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Abstract

The goal of this paper is two-fold. First, given an ar-
bitrary n-dimensional discrete-time nonlinear dynamical
system, necessary and sufficient conditions for the exis-
tence of a one-dimensional invariant codistribution are
obtained. Second, it is shown that the previous condi-
tions can be used iteratively to obtain a nested sequence
of n invariant codistributions with the properties that each
codistribution contains the previous one and the last one
coincides with the cotangent bundle of the state manifold.
As a byproduct, necessary and sufficient conditions are
obtained for a discrete-time nonlinear dynamical system
to be equivalent to the so-called feedforward form.

1 Introduction

Invariant distributions and their dual, invariant codistri-
butions, occupy a prominent place in nonlinear control
theory. They have been used to study controllability
and observability properties of nonlinear control systems,
and to solve various nonlinear synthesis problems. For
discrete-time nonlinear control systems, invariant distrib-
utions were introduced in [9, 14].

Recently, a generalized notion of invariance has been in-
troduced for both continuous- and discrete-time nonlin-
ear systems. This new notion has been used to solve
the dynamic disturbance decoupling problem (DDDP), see
[2, 10].

Despite the widespread use of invariant codistributions in
control theory, the following question does not seem to
have received an answer: given a nonlinear control sys-
tem, what are all possible invariant codistributions with
respect to the system dynamics? Of course answers to spe-
cial cases of this questions are well known. For instance,
checking whether a given codistribution is invariant or not
is a simple exercise. Also, explicit methods are available
which allow to construct the smallest invariant codistrib-
ution containing a given codistribution.

The first goal of this paper is to give a partial answer to the

above general question. More specifically, given a discrete-
time nonlinear dynamical system, a characterization of all
one-dimensional codistributions which are invariant with
respect to the system dynamics will be given. As we shall
see, the solution of this apparently simple problem is by
no means obvious and, moreover, suggests the solution to
various equivalence problems.

The second goal of this paper is the characterization of dis-
crete time systems which are equivalent to the so-called
feedforward form. This is accomplished by means of an
algorithm designed to construct a nested sequence of in-
variant codistributions. In the case of continuous-time
systems, the feedforward form got a geometric interpreta-
tion in [5] in terms of a sequence of controlled nonlinear
distributions. Unfortunately, no algorithmic procedure
is available to compute such a sequence of distributions.
In that respect, it is worth noticing that our results for
discrete-time systems are stronger that their continuous-
time counterpart.

Preliminary results were reported in [4]. The main ad-
vance in this paper is the following: it is shown that the
accomplishment of the so-called Invariant Codistribution
Algorithm (ICA) is independent of the particular basis
chosen at each step. Also, some worked examples have
been included in order to illustrate the main contribu-
tions.

The paper is organized as follows. In Section 2, we adapt
the linear algebraic formalism introduced in [3, 8] to the
case of uncontrolled systems. In Section 3, the notion of
eigenform is presented, as well as its application to the
characterization of one dimensional invariant codistribu-
tions. In Section 4, the results of the previous Section are
used iteratively in order to construct nested sequences of
invariant codistributions. In Section 5, it is shown that
integrability of these codistributions is a necessary and
sufficient condition for equivalence to the so-called feed-
forward form. Finally, concluding remarks are offered in
Section 6.

2 Preliminaries

Throughout the rest of this paper we will make extensive
use of the linear algebraic framework introduced in [3, 8].



It will be necessary, however, to adapt this framework
to the situation of uncontrolled systems. At some places
of the paper, notions from exterior differential systems
will be used. For these matters, the reader is referred to
[1, 6, 7].

In this paper we will be dealing with discrete-time nonlin-
ear dynamical systems described by the following differ-
ence equation:

x(t + 1) = f [x(t)], x(0) = x0, t ≥ 0, (1)

where the state x(t) ∈ IRn, and f : IRn → IRn is a real
analytic mapping.

Define the operator $ : IRn → IRn by

ν 7→ f(ν),

where f(·) is the same mapping as in (1).

Let K denote the field of meromorphic functions of the
scalar components of

x(0) = [x1(0), . . . , xn(0)]T ∈ IRn.

The elements of K can be viewed as functions ϕ : IRn →
IR. Using this interpretation, the forward-shift operator
δ : K → K is defined by δϕ = ϕ ◦ $. Sometimes, the
abridged notation ϕ+(·) = δϕ(·) is used.

Define the vector space E = spanK {dϕ | ϕ ∈ K}. The
elements of E are called one-forms. The operator δ : K →
K induces the operator ∆ : E → E in the following way.
Let ω =

∑
i aidϕi ∈ E . Then

ω+ = ∆ω = ∆(
∑

i

aidϕi) =
∑

i

a+
i dϕ+

i .

Throughout the paper it will be assumed that the dynam-
ics of system (1) is reversible. More precisely, we make the
following technical assumption

Assumption 1

rankK
∂f

∂x
= n.

Assumption 1 implies that the subset S ⊂ IRn where the
Jacobian matrix ∂f

∂x losses rank is of measure zero in IRn.
Assumption 1 also guarantees that the mapping δ : K → K
is well defined. It is satisfied for discrete-time systems
which arise from sampling a continuous time system [11].
The following example displays the type of pathologies
that can appear for non reversible systems.

Example 1 Consider the discrete-time nonlinear system

x+
1 = x2

x+
2 = − x1

x+
3 = x1x2.

(2)

Easy computations show that system (2) does not satisfy
Assumption 1. Define the function µ = 1

x3+x1x2
∈ K. It

can be checked that the forward-shift µ+ is not defined.

Under Assumption 1, the mapping $ : IRn → IRn is
well defined and invertible. Therefore, the backward-
shift operator δ−1 : K → K exists and is defined by
δ−1ϕ = ϕ ◦ $−1. Sometimes, the abridged notation
ϕ−(·) = δ−1ϕ(·) will be used.

The operator ∆−1 : E → E is defined in the following way.
Let ω =

∑
i aidϕi ∈ E . Then

ω− = ∆−1ω = ∆−1(
∑

i

aidϕi) =
∑

i

a−
i dϕ−

i .

Given a codistribution or subspace

Ω = spanK {ω1, . . . , ωr} ⊂ E ,

define Ω+ = ∆Ω = spanK {ω+ | ω ∈ Ω}.

Definition 1 A codistribution Ω ⊂ E is said to be invariant
with respect to the dynamics (1) if Ω+ ⊂ Ω.

3 One-dimensional invariant codistributions

The goal of this Section is to give necessary and sufficient
conditions for the existence of a one-dimensional codis-
tribution which is invariant with respect to the dynamics
(1). The solution of this apparently simple problem con-
stitutes the fundamental brick upon which solutions to
different equivalence problems can be obtained.

To begin with, we need to introduce some notation. Let
f : IRn → IRn be the mapping which defines the system
dynamics (1). Define the mapping C(δ) : Kn → Kn by

C(δ) =
[
∂fj

∂xi
δ

]
=

[
∂f

∂x
δ

]T

. (3)

In the rest of the paper, [dx] stands for the column vector
[dx1, . . . , dxn]T . With this notation, it is easy to see that
[dx+] = [∂f

∂x ][dx]. Since {dx1, ..., dxn} is a basis for E , any
one-form ω ∈ E can be written as

ω =
i=n∑

i=1

aidxi = [a1, . . . , an][dx] = [a][dx].

Note that ω+ = [a+][dx+] = [dx]T C(δ)[a]T . Finally, de-
fine the family of operators Γλ(x, δ) = [C(δ) − λI ], para-
meterized by a function λ ∈ K.

Definition 2 (Eigenform) A one-form ω ∈ E is said to be
an eigenform if there exists a function λ ∈ K such that
ω+ = λω.



Clearly, if ω is an eigenform, then Ω = spanK {ω} is a
one-dimensional invariant codistribution. Therefore, the
characterization of one-dimensional invariant codistribu-
tions is equivalent to the characterization of eigenforms.

Theorem 1 A one-form ω = [a][dx] ∈ E is an eigenform
if and only if there exists a function λ ∈ K such that
[a] ∈ kerΓλ(x, δ).

Theorem 1 provides a complete characterization of all one-
dimensional codistributions which are invariant with re-
spect to the dynamics of the system (1). From a prac-
tical point of view, the problem has been reduced to
that of finding a function λ ∈ K such that the opera-
tor Γλ(x, δ) : Kn → Kn becomes singular. This problem
can be tackled by usual Gaussian elimination thanks to
the following technical Lemma, proven in [12].

Lemma 1 Let K[δ] denote the ring of polynomials in the
operator δ whose coefficients belong to the field K. Then,
for all a(δ), b(δ) ∈ K[δ] there exist polynomials p(δ), q(δ) ∈
K[δ] such that p(δ)a(δ) + q(δ)b(δ) = 0.

The following simple example serves to illustrate the typ-
ical procedure.

Example 2 Consider the following discrete-time (linear)
system

x+
1 = x2

x+
2 = − x1.

(4)

For system (4) the family of operators Γλ(x, δ) is given by

Γλ(x, δ) =
[

−λ −δ
δ −λ

]
.

The operator Γλ(x, δ) can be brought to a triangular form
by performing elementary row operations. Straightfor-
ward computations show that, whenever λ 6= 0, it holds
that

[
−1 0
−δ −λ+

]
Γλ(x, δ) =

[
λ δ
0 δ2 + λλ+

]
.

At this point, the computation of kerΓλ(x, δ) amounts to
solve the difference equation a++

2 + λλ+a2 = 0 in the un-
known a2, and then solve the equation λa1 + a+

2 in the
unknown a1. In general, the solutions to these equations
are not unique. Table 1 displays various solutions, corre-
sponding to different choices of the parameter λ.

Each one of the choices displayed in Table 1 defines a
eigenform ω = a1dx1 + a2dx2 and, consequently, a codis-
tribution Ω = spanK {ω} which is invariant with respect
to the dynamics of the system (4).

Table 1: Possible choices of coefficients for system (4)

Parameter λ Coefficient a1 Coefficient a2

1 x1 x2

1 −x2 x1

-1 −x1 x2

-1 x2 x1

4 Nested sequences of invariant codistributions

In this Section an algorithm will be presented which allows
to construct a sequence of invariant codistributions with
the property that their dimensions increase by one at each
step. Applications of this construction will be presented
in the following section.

The tangent linear system associated to the discrete-time
nonlinear system (1) is given by [dx+] = [∂f

∂x ][dx]. In order
to develop the Algorithm, an alternative representation of
the tangent linear system will be presented.

Let {ω1, . . . , ωn} be an arbitrary basis of the space
spanK {dx}. Then, necessarily, there exist coefficients
aij ∈ K, such that ω+

i =
∑n

j=1 aijωj , for i = 1, . . . , n.
Define ω = [ω1, . . . , ωn]T . Then the above relations can
be written in the following matrix form:

ω+ =




ω+
1
...

ω+
n


 = [aij ]




ω1

...
ωn


 = A ω.

4.1 Invariant Codistribution Algorithm (ICA)

step n

If ker Γλ(x, δ) = 0, then this step can not be accom-
plished and the algorithm terminates. Otherwise, pick
[a]T ∈ kerΓλ(x, δ), and define

ωn = [a][dx] =
n∑

j=1

ajdxj .

Choose n − 1 one-forms {ωn
1 , . . . , ωn

n−1} such that

spanK
{
ωn

1 , . . . , ωn
n−1, ωn

}
= spanK {dx} .

Let An−1 ∈ K(n−1)×(n−1) be the unique matrix such that



(ωn
1 )+
...

(ωn
n−1)+


 ≡ An−1




ωn
1
...

ωn
n−1


 mod {ωn}.

step i, for i = n − 1, . . . , 2

Define Γi
λ(x, δ) = [AT

i δ − λI ]. If ker Γi
λ(x, δ) = 0, then

this step can not be accomplished and the algorithm ter-



minates. Otherwise, pick [a]T ∈ kerΓi
λ(x, δ), and define

ωi = [a]




ωi+1
1
...

ωi+1
i


 =

i∑

j=1

ajω
i+1
j .

Choose i − 1 one-forms {ωi
1, . . . , ω

i
i−1} such that

spanK
{
ωi

1, . . . , ω
i
i−1, ωi

}
= spanK

{
ωi+1

1 , . . . , ωi+1
i

}
.

Let Ai−1 ∈ K(i−1)×(i−1) be the unique matrix such that



(ωi
1)

+

...
(ωi

i−1)
+


 ≡ Ai−1




ωi
1
...

ωi
i−1


 mod {ωi, . . . , ωn}.

step 1

Pick ω1 = ω2
1 . It follows that {ω1, . . . , ωn} is a basis of

spanK {dx}.

Theorem 2 There exist a sequence of invariant codistrib-
utions

Ω1 ⊃ Ω2 ⊃ · · · ⊃ Ωn,

with dim Ωi = (n + 1) − i, if and only if all the steps of
Algorithm 1 can be accomplished.

It is important to strengthen that the accomplishment of
the Algorithm is independent of the particular choice of
the forms {ω1, ..., ωk} at each step. This assertion is pre-
cisely stated in the following Proposition.

Proposition 1 Assume that

Ω1 ⊃ Ω2 ⊃ · · · ⊃ Ωn

and
Ωk 6= Ω̃k ⊃ Ωk+1 ⊃ · · · ⊃ Ωn

are two chains of invariant codistributions, with dim Ωi =
n +1− i. Then there exist invariant codistributions Ω̃1 ⊃
Ω̃2 ⊃ · · · ⊃ Ω̃k−1 such that Ω̃k−1 ⊃ Ω̃k, dim Ω̃j = n+1−j
for any j = 1, ..., k − 1.

In plain words, Proposition 1 means that if at some step
of the ICA there are more than one choice for the codistri-
bution Ωk, and if the algorithm can be completed by one
choice, then it can also be completed by any other choice.

Proposition 1 may be interpreted by the lattice in Figure
1.

The following example illustrates the application of the
ICA.

s 0

s Ωn

s Ωk+2

s Ωk+1

@
@

@

sΩ̃k s Ωk

s Ωk−1sΩ̃k−1
@

@
@

s Ωk+j+2sΩ̃k+j+2

@
@

@

s Ωk+j+1sΩ̃k+j+1 �
�

�
s Ω̃k+j = Ωk+j

s Ω2

s Ω1

Figure 1: Structure of invariant codistributions

Example 3 Consider the following discrete-time nonlinear
system

x+
1 = x2

x+
2 = − x1

x+
3 = x3 + x1x2.

(5)

For system (5) the family of operators Γλ(x, δ) is given by

Γλ(x, δ) =




−λ −δ x2δ
δ −λ x1δ
0 0 δ − λ


 .

Now we proceed to apply ICA to system (5).

step 3 First apply elementary row operations to bring the
operator Γλ(x, δ) into triangular form. Define the uni-
modular matrix

B(δ) =




−1 0 0
−δ −λ+ 0
0 0 1


 .

It is easy to verify that

B(δ)Γλ(x, δ) =




λ δ −x2δ
0 δ2 + λλ+ x1δ

2 − λ+x1δ
0 0 δ − λ


 .

Choosing λ = −1, it follows that the vector [a1, a2, a3]T ,
with a1 = x2, a2 = x1, and a3 = 0 annihilates the operator
Γλ(x, δ). Therefore, we choose ω3 = x2dx1 + x1dx2. We



complete a basis of spanK {dx} by ω3
1 = x1dx1 + x2dx2,

and ω3
2 = dx3. Straightforward computations show that

(ω3
1)

+ = ω3
1 , and (ω3

2)
+ = ω3

2 + ω3. Therefore,

A2 =
[

1 0
0 1

]
.

step 2 The family of operators Γ2
λ(x, δ) is given by

Γ2
λ(x, δ) =

[
δ − λ 0

0 δ − λ

]
.

It is easy to see that the vector [a1, a2]T annihilates the
operator Γ2

λ(x, δ), whenever a1 = a2 = α and λ = α+

α ,
α ∈ K being a free parameter. Choose for instance α = 1.
Therefore, the form ω2 is defined by

ω2 = ω3
1 + ω3

2 = dx3 + x1dx1 + x2dx2.

A basis of spanK
{
ω3

1 , ω
3
2

}
can be completed by taking

ω2
1 = dx3.

step 1. Pick ω1 = ω2
1 = dx3.

Since all the steps of Algorithm 1 can be accomplished,
the sequence of invariant codistributions Ω1 ⊃ Ω2 ⊃ Ω3

exists, and is defined as follows:

Ω3 = spanK {ω3}
= spanK {x2dx1 + x1dx2}

Ω2 = spanK {ω2, ω3}
= spanK {dx3 + x1dx1 + x2dx2, x2dx1 + x1dx2}

Ω1 = spanK {ω1, ω2, ω3}
= spanK {dx} .

(6)

The non uniqueness of the sequences of invariant codistri-
butions stated in Proposition 1 is illustrated by Example
4 below.

Example 4 Consider system

x+
1 = x3

x+
2 = α(x2 − x3x1)

x+
3 = − αx1,

(7)

where α ∈ IR. Application Step 3 of ICA may yield to
different choices for the eigenform ω3, amongst: the exact
eigenform ω3 := d(x1x3) associated to λ = −α, and the
non integrable eigenform ω̃3 = dx2 −x3dx1 which is asso-
ciated to λ = α. Both eigenforms define one-dimensional
invariant codistributions. In each case, there are many
choices for the forms ω2 and ω̃2 which define the invari-
ant codistributions Ω2, Ω̃2. Some possible choices are
ω2 = dx1, ω2 = dx2, ω2 = dx3, ω̃2 = d(x1x3).

5 Equivalence to feedforward form

Definition 3 System (1) is equivalent to feedforward form
if there exists a local change of coordinates z =
ϕ(x1, ..., xn) such that

z1(t + 1) = f1(z1, ..., zn)
z2(t + 1) = f2(z2, ..., zn)

...
zn(t + 1) = fn(zn)

In the continuous-time case, a nice geometric characteri-
zation of those systems that are equivalent to feedforward
form can be found in [5], and is recasted below in a dual
form.

Theorem 3 System (1) can be transformed into feedfor-
ward form if and only if there exists a sequence of com-
pletely integrable codistributions

Ω1 ⊃ Ω2 ⊃ · · · ⊃ Ωn

such that dim Ωi = n + 1 − i.

Corollary 1 System (1) is equivalent to feedforward form
if all the steps of Algorithm 1 can be accomplished and
the set of forms {ω1, . . . , ωn} thereby identified satisfy

dωi ∧ ωi ≡ 0 mod {ωi+1, . . . , ωn}.

Example 5 Consider system (5), and the sequence of in-
variant codistributions Ω1 ⊃ Ω2 ⊃ Ω3 obtained in Ex-
ample (3). It can be easily checked that the codistribu-
tions Ω1, Ω2 and Ω3 are completely integrable. Therefore,
system (5) is equivalent to feedforward form. The corre-
sponding change of coordinates is obtained by integration
of the one-forms ω1, ω2, ω3. This leads to the change of
coordinates z1 = x3, z2 = x3 + x1x2, z3 = x1x2. In z
coordinates, system (5) becomes:

z+
1 = z2

z+
2 = z2 − z3

z+
3 = − z3,

which is in feedforward form.

It should be strengthened that Corollary 1 provides only
sufficient conditions for equivalence to feedforward form.
The main obstacle to obtain necessary and sufficient con-
ditions is the fact that the sequences of invariant codis-
tributions constructed by an application of the ICA are
not unique. The following simple example illustrates this
situation.

Example 6 Consider again system (4), and define the fol-
lowing codistributions:

Ω2 = spanK {x1dx1 + x2dx2}
Ω̃2 = spanK {x2dx1 + x1dx2}
Ω1 = spanK {dx} .



From Example 2, it follows that Ω1, Ω2, and Ω̃2 are invari-
ant codistributions. Therefore, different applications of
the ICA would lead to the sequences Ω1 ⊃ Ω2 or Ω1 ⊃ Ω̃2.

The pathology exhibited by Example 6 is not a conse-
quence of the application of ICA. It comes from the fact
that a given nonlinear system can be equivalent to two dif-
ferent feedforward forms, through the appropriate change
of coordinates.

6 Perspectives and concluding remarks

In this paper we have introduced the notion of eigen-
form. This notion allows to give a characterization of
one-dimensional codistributions which are invariant with
respect a given discrete-time nonlinear system. We have
also presented an algorithm that allows to construct se-
quences of invariant codistributions. As an application of
these technical developments, explicit sufficient conditions
for equivalence to feedforward form have been obtained.
It is interesting to note that this is an improvement with
respect to the same problem in the continuous-time case.

A natural continuation of this work would be the charac-
terization of nested sequences of controlled invariant codis-
tributions for discrete-time nonlinear control systems.

Finally, it is worth mentioning that equivalence to feed-
forward form can be used for the design of stabilizers for
discrete-time nonlinear systems [13].
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