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Abstract

This note outlines an algorithm for solving the complex “mdD addition the fo_llowing not_ation is used: The range and null-
trix Procrustes problem”. This is a least-squares approxinace of a matrix4 are written as Rangel) and Nul(A),
tion over the cone of positive semi-definite Hermitian matrice¥SPectively. - The convex hull of a nonempty sétis de-
which has a number of applications in the areas of OptimiZa0ted by con{X] and the conical hull ofX, i.e. the set
tion, Signal Processing and Control. The work generalises #RM{cz = @ > 0, = € X}] by congX]. If A € C™*"
method of [1], who obtained a numerical solution to the readndX C C" thenAX denotes the setdz : = € X} C C™.
valued version of the problem. It is shown that, subject to dt€ line{az + (1 —a)y : a € [0,1]} between two points
appropriate rank assumption, the complex problem can be 8Rdy is written as ling.z, y}. The unique point: in a closed,
mulated in a real setting using a matrix dilation technique, f6PNVex setX’ which minimises|d — x| with respect tax € X
which the method of [1] is applicable. However, this transfof$ denoted by minpoif, X] and the corresponding minimal
mation results in an over-parametrisation of the problem arflistancel|d — 2| by mindis{d, X].

therefore, convergence to the optimal solution is slow. Here

an alternative algorithm is developed for solving the compléx |ntroduction

problem, which exploits fully the special structure of the di-

lated matrix. The advantages of the modified algorithm afdie present work develops an algorithm for solving a least
demonstrated via a numerical example. squares approximation problem over the cone of Hermitian

positive semi-definite matrices. This is a generalisation of the
1 Notation work in [1] to the complex case. The motivation for solving this
approximation problem (known in the literature as the “Pro-

Most of the notation used is standard and is summarised hefgstes” problem) initially arose in the area of Optimisation, in

for convenience. Additional notation is introduced at vario§€ context of developing methods for estimating the inverse
sections of the paper via appropriate definitions. Hessian matrix in quasi-Newton algorithms. Recently, some

novel applications have appeared in the areas of Signal pro-

cessing and System Identification of elastic structures [8]. Vari-
R™(C™) n-dimensional real (complex) vector spacef'?‘tions .to the approximation.problem, in which the optimisa_tion
R™Xn(Cm*1)  Space of real (complexp by n matrices. 'S carned_ out over alternative matrix sets (9.g. symmetnc or
permutation matrices) have also appeared in the literature and

H™(S™) Space o by n Hermitian (Symmetric) ' i A - [
matrices. are motivated by certain types of statistical estimation prob-
S%(82) Cone ofn by n Symmetric Positive Semi- 1€mMs- [2, 3, 4,9, 7].
definite (definite) matrices. ) . o i
n(HD) Cone ofn by n Hermitian Positive Semi- Thei prci[b'lenswéladd(;gssedl |n. [1] is the following: For arbitrary
definite (definite) matrices. real matricesd andt, solve.
A Transpose of matrix. .
. A-X 1
A* Complex conjugate transpose of matrix Xnéglg I Clle (1)
AL Inverse of nonsingular matrix.
det(A) Determinant of matrix4. Itis shown in [1] that the solution to this problem exists, i.e. the
rank(A) Rank of matrixA. infimum is attained for som& € SZ; furthermore the solution
tr(A) Trace of matrixA. is unique ifC has full row rank.
ved A) The rows ofA stacked in a column vector.
oi(A) i-th singular value ofd (indexed in non-  The technique of [1] for solving (1) is based on a novel charac-
increasing order of magnitude). teristion of the set of real symmetric positive semidefinite ma-
Ai(A) i-th eigenvalue ofd. trices. Using this characterisation, together with certain prop-

® Kronecker product of two matrices. erties of the Kronecker product of two matrices and other linear



algebraic techniques, it was shown in [1] that (1) reduces tspectral decomposition) aé = aB? for someB = B’ and
minimum-distance problem of a vector from the conical hull > 0. Let:
of a closed convex set; an algorithm was finally presented for

solving this distance problem. Us ={BeR"™" :B=DB" and |B|lp=1}CS"

_ ) Also define:
In this note we generalise the method of [1] to the complex
case. Specifically, the following problem is addressed: Vs = {vec(B?): BelUs}C R™ and Qs = conv¥s]
Given matricesd, C' € C™*™ with m > n and RankC) = n, Then it is shown in [1] that: (i) ve&SZ) = conéfls]. (i)
solve: VeGs (S%) = congWsQs], and (iii) U s is a compact sef)s is
min [|A— XC|r (2) @anonempty convex compact set with mindistls) = 1//n
XeHY and cong)s] is a nonempty closed convex cone. This charac-

& risation ofSZ is subsequently used in [1] to reduce (1) to a

Itis first shown that (2) can be re-formulated in a real setting >
Istance problem.

inflating the dimension of the problem. This leads to an equi
alent real problem of the same form as (1) which can be solved . .

via existing techniques [1]. In this form, however, the prolﬂeXt’ consider the complex.p_roblem (n2) The fOHOW'.ng !emma
lem is over-parametrised and convergence to the (unique) 08“9\'\/S us to formulate condition” € A2 in a real setting:

mal solution is slow. By exploiting the structure of the inflate
problem, however, a significantly improved algorithm can
obtained.

emma 3.1: Let X = X, + jX; € C"*" whereX,, X; €
R™*™. Then the following two statements are equivalent:

(i) X € HZ.
Many derivations included in this note follow closely those in B
[1]; in fact it is shown that most of the intermediate resultgj) p .— ( Xr X ) € 82
of [1] involving properties of the sets of real symmetr&™) —Xi Xy B
and positive semi-definite matriceSY) are inherited by two ) ) " .
appropriately defined subsets 8f andS?, arising naturally Len:ma 320 (i Let A = A, +jA; € C" with A, 4; €
from the structure of the inflated problem. Results which de/R" ™™ Then,
ate from those in [1] and which specifically apply to the com- AL = 1412 + A% = [|[A, Aj|12
plex problem are highlighted in our presentation. Due to lim- )

A, A 1 A A
(a0l =al0 5 )

ited space most proofs have been omitted. 1 ‘
(ii) For any four complex matricesl, B, C, D of compatible
We first briefly review the characterisation of the set of positivdimensions,

2

T2

a
3 Mainresults

semi-definite matrices given in [1]. Recall th&it denotes the A B\
set ofn X n r_eal symmetric matrices ar@_the set ofn x n H( ¢ D ) = | A% + |B|% + |C|% + | D||%
positive semi-definite real symmetric matrices. Now, F

vee(8") = {vec(4) : A€ §"} CR" The following result shows that optimization problem (2) can

be transformed to the real setting of problem (1), which can be
solved using the algorithm of [1]. Before stating this result we
ddefine the following two “structured” subsets&t" andS2™:

is a linear subspace &" since it is closed under addition
and scalar multiplication. Clearly, vég€") has dimension
r = n(n + 1)/2, since a symmetric matrix is fully describe

via its diagonal and upper triangular (or lower triangular) ele- ) X Vv )

ments. Let{w;,ws,,...,w,}, be an orthonormal basis set for Q7" = {( v X ) €S "} 3)
vedS™) and defindVs = [wy wsy ...w,]. For eachd € S”

the column vector of co-ordinates o&c(A) with respect to and

t{ﬁ;[z wy, ..., w,} is denoted by¥ecs(A). Clearly we have Q¥ = {( _X}; )3; ) c S;n} @)

2n 2n 2n 2n 2n 2n
vec(A) = Wsvecs(A) = vecs(A) = Wivec(A) Clearly ereQres andQZ €81 5T
Theorem 3.3 Let A,C € C"*™, wherem > n and
RankC) = n. Write A = A, + jA;, C = C, + jC;, where
A A CL Cy € R™™ and consider the two optimization
Psroblems,

Also, WiWs = I,, RangéWs] = R" and RangBVs] =
vedS™).

The characterization of positive semi-definiteness in [1] — min A - XC| )
based on the fact thal € SZ can be written (e.g. via its Yo = XeHL F



and Next, consider the matrix,
A, A c,. G 5 Py —P)
(%a)r(%a) e P=(

2n j £ D 2n it i
Then: (i) The minimum in both (5) and (6) exists, and the copote thath, € 85" if and only if /5, € 55", Moreover, itis

responding optimum solution, € 2 of (5) andP, 8%” straightforward to verify using Lemma 3.2 part (ii) that

of (6) are unique. Furthey; = v/2,. ) H( A, A ) ( Py P ) ( c. G )
"= -
(ii) Write P, as ! —A; A, -P, P -C; G,

<

y1 = min
pPes?

<

F

2

F

P P ~ ) . .
P, = ( P, Pj ) Hence both?, and P, are optimal solutions of (6). Since, how-
ever, the optimal solution is unique, we must hdve= P,,
whereP;, Py, Py € R™*™. ThenP; = P, P> + P; = 0and  which implies that?, = P3 and thatP, + P; = 0. This shows
Xo =P+ jhs. that the (unique) optimal solution of (7) is actually a member of
the setQ2" C S2", so thaty; = /27, and thatX, = P, +j P,
Proof: Consider first (6). Theorem 3.2 in [1] shows that thi the unique solution of (5). a
minimum exists. To show that the corresponding optimum so-
lution P, is unique, note that: Remark: Theorem 3.3 shows that the complex optimization
(5) can be recast in the real setting of (6) by inflating the prob-
Rank(C) = n < Rank ( . G ) _9, (7) lem. In this setting, any real algorithm (e.g. the algorithm in
-Ci G, [1] can be used to obtain a numerical solution to (6). Note how-

. L _._ever that the transformed problem is over-parametrised, since
Next, consider the optimization problem (5). Defmmg@he special structure of
G(X)=A-XC =G (X)+jG;(X)withG,.(X), G;(X) €
R™*™, this may be written as: X, X
2 . 2 F= ( —Xi X > (12)
= min__[GX)} ®)

X=X,+jX;>0

1

is ignored. In particular, a re&h x 2n positive semi definite

2 L . .
matrix involves2n? + n independent variables, whereas the

_ = min ( G7(X) Gz(X) ) (9)
2 x=X,+5x.20 ||\ —Gi(X) G.(X) /|, matrix in the right hand side of equatigh2) involves onlyn?
independent variables. In the sequel we exploit this redundancy
using Lemma 3.2 part (i). On noting that: to derive a more efficient algorithm for solving the optimization

problem (6).
G(X)=A, - X,C, + X;C; + j(A; — X,.C; — X;C,.)

In [1] the characterization of positive-definiteness of real sym-

we obtain: metric matrices relies on the fact that any such matrix may be
Gr(X) = A = X0 + X6 (20)  \written in the formaB?, wherea > 0, B is symmetric and
and ||Bl|r = 1. Itis shown next that a similar result holds for the
2
Gi(X) = A; — X,C; — X,C, (11) Sete".
Substituting (10) and (11) into (9) and using LemBiagives:  |emma 3.4: () If B € Q%" thenB? € Q2. (ii) Every matrix
. A o o ) A € Q2" can be written asl = aB% wherea > 0, B € Q"
- r i) _ r i and||B||r = 1.
=5 i, (_Ai AT) P<_ci CT)F 1B

From the definition (5) it is clear tha®@?" is a subspace of
SinceQ?" C 827, it follows thaty, < v/2,. Itis shown next R2". Consider the subspace Bf"’, veq Q") = {veqA) :
that this inequality is actually an equality since the (unique) ¢« Q?"}. This has dimensiom = n2. Suppose that

minimizer of (6) actually belongs t@%". Let, {wy,ws, ...,w,} is an orthonormal basis set for \(&@>").
Then,
p_( B )
°_<P2’ Ps) WQ:(wl wy ... w,.)€R4"XT
be the (unique) minimizer of (6), whet®,, Py, Py € R" ™. is a basis matrix for vé@?"); further, WoWeo = I,
Then, Range(W() = R" and Range(Wg) = vec(Q?"). For

A € Q% letvecg(A) denote the vector of co-ordinates of
2 vedA) with respect to the columns ¥g. Then,vec(4) =

2 _ Ar A1 Pl P2 Cr Cz 5
NI -4 4 )\ PPy -C; C, Wovecg(A) € R*™ andvecg(4) = Whvec(A) € R".

F



Note that with the exception of dimensions, the constructidtroof: The proof of part; is only given here. Note first that
of Wg and the subsequent definitions are essentially thosettie minimum exists since the constraint set is compact. Now,
[1]. Next, we define the following sets:
min ¢’y = min ¢'LWiw
on ’yELW’QQQ w€EeN o
Ug={BeQ™:|B|r=1} (13) o,
= min gw
w€EN o
and s 2
= B
g, 9veel®)

Uy = {VeC(Bz) :B € UQ}, Qg = COHV[\I/Q} (14) = Bmgl trace{vecfl(g)Bz}
clo
Also define the inverse functions vet : R4 — R2nx2n = min trace{Bvec™(g)B}

Beu
andvecy! : R — Q2" which will be used later. ¢
where the fact that the minimum of a linear function over a

compact set is equal to the minimum of the function over the
set’s convex hull (see Lemma (3.6) and Theorem 3.7 part 3).
Note that sincg € RangéWy), vec !(g) € Q2. Now con-
sider the minimization,

In the sequel we make use of the following two results:

Lemma 3.5: (i) If X =conVX), then congX| = {az : a >
0,2 € X}. (i) If Q C C™ is convex andd € CP*™, then
AQ is convex. (iii) If Q C C™ is convex andd € CP*™, then min trace{ Bvec ™! (g)B}
AcondQ)] =condAQ)]. Beus
for someg € RangéWs). From [1] Theorem 2.1(v), the
Lemma 3.6: Suppose thal’ C R" is a compact set and = minimum to this problem is given b¥.i,(vec™*(g)) where
con(¥). Thenming,cq ¢'w = mingecy g'w. Amin denotes the minimum eigenvalue of a matrix. Since
RangéiWy) C Rangg¢Ws) andl{g C Us we have,
Theorem 3.7 below characterises the “structured’@#t as ) , 1,
the conical hull of a nonempty convex compact set. This is WELT{IA}ZQQ 9" = Amin(vec (7)) (15)
similar to the characterisation & in [1]. In fact, the proof
of parts (1)-(4) is a simple generalisation of the correspondifgxt we construct an expliciB € Ug for which this lower
results in [1]. Theorem 3.7 part (5) solves an optimisation probound is attained. Lefo;, (3;,)" be a normalized eigenvector
lem involving a linear function over a convex set which is onef
of the steps of the algorithm for solving the distance problem vec l(g) == ( )§/ )1;) c Q™
and is outlined later in the section. -
corresponding to the smallest eigenvalue, so that

(5 %) () = rtec@n (57) as

This can be rearranged as

Theorem 3.7:

1. veqQ%") =condQg).

2. VGQQQZ”) :COI’]E{W/QQQ}. X Y —B . ( . —B 17
v x)\a, )= Amnlvec @) (- 17)
3. ¥y is a compact seffdg is a non empty convex com-
pact set with mindigd, Qo) = ﬁ and conég] is a Which shows that the smallest eigenvalue (in fact every eigen-
nonempty closed convex cone. value) has multiplicity at least equal to two, since the two
eigenvectors in (16) and (17) are orthogonal. Next define
4. mindist0, LW, ) > £2). P <an _gn) (% 5;)
N \/i ﬁn (7%} _ﬂ;, a{n
5, Forg € R"andL € R™", minveLW/QQAQ gy = 1 fanal, + BB, anBl — Bac,
Amin(Z) and a minimizingy is 4 = LW{,ved B?). Here V2 \Bnay, — a3, anal, + Buf3,
Z =vec !(g) € Q*" whereg = WgL'y, X R
It is clear that B € Q2" and ||B||r = 1, so that
gl 5n> oy, /5§L> c o B € Ug. A straightforward calculation also shows that
2\Bn  an ) \-B, o, = tracd Bvec () B] = Amin(vec '(g)) which proves the re-
sult. O

in which (o, ;)" and(—3,, «.,) are two normalized
eigenvectors of corresponding to,,in(Z), the smallest The following Theorem shows that (1) can be reduced to a
eigenvalue ofZ (which is repeated). minimum-distance problem from a vector to a convex cone.



The Theorem is a straightforward generalisation of a paralkdt.S without affecting the optimal solution. As expected, the

result in [1]. truncation isu-dependent and is summarised below:
Theorem 3.8: Consider the minimization problem Lemma 3.10Let = ||u||/m wherer = L\/%L] and define
. S ={ay:a€cl0,n,y € T}. ThenS is a convex set and
Yo T Yegr IF ~ XGllr (18) " minpoingu, 5] = minpoin{u, coneT]].

in which F € R?"™, (m > n), and RankG) = 2n. Let The modified optimisation problem mindjst.5] may now be
J = [Lonyon © GW € RAmnxn®  Then RankJ) = n?. solved using the algorithm of [1]. In fact, the relevant proof
may be reproduced, almost word for word, to show that the al-
gorithm converges to the optimal solution. However, a number
of modifications in the implementation of certain steps of the
algorithm are necessary, to account for the special structure of
the problem in the complex case. These are described at the
X = Wél(fflff) end of the section.

FactorJ as.J = P[L’ 0]’ for some invertible matrix, €
R xn* with P e R4mnx4mn orthogonal. UsingP factor
f:=vedF) € R4 asf = Plu/ '] withu € R . ThenX
solves (18) if and only if

Algorithm 3.1 [1]: The following algorithm finds ane-
suboptimal approximatiok to &£ by minimizingv(k) = |ju —
gg% lu — K| k||? overK as proposed in Theorem 3.8 and Lemma 3.10.

wherel: is the unique solution of

0. Select parametersChooser € (0, 00) (e defines the degree
IF — XGH% —u— ]%HQ e of gub—optltnallty acceptable ik) andk, €conél’] (an initial
estimate of).

and

Here is the convex cone
I. Initialize variables:

K = cone[LWo Qo] ko := minpointu, condk]] (the point nearest in the ray
through 0 andk), b_; := 0 (the best lower bound for (k)
Further, . ilabl far i -
P —w if ﬁél(L_lu)zo available so fay, ¢ := 0.
and A . II. Decide when to stop iterating:
X¢Q¥if k#u (19) Find ay; € argmin,cs Vo(k)(y; — k;) by finding:
where 9% denotes the subset @2" with positive definite ~; € arg min Vo(k;)'~y
matrix elements. N ver
and setting:

The following theorem provides a lower bound to the optimal ) , )
costr, at the end of each iteration. This is almost identical to ¥ = "7 if Vou(k;)'v; <0 and y; = k; otherwise.
a parallel resultin [1]. Compute a lower bount for v(k):

Theorem 3.9: Suppose thaF, G, L, u and! are as defined in bi = v(ki) + Vou(k:) (yi — ki).
Theorem 3.8, with Rar{k7) = 2n. Consider any real > 0.

Then, ifk ¢ K satisfies, Computeb;, the best lower bound far(k) found so far:

7 2 l;z = i)i, ,bi .
Ju—FJ2 + 2 < L+ 2(lu— 2+ 12)  (20) max{bi-1,bi}

— — _ . .
gnsd)ir(1 t:ha\;e'CQ (L=1k), thenX approximatesX of Theorem [w(k:) + 1112] < (14 €)%[b; + ||1]?]

e ' then setc = k; and stop; else continue. I[IChoose the next

1. X e Q& iterand:

21X = X|l» < VZe+ & LV ||F — XG|r ki1 := minpoint(u, cone[line{k;, y; }]),

X i=i+ 1.
3. |F-XG|r <1+ o|F - XG|F.
IF = XGllr < (1+|IF - XClr oo _

As shown in Theorem 3.8, problem (1) can be reduced to tAgorithm 3.1 can be used to solve the complex approxima-
calculation of the shortest distance between a vegtand tion problem. However, the implementation of certain steps of
the conical hull of a closed convex sé&t, = con€TI’), where the algorithm needs to be modified in this case. The required
I' = LW;Qo. This can be restricted to a bounded convexodifications are:



e The construction of the basis matiiky is more compli- a (real) positive semi-definite dilated matrix, without impos-
cated and needs to take into account the block structurdrd any special structure. The second uses the special struc-
setQ?n, ture of the dilated matrix and the techniques developed in the

o ) _later parts of the paper. A numerical example involving the

e The minimisationy; € argminycp Vo(k;)'y instep Ilis  ywo methods will be presented at the Conference. Computa-

now solved using Theorem 3.7 part 5. tional experience suggests that the second algorithm always

« Although any%, € condT’) can be selected as an ini.converges much faster to the optimum solution compared to

tial estimate off: in step 0 of the alaorithm. a Oodthe first, both in terms of iterations and computation time. This
aporoximation tok enhffnces cons'de%able tr'1e c?)n ei§ not surprising, since the second algorithm removes the over-
pproximati ' V€harametrisation of the problem, by restricting the search for

?hen(r:: p:opertr|esrioftthehalgonithrtn. tl;ﬂél]lt fvirguig th e optimal solution from ari2n? + n)-dimensional space to
€ most appropriate choice Is to = LVets(X) 512 dimensional space.

where X minimises||vecg ' (L~ 'u) — X || » with respect
to X € S%. The optimal X in this case is given as
X = [vecg' (L~ 'u)]o where[M], denotes the result of
changing to zero all negative eigenvalues in the spectfiglis paper has presented an algorithm for solving the com-
form of M. The main advantage of this choice is thgdjex version of the Procrustes problem. This is a least-squares
the algorithm converges immediately (i.e. in one itergpproximation problem over the cone of Hermitian, positive
tion) to the optimal solution, when this happens to bgsmidefinite matrices. It was first shown that it is possible
positive definite. In the complex case, a similar argyp transform the problem to a real setting by inflating its di-
ment may be used to show thiaf should be selected as:mensjon. Although in this case the real algorithm of [1] is di-
ko = Lveco([Vety' (L' u)]o). This follows from the rectly applicable, the problem is over-parametrised and hence
fact that[vecy' (L~'u)]o € Q2" which is established in the convergence properties of the algorithm are poor. The nec-
the Lemma below. essary modifications to this algorithm have been indicated, re-
sulting in significantly accelerated convergence.

5 Conclusions

Lemma 3.11If A € Q" then[4], € Q%".
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