are equivalent.

Proof. By the chain rule, forr = 1, . . . , s, we have

Lf

[
Lr−1

f ω
[r]
i (∂/∂u(s))

]
= Lr

fω
[r]
i (∂/∂u(s))

+Lr−1
f ω

[r]
i

(
Lf (∂/∂u(s))

)
.

(8)
As ω

[r]
i ∈ Hr+1 implies Lr−1

f ω
[r]
i ∈ H2, it follows that

Lr−1
f ω

[r]
i (∂/∂u(s)) = 0. From the above and (8) we see that

Lr
fω

[r]
i (∂/∂u(s)) = −Lr−1

f ω
[r]
i

(
Lf (∂/∂u(s))

)
. (9)

Repeated application of (9) enables us to write
Lk

fω
[k]
i (∂/∂u(s)) = −Lk−1

f ω
[k]
i (Lf (∂/∂u(s)) = . . . =

(−1)kω
[k]
i (Lk

f (∂/∂u(s)). This establishes the equality of
formulas (6) and (7).

3.2 Geometric solution of the realization problem

The realization problem in [6] is studied us-
ing the language of vector fields. The increas-
ing sequence of distributions {Sk} of E =
spanK{(∂/∂y), . . . , (∂/∂y(n−1)), (∂/∂u), . . . , (∂/∂u(s+1))}
is defined byS1 = spanK

{
∂/∂u(s+1)

}
, and

Sk+1 = S̄k + [f, S̄k ∩ ker dy ∩ ker du], k ≥ 1 (10)

whereS̄ denotes the involutive closure of the distributionS,
and[f, S] denotes the distribution spanned by all Lie brackets
[f, X], with X a vector field contained inS. Using the specific
structure of the extended state space system (3), (4), it has been
proved by van der Schaft [7] thatSk ⊂ ker du ∩ ker dy, k =
1, . . . , s + 1, Ss+2 ∩ ker du∩ ker dy = Ss+1. The distribution
S∗ = Ss+2 is the minimal involutive distributionS satisfying
[g, S ∩ ker dy ∩ ker du] ⊂ S, g ∈ S.

Theorem 2 [6] The i/o differential equation (1) is locally re-
alizable in the classical state space form (2) iff all the distribu-
tionsS1, . . . , Ss+2 are involutive.

3.3 Solution in terms of Lie brackets

The realizability conditions in [3] are formulated in terms of
the involutivity of the vectorfields.



Theorem 3 [3] The i/o differential equation (1) is locally real-
izable in the classical state space form (2) iff for0 ≤ q, r ≤ s

[
Lq

f

∂

∂u(s)
, Lr

f

∂

∂u(s)

]
≡ 0. (11)

3.4 Algorithmic solution

In [4] the constructive algorithm up to the solution of the partial
differential equations has been presented for finding, if pos-
sible, the classical state space representation from the input-
output differential equation. The starting point for the algo-
rithm is not the input-output equation (1), but the equation
where the highest derivative ofu appears already linearly

y(n) = α(y, ẏ, . . . , y(n−1), u, u̇, . . . , u(s−1))u(s)

+β((y, ẏ, . . . , y(n−1), u, u̇, . . . , u(s−1))).
(12)

Note that linearity of (1) with respect to the highest derivative
of u is the necessary condition for

S3 = spanK

{
∂

∂u(s−1)
+

∂y(n)

∂u(s)
· ∂

∂y(n−1)
,

∂

∂u(s)
,

∂

∂u(s+1)

}

to be involutive. The functionϕ(z) in (3) now takes the form
ϕ(z) = β(z) + α(z)u(s). The algorithm in [4] derives system-
atically the new extended (generalized) state variables at each
step of the algorithm, if this is possible. If the partial differen-
tial equation

α(·) ∂r

∂y(n−1)
+

∂r

∂u(s−1)
= 0 (13)

has a solution, define the new coordinatesz̃ through the so-
lution of this equation as̃zi = zi, if i 6= n and z̃n =
r(y, ẏ, . . . , y(n−1), u, u̇, . . . , u(s−1)). In the new coordinates
the extended state equations become

˙̃zk = z̃k+1, k = 1, . . . , n− 2
˙̃zn−1 = ϕ̃1(z̃1, . . . , z̃n+s), ˙̃zn = ϕ̃2(z̃1, . . . , z̃n+s)

(14)
and

˙̃zn+i = zn+i+1, i = 1, . . . , s, ˙̃zn+s+1 = v (15)

Equation (14) can be regarded as a generalized state space de-
scription depending onu and its time derivatives up to order
s − 1. There is thus one differentiation less of the input than
in (3). If (13) has no solution, then there does not exist a state
space representation for (12).

At the next step, ifϕ̃1(z̃1, . . . , z̃n+s) andϕ̃2(z̃1, . . . , z̃n+s) can
be put into the form (12), i. e. they are linear inu(s−1),
then the same procedure can be repeated to them to produce
a new generalized state space representation withu(s−2) as
the highest time derivative of the input. From the two func-
tions ϕ̃1(·) and ϕ̃2(·) we construct partial differential equa-
tion α1(·)(∂r/∂zn−1) + α2(·)(∂r/∂zn) + (∂r/∂zn+s−1) = 0
whereϕ̃i(·) = βi(·) + αi(·)u(s−1), i = 1, 2 andβi, αi do not
depend on the highest time derivative of the controlu(s−1). If

this partial differential equation has two independent solutions
r1(·) andr2(·), then defining the new extended state coordi-
nates by these solutions as followsẑn−1 = r1(·), ẑn = r2(·)
and leaving the other coordinates as before, we get the gener-
alized state equations withu(s−2) as the highest time deriva-
tive of control. Repeating the same procedure, we finally get
the classical state equations, if (13) can be solved at each in-
termediate step. Note that though obtained independently, the
algorithm in [2] practically coincides with the one in [4].

4 Main results: the equivalence of four methods

The main purpose of this section is to prove the equivalence
of the three different realizability conditions given in terms of
the subspacesHk of one-forms, conditionally invariant distri-
butionsSk, and in involutivity of vectorfields as in (11). More-
over, we will demonstrate, that the algorithm-based solutions
from [4] and [2] can be understood as the method to compute
the basis for the subspaces of one-formsHk, k = 3, . . . , s + 2.

4.1 Relationship of the sequences{Hk} and {Sk}
Theorem 4 Assume that the distributionsSk, k = 1, . . . , s+2
are all involutive. Then the subspaces of one-formsHk an-
nihilate the distributionsSk, that isHk(Sk) = 0 for k =
1, . . . , s + 2.

Proof. Consider the subspaceH1 = spanK{dy, . . . ,
dy(n−1), du, . . . , du(s)} which is obviously an annihilator of
S1 = spanK

{
(∂/∂u(s+1))

}
,H1(S1) = 0. Next, we will show

thatH2(S2) = 0. According to formula (10)

S2 = spanK

{
∂

∂u(s+1)
,

[
f,

∂

∂u(s+1)

]}
.

We denote for an arbitrary subspace of one-formsH =
spanK{ωi, i = 1, . . . , p}, LfH = spanK{Lfωi, i =
1, . . . , p}. By (10)

H2(S2) = H2(S1 + [f, S1]) = H2(S1) +H2([f, S1])
= H2(S1) + LfH2(S1)

. Since bothH2 ⊂ H1 andLfH2 ⊂ H1, we haveH2(S2) = 0.
We can proceed analogously taking into account (10) and the
fact thatHk+1 ⊂ Hk, LfHk+1 ⊂ Hk, k = 1, . . . , s + 1 to
prove the theorem.

Remark. If Sk is not involutive, then the annihilator ofSk+1

is notHk+1, but the largest completely integrable subset of
Hk+1.

Corollary 1 The subspacesHk, k = 1, . . . , s + 2, defined by
(5) for the extended system (3), (4) are completely integrable
iff the distributionsSk, k = 1, . . . , s+2 defined by (10) for the
extended system (3), (4) are involutive.



4.2 The relationship between the condition in terms of
one-forms and Lie brackets

Theorem 5 Integrability of the subspacesHk, k = 1, . . . , s+2
is equivalent to condition (11).

Proof. Assume that all the subspacesHk are integrable which
will yield that all the subspacesSk, k = 1, . . . , s + 2 are invo-
lutive. Then one can representSk, for k = 1, . . . , s + 2 as

Sk = spanK

{
Lk−1

f

∂

∂u(s+1)
, . . . , Lf

∂

∂u(s+1)
,

∂

∂u(s+1)

}
.

(16)
From (16) and the involutivity ofSk, (11) follows.

Assume now that (11) holds, and define the distributions

σk = spanK

{
Lk−1

f

∂

∂u(s+1)
, . . . ,

∂

∂u(s+1)

}
(17)

which are by (11) involutive fork = 1, . . . , s + 2. We will
show thatHk is a maximal annihilator of the distributionσk

which implies the complete integrability ofHk. From the defi-
nition ofH1, we haveH1((∂/∂u(s+1))) = 0, which means that
H1(σ1) = 0. The remaining part of the proof is by induction
on k. We show thatHk(σk) = 0 impliesHk+1(σk+1) = 0.
Note that fromHk(σk) = 0 we getHk+1(σk) = 0 since
Hk+1 ⊂ Hk. Then fromHk+1(σk) = 0 we getḢk+1(σk) =
−Hk+1([f, σk]). By (17) σk+1 = σk + [f, σk]. As Ḣk+1 ⊂
Hk, Ḣk+1(σk) = 0 which implies thatHk+1([f, σk]) = 0 and
this is the desired conclusion.

4.3 Realization algorithm

In this subsection we will demonstrate that the algorithm from
[4] or [2], recalled in subsection 3.4, constructs the exact basis
vectors for the subspace of one-formsHk, k ≥ 3, whenever
possible. Note that the basis vectors forH1 are always exact
by definition and the basis vectors forH2 are exact by the spe-
cific structure of (3), (4). Let us consider the first step of the
algorithm which requires to find the solution for the partial dif-
ferential equation (13), that is for the equation

−Lf
∂

∂u(s)
= α(·) ∂

∂y(n−1)
+

∂

∂u(s−1)
= 0. (18)

In case this equation is solvable, the solutionr(·) de-
fines the new state coordinatẽzn = r(y, ẏ, . . . , y(n−1),
u, u̇, . . . , u(s−1)) and in case there is no solution, the algorithm
stops, meaning that the i/o equation cannot be transformed into
the state space form. We will demonstrate that equation (18)
has a solution iffH3 is integrable and thatdr ∈ H3.

In order to define H3, we calculate, LfH2 =
spanK{dy(1), . . . , dy(n), du(1), . . . , du(s)} where L(H2)
in dy(n) = L(H2) + (∂y(n)/∂u(s))du(s) has to be understood
as the linear combination of one-forms contained inH2.
According to (5), to get a basis element ofH3, dy(n−1) has
to be replaced by another one-formω[2]

n in such a way that

Lfω
[2]
n ∈ H2. A natural choice is (see also (6))

ω
[2]
n = dy(n−1) +

(
dy(n−1)Lf

∂

∂u(s)

)
du(s−1)

= dy(n−1) − α(·)du(s−1)
(19)

Note that the one-formω[2]
n annihilatesLf (∂/∂u(s)) in (18).

So, if the one-formω
[2]
n is exact, the solution of (18) can be

obtained by integratingω[2]
n . Of course, the one-form (19)

is not necessarily an exact one-form. IffH3 is completely
integrable, then it is possible to find the integrating factors
Ai, i = 0, . . . , n − 1, Bj , j = 0, . . . , s − 2 such that

An−1ω
[2]
n +

∑n−2
i=0 Aidy(i) +

∑s−2
j=0 Bjdu(j) is exact and equal

to dr, r being the solution of (18). In the similar manner it
can be demonstrated that the second step of the algorithm con-
structs the exact basis vectors forH4, if possible and so on.
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