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Abstract

This note outlines an algorithm for solving the complex “ma-
trix Procrustes problem”. This is a least-squares approxima-
tion over the cone of positive semi-definite Hermitian matrices,
which has a number of applications in the areas of Optimiza-
tion, Signal Processing and Control. The work generalises the
method of [1], who obtained a numerical solution to the real-
valued version of the problem. It is shown that, subject to an
appropriate rank assumption, the complex problem can be for-
mulated in a real setting using a matrix dilation technique, for
which the method of [1] is applicable. However, this transfor-
mation results in an over-parametrisation of the problem and,
therefore, convergence to the optimal solution is slow. Here
an alternative algorithm is developed for solving the complex
problem, which exploits fully the special structure of the di-
lated matrix. The advantages of the modified algorithm are
demonstrated via a numerical example.

1 Notation

Most of the notation used is standard and is summarised here
for convenience. Additional notation is introduced at various
sections of the paper via appropriate definitions.

Rn(Cn) n-dimensional real (complex) vector space.
Rm×n(Cm×n) Space of real (complex)m by n matrices.
Hn(Sn) Space ofn by n Hermitian (Symmetric)

matrices.
Sn
≥(Sn

>) Cone ofn by n Symmetric Positive Semi-
definite (definite) matrices.

Hn
≥(Hn

>) Cone ofn by n Hermitian Positive Semi-
definite (definite) matrices.

A′ Transpose of matrixA.
A∗ Complex conjugate transpose of matrixA.
A−1 Inverse of nonsingular matrixA.
det(A) Determinant of matrixA.
rank(A) Rank of matrixA.
tr(A) Trace of matrixA.
vec(A) The rows ofA stacked in a column vector.
σi(A) i-th singular value ofA (indexed in non-

increasing order of magnitude).
λi(A) i-th eigenvalue ofA.
⊗ Kronecker product of two matrices.

‖ • ‖ Euclidian norm of vector, largest singular
value of matrixσ1(·).

‖ • ‖F Frobenious norm of matrix.

In addition the following notation is used: The range and null-
space of a matrixA are written as Range(A) and Null(A),
respectively. The convex hull of a nonempty setX is de-
noted by conv[X] and the conical hull ofX, i.e. the set
conv[{αx : α ≥ 0, x ∈ X}] by cone[X]. If A ∈ Cm×n

andX ⊆ Cn thenAX denotes the set{Ax : x ∈ X} ⊆ Cm.
The line{αx + (1 − α)y : α ∈ [0, 1]} between two pointsx
andy is written as line{x, y}. The unique pointx in a closed,
convex setX which minimises‖d− x‖ with respect tox ∈ X
is denoted by minpoint[d,X] and the corresponding minimal
distance‖d− x̂‖ by mindist[d,X].

2 Introduction

The present work develops an algorithm for solving a least
squares approximation problem over the cone of Hermitian
positive semi-definite matrices. This is a generalisation of the
work in [1] to the complex case. The motivation for solving this
approximation problem (known in the literature as the “Pro-
crustes” problem) initially arose in the area of Optimisation, in
the context of developing methods for estimating the inverse
Hessian matrix in quasi-Newton algorithms. Recently, some
novel applications have appeared in the areas of Signal pro-
cessing and System Identification of elastic structures [8]. Vari-
ations to the approximation problem, in which the optimisation
is carried out over alternative matrix sets (e.g. symmetric or
permutation matrices) have also appeared in the literature and
are motivated by certain types of statistical estimation prob-
lems. [2, 3, 4, 9, 7].

The problem addressed in [1] is the following: For arbitrary
real matricesA andC, solve:

min
X∈Sn

≥
‖A−XC‖F (1)

It is shown in [1] that the solution to this problem exists, i.e. the
infimum is attained for someX ∈ Sn

≥; furthermore the solution
is unique ifC has full row rank.

The technique of [1] for solving (1) is based on a novel charac-
teristion of the set of real symmetric positive semidefinite ma-
trices. Using this characterisation, together with certain prop-
erties of the Kronecker product of two matrices and other linear



algebraic techniques, it was shown in [1] that (1) reduces to a
minimum-distance problem of a vector from the conical hull
of a closed convex set; an algorithm was finally presented for
solving this distance problem.

In this note we generalise the method of [1] to the complex
case. Specifically, the following problem is addressed:

Given matricesA,C ∈ Cn×m with m ≥ n and Rank(C) = n,
solve:

min
X∈Hn

≥
‖A−XC‖F (2)

It is first shown that (2) can be re-formulated in a real setting by
inflating the dimension of the problem. This leads to an equiv-
alent real problem of the same form as (1) which can be solved
via existing techniques [1]. In this form, however, the prob-
lem is over-parametrised and convergence to the (unique) opti-
mal solution is slow. By exploiting the structure of the inflated
problem, however, a significantly improved algorithm can be
obtained.

Many derivations included in this note follow closely those in
[1]; in fact it is shown that most of the intermediate results
of [1] involving properties of the sets of real symmetric (Sn)
and positive semi-definite matrices (Sn

≥) are inherited by two
appropriately defined subsets ofSn andSn

≥, arising naturally
from the structure of the inflated problem. Results which devi-
ate from those in [1] and which specifically apply to the com-
plex problem are highlighted in our presentation. Due to lim-
ited space most proofs have been omitted.

3 Main results

We first briefly review the characterisation of the set of positive
semi-definite matrices given in [1]. Recall thatSn denotes the
set ofn × n real symmetric matrices andSn

≥ the set ofn × n
positive semi-definite real symmetric matrices. Now,

vec(Sn) = {vec(A) : A ∈ Sn} ⊆ Rn2

is a linear subspace ofSn since it is closed under addition
and scalar multiplication. Clearly, vec(Sn) has dimension
r = n(n + 1)/2, since a symmetric matrix is fully described
via its diagonal and upper triangular (or lower triangular) ele-
ments. Let{w1, w2, . . . , wr}, be an orthonormal basis set for
vec(Sn) and defineWS = [w1 w2 . . . wr]. For eachA ∈ Sn

the column vector of co-ordinates ofvec(A) with respect to
{w1, w2, . . . , wr} is denoted byvecS(A). Clearly we have
that:

vec(A) = WSvecS(A) ⇒ vecS(A) = W ′
Svec(A)

Also, W ′
SWS = Ir, Range[W ′

S ] = Rr and Range[WS ] =
vec(Sn).

The characterization of positive semi-definiteness in [1] is
based on the fact thatA ∈ Sn

≥ can be written (e.g. via its

spectral decomposition) asA = αB2 for someB = B′ and
α ≥ 0. Let:

US := {B ∈ Rn×n : B = B′ and ‖B‖F = 1} ⊆ Sn

Also define:

ΨS := {vec(B2) : B ∈ US} ⊆ Rn2
and ΩS = conv[ΨS ]

Then it is shown in [1] that: (i) vec(Sn
≥) = cone[ΩS ]. (ii)

vecS(Sn
≥) = cone[W ′

SΩS ], and (iii)ΨS is a compact set,ΩS is
a non empty convex compact set with mindist(0, ΩS) = 1/

√
n

and cone[ΩS ] is a nonempty closed convex cone. This charac-
terisation ofSn

≥ is subsequently used in [1] to reduce (1) to a
distance problem.

Next, consider the complex problem (2). The following lemma
allows us to formulate conditionX ∈ Hn

≥ in a real setting:

Lemma 3.1: Let X = Xr + jXi ∈ Cn×n whereXr, Xi ∈
Rn×n. Then the following two statements are equivalent:

(i) X ∈ Hn
≥.

(ii) P :=
(

Xr Xi

−Xi Xr

)
∈ S2n

≥

Lemma 3.2: (i) Let A = Ar + jAi ∈ Cn×m with Ar, Ai ∈
Rn×m. Then,

‖A‖2F = ‖Ar‖2F + ‖Ai‖2F = ‖[Ar Ai]‖2F

=
1
2

∥∥∥∥
(

Ar Ai

Ar Ai

)∥∥∥∥
2

F

=
1
2

∥∥∥∥
(

Ar Ai

−Ai Ar

)∥∥∥∥
2

F

(ii) For any four complex matricesA, B,C, D of compatible
dimensions,

∥∥∥∥
(

A B
C D

)∥∥∥∥
2

F

= ‖A‖2F + ‖B‖2F + ‖C‖2F + ‖D‖2F

The following result shows that optimization problem (2) can
be transformed to the real setting of problem (1), which can be
solved using the algorithm of [1]. Before stating this result we
define the following two “structured” subsets ofS2n andS2n

≥ :

Q2n =
{(

X Y
−Y X

)
∈ S2n

}
(3)

and

Q2n
≥ =

{(
X Y
−Y X

)
∈ S2n

≥

}
(4)

ClearlyQ2n
≥ ⊆ Q2n ⊆ S2n andQ2n

≥ ⊆ S2n
≥ ⊆ S2n.

Theorem 3.3 Let A,C ∈ Cn×m, where m ≥ n and
Rank(C) = n. Write A = Ar + jAi, C = Cr + jCi, where
Ar, Ai, Cr, Ci ∈ Rn×m, and consider the two optimization
problems,

γo = min
X∈Hn

≥
‖A−XC‖F (5)



and

γ1 = min
P∈S2n

≥

∥∥∥∥
(

Ar Ai

−Ai Ar

)
− P

(
Cr Ci

−Ci Cr

)∥∥∥∥
F

(6)

Then: (i) The minimum in both (5) and (6) exists, and the cor-
responding optimum solutionsXo ∈ Hn

≥ of (5) andPo ∈ S2n
≥

of (6) are unique. Furtherγ1 =
√

2γo.

(ii) Write Po as

Po =
(

P1 P ′2
P2 P3

)

whereP1, P2, P3 ∈ Rn×n. ThenP1 = P3, P2 + P ′2 = 0 and
Xo = P1 + jP2.

Proof: Consider first (6). Theorem 3.2 in [1] shows that the
minimum exists. To show that the corresponding optimum so-
lution Po is unique, note that:

Rank(C) = n ⇔ Rank
(

Cr Ci

−Ci Cr

)
= 2n (7)

Next, consider the optimization problem (5). Defining
G(X) = A−XC = Gr(X)+jGi(X) with Gr(X), Gi(X) ∈
Rn×m, this may be written as:

γ2
o = min

X=Xr+jXi≥0
‖G(X)‖2F (8)

=
1
2

min
X=Xr+jXi≥0

∥∥∥∥
(

Gr(X) Gi(X)
−Gi(X) Gr(X)

)∥∥∥∥
2

F

(9)

using Lemma 3.2 part (i). On noting that:

G(X) = Ar −XrCr + XiCi + j(Ai −XrCi −XiCr)

we obtain:
Gr(X) = Ar −XrCr + XiCi (10)

and
Gi(X) = Ai −XrCi −XiCr (11)

Substituting (10) and (11) into (9) and using Lemma3.1 gives:

γ2
o =

1
2

min
P∈Q2n

≥

∥∥∥∥
(

Ar Ai

−Ai Ar

)
− P

(
Cr Ci

−Ci Cr

)∥∥∥∥
2

F

SinceQ2n
≥ ⊆ S2n

≥ , it follows thatγ1 ≤
√

2γo. It is shown next
that this inequality is actually an equality since the (unique)
minimizer of (6) actually belongs toQ2n

≥ . Let,

Po =
(

P1 P2

P ′2 P3

)

be the (unique) minimizer of (6), whereP1, P2, P3 ∈ Rn×n.
Then,

γ2
1 =

∥∥∥∥
(

Ar Ai

−Ai Ar

)
−

(
P1 P2

P ′2 P3

)(
Cr Ci

−Ci Cr

)∥∥∥∥
2

F

Next, consider the matrix,

P̂o =
(

P3 −P ′2
−P2 P1

)

Note thatPo ∈ S2n
≥ if and only if P̂o ∈ S2n

≥ . Moreover, it is
straightforward to verify using Lemma 3.2 part (ii) that

γ2
1 =

∥∥∥∥
(

Ar Ai

−Ai Ar

)
−

(
P3 −P ′2
−P2 P1

)(
Cr Ci

−Ci Cr

)∥∥∥∥
2

F

Hence bothPo andP̂o are optimal solutions of (6). Since, how-
ever, the optimal solution is unique, we must havePo = P̂o,
which implies thatP1 = P3 and thatP2 + P ′2 = 0. This shows
that the (unique) optimal solution of (7) is actually a member of
the setQ2n

≥ ⊆ S2n
≥ , so thatγ1 =

√
2γo and thatXo = P1+jP2

is the unique solution of (5). ¤

Remark: Theorem 3.3 shows that the complex optimization
(5) can be recast in the real setting of (6) by inflating the prob-
lem. In this setting, any real algorithm (e.g. the algorithm in
[1] can be used to obtain a numerical solution to (6). Note how-
ever that the transformed problem is over-parametrised, since
the special structure of

P =
(

Xr Xi

−Xi Xr

)
(12)

is ignored. In particular, a real2n × 2n positive semi definite
matrix involves2n2 + n independent variables, whereas the
matrix in the right hand side of equation(12) involves onlyn2

independent variables. In the sequel we exploit this redundancy
to derive a more efficient algorithm for solving the optimization
problem (6).

In [1] the characterization of positive-definiteness of real sym-
metric matrices relies on the fact that any such matrix may be
written in the formaB2, wherea ≥ 0, B is symmetric and
‖B‖F = 1. It is shown next that a similar result holds for the
setQ2n

≥ .

Lemma 3.4: (i) If B ∈ Q2n thenB2 ∈ Q2n
≥ . (ii) Every matrix

A ∈ Q2n
≥ , can be written asA = aB2 wherea ≥ 0, B ∈ Q2n

and‖B‖F = 1.

From the definition (5) it is clear thatQ2n is a subspace of
R2n. Consider the subspace ofR4n2

, vec(Q2n) = {vec(A) :
A ∈ Q2n}. This has dimensionr = n2. Suppose that
{w1, w2, ..., wr} is an orthonormal basis set for vec(Q2n).
Then,

WQ =
(

w1 w2 ... wr

) ∈ R4n2×r

is a basis matrix for vec(Q2n); further, W ′
QWQ = Ir,

Range(W ′
Q) = Rr and Range(WQ) = vec(Q2n). For

A ∈ Q2n, let vecQ(A) denote the vector of co-ordinates of
vec(A) with respect to the columns ofWQ. Then,vec(A) =
WQvecQ(A) ∈ R4n2

and vecQ(A) = W ′
Qvec(A) ∈ Rr.



Note that with the exception of dimensions, the construction
of WQ and the subsequent definitions are essentially those in
[1]. Next, we define the following sets:

UQ = {B ∈ Q2n : ‖B‖F = 1} (13)

and

ΨQ = {vec(B2) : B ∈ UQ}, ΩQ := conv[ΨQ] (14)

Also define the inverse functions vec−1 : R4n2 → R2n×2n

andvec−1
Q : Rn2 → Q2n which will be used later.

In the sequel we make use of the following two results:

Lemma 3.5: (i) If X =conv(X), then cone[X] = {αx : α ≥
0, x ∈ X}. (ii) If Ω ⊆ Cm is convex andA ∈ Cp×m, then
AΩ is convex. (iii) If Ω ⊆ Cm is convex andA ∈ Cp×m, then
Acone[Ω] =cone[AΩ].

Lemma 3.6: Suppose thatΨ ⊆ Rn is a compact set andΩ =
conv(Ψ). Thenminω∈Ω g′ω = minω∈Ψ g′ω.

Theorem 3.7 below characterises the “structured” setQ2n
≥ as

the conical hull of a nonempty convex compact set. This is
similar to the characterisation ofSn

≥ in [1]. In fact, the proof
of parts (1)-(4) is a simple generalisation of the corresponding
results in [1]. Theorem 3.7 part (5) solves an optimisation prob-
lem involving a linear function over a convex set which is one
of the steps of the algorithm for solving the distance problem
and is outlined later in the section.

Theorem 3.7:

1. vec(Q2n
≥ ) =cone[ΩQ].

2. vec(Q2n
≥ ) =cone[W ′

QΩQ].

3. ΨQ is a compact set,ΩQ is a non empty convex com-
pact set with mindist(0,ΩQ) = 1√

2n
and cone[ΩQ] is a

nonempty closed convex cone.

4. mindist(0, LW ′
QΩQ) ≥ σ(L)√

2n
.

5. For g ∈ Rr and L ∈ Rr×r, minγ∈LW ′
QΩQ g′γ =

λmin(Z) and a minimizingγ is γ̂ = LW ′
Qvec(B̂2). Here

Z =vec−1(g) ∈ Q2n whereg = WQL′g,

B̂2 =
1
2

(
αn −βn

βn αn

)(
α′n β′n
−β′n α′n

)
∈ Q2n

≥

in which (α′n β′n)′ and(−β′n α′n)′ are two normalized
eigenvectors ofZ corresponding toλmin(Z), the smallest
eigenvalue ofZ (which is repeated).

Proof: The proof of part5 is only given here. Note first that
the minimum exists since the constraint set is compact. Now,

min
γ∈LW ′

QΩQ
g′γ = min

ω∈ΩQ
g′LW ′

Qω

= min
ω∈ΩQ

g′ω

= min
B∈UQ

g′vec(B2)

= min
B∈UQ

trace{vec−1(g)B2}

= min
B∈UQ

trace{Bvec−1(g)B}

where the fact that the minimum of a linear function over a
compact set is equal to the minimum of the function over the
set’s convex hull (see Lemma (3.6) and Theorem 3.7 part 3).
Note that sinceg ∈ Range(WQ), vec−1(g) ∈ Q2n. Now con-
sider the minimization,

min
B∈US

trace{Bvec−1(g)B}

for someg ∈ Range(WS). From [1] Theorem 2.1(v), the
minimum to this problem is given byλmin(vec−1(g)) where
λmin denotes the minimum eigenvalue of a matrix. Since
Range(WQ) ⊆ Range(WS) andUQ ⊆ US we have,

min
γ∈LW ′

QΩQ
g′γ ≥ λmin(vec−1(g)) (15)

Next we construct an explicitB ∈ UQ for which this lower
bound is attained. Let(α′n β′n)′ be a normalized eigenvector
of

vec−1(g) :=
(

X Y
−Y X

)
∈ Q2n

corresponding to the smallest eigenvalue, so that
(

X Y
−Y X

)(
αn

βn

)
= λmin(vec−1(g))

(
αn

βn

)
(16)

This can be rearranged as
(

X Y
−Y X

)(−βn

αn

)
= λmin(vec−1(g))

(−βn

αn

)
(17)

which shows that the smallest eigenvalue (in fact every eigen-
value) has multiplicity at least equal to two, since the two
eigenvectors in (16) and (17) are orthogonal. Next define

B̂ =
1√
2

(
αn −βn

βn αn

) (
α′n β′n
−β′n α′n

)

=
1√
2

(
αnα′n + βnβ′n αnβ′n − βnα′n
βnα′n − αnβ′n αnα′n + βnβ′n

)

It is clear that B̂ ∈ Q2n
≥ and ‖B̂‖F = 1, so that

B̂ ∈ UQ. A straightforward calculation also shows that
trace[B̂vec−1(g)B̂] = λmin(vec−1(g)) which proves the re-
sult. ¤

The following Theorem shows that (1) can be reduced to a
minimum-distance problem from a vector to a convex cone.



The Theorem is a straightforward generalisation of a parallel
result in [1].

Theorem 3.8:Consider the minimization problem

γo = min
X∈Q2n

≥
‖F −XG‖F (18)

in which F ∈ R2nm, (m ≥ n), and Rank(G) = 2n. Let
J = [I2n×2n ⊗ G′]W ∈ R4mn×n2

. Then Rank(J) = n2.
FactorJ asJ = P [L′ 0]′ for some invertible matrixL ∈
Rn2×n2

with P ∈ R4mn×4mn orthogonal. UsingP factor
f :=vec(F ) ∈ R4mn asf = P [u′ l′]′ with u ∈ Rn2

. ThenX̂
solves (18) if and only if

X̂ = vec−1
Q (L−1k̂)

wherek̂ is the unique solution of

min
k∈K

‖u− k‖

and
‖F − X̂G‖2F = ‖u− k̂‖2 + ‖l‖2

HereK is the convex cone

K = cone[LW ′
QΩQ]

Further,
k̂ = u iff vec−1

Q (L−1u) ≥ 0

and
X̂ /∈ Q2n

> if k̂ 6= u (19)

whereQ2n
> denotes the subset ofQ2n

≥ with positive definite
matrix elements.

The following theorem provides a lower bound to the optimal
costγ0 at the end of each iteration. This is almost identical to
a parallel result in [1].

Theorem 3.9: Suppose thatF, G,L, u andl are as defined in
Theorem 3.8, with Rank(G) = 2n. Consider any realε ≥ 0.
Then, ifk ∈ K satisfies,

‖u− k‖2 + ‖l‖2 ≤ (1 + ε)2(‖u− k̂‖2 + ‖l‖2) (20)

andX = vec−1
Q (L−1k), thenX approximatesX̂ of Theorem

3.8, in that :

1. X ∈ Q2n
≥

2. ‖X − X̂‖F ≤ √
2ε + ε2 ‖L−1‖ ‖F − X̂G‖F

3. ‖F −XG‖F ≤ (1 + ε)‖F − X̂G‖F .

As shown in Theorem 3.8, problem (1) can be reduced to the
calculation of the shortest distance between a vectoru and
the conical hull of a closed convex set,K = cone(Γ), where
Γ = LW ′

QΩQ. This can be restricted to a bounded convex

setS without affecting the optimal solution. As expected, the
truncation isu-dependent and is summarised below:

Lemma 3.10Let η = ‖u‖/π whereπ = σmin[L]√
2n

and define
S = {αγ : α ∈ [0, η], γ ∈ Γ}. ThenS is a convex set and
minpoint[u, S] = minpoint[u, cone[Γ]].

The modified optimisation problem mindist[u, S] may now be
solved using the algorithm of [1]. In fact, the relevant proof
may be reproduced, almost word for word, to show that the al-
gorithm converges to the optimal solution. However, a number
of modifications in the implementation of certain steps of the
algorithm are necessary, to account for the special structure of
the problem in the complex case. These are described at the
end of the section.

Algorithm 3.1 [1]: The following algorithm finds anε-
suboptimal approximationk to k̂ by minimizingv(k) = ‖u −
k‖2 overK as proposed in Theorem 3.8 and Lemma 3.10.

0. Select parameters:Chooseε ∈ (0,∞) (ε defines the degree
of sub-optimality acceptable ink) andk0 ∈cone[Γ] (an initial
estimate of̂k).

I. Initialize variables:
k0 := minpoint[u, cone[k0]] (the point nearestu in the ray
through 0 andk0), b̂−1 := 0 (the best lower bound forv(k̂)
available so far), i := 0.

II. Decide when to stop iterating:
Find ayi ∈ arg miny∈S ∇v(k′i)(yi − ki) by finding:

γi ∈ arg min
γ∈Γ

∇v(ki)′γ

and setting:

yi = ηγi if ∇v(ki)′γi < 0 and yi = ki otherwise.

Compute a lower boundbi for v(k̂):

bi := v(ki) +∇v(ki)′(yi − ki).

Computêbi, the best lower bound forv(k) found so far:

b̂i := max{b̂i−1, bi}.
If

[v(ki) + ‖l‖2] ≤ (1 + ε)2[b̂i + ‖l‖2]
then setk = ki and stop; else continue. III.Choose the next

iterand:

ki+1 := minpoint(u, cone[line{ki, yi}]),
i := i + 1.

Go to II. ¤

Algorithm 3.1 can be used to solve the complex approxima-
tion problem. However, the implementation of certain steps of
the algorithm needs to be modified in this case. The required
modifications are:



• The construction of the basis matrixWQ is more compli-
cated and needs to take into account the block structure of
setQ2n.

• The minimisationγi ∈ arg minγ∈Γ∇v(ki)′γ in step II is
now solved using Theorem 3.7 part 5.

• Although anyk0 ∈ cone(Γ) can be selected as an ini-
tial estimate ofk̂ in step 0 of the algorithm, a good
approximation tok̂ enhances considerable the conver-
gence properties of the algorithm. In [1] it is argued that
the most appropriate choice is to takek0 = LvecS(X̂)
whereX̂ minimises‖vec−1

S (L−1u) − X‖F with respect
to X ∈ Sn

≥. The optimalX̂ in this case is given as

X̂ = [vec−1
S (L−1u)]0 where[M ]0 denotes the result of

changing to zero all negative eigenvalues in the spectral
form of M . The main advantage of this choice is that
the algorithm converges immediately (i.e. in one itera-
tion) to the optimal solution, when this happens to be
positive definite. In the complex case, a similar argu-
ment may be used to show thatk0 should be selected as:
k0 = LvecQ([vec−1

Q (L−1u)]0). This follows from the
fact that[vec−1

Q (L−1u)]0 ∈ Q2n
≥ which is established in

the Lemma below.

Lemma 3.11If A ∈ Q2n then[A]0 ∈ Q2n
≥ .

Proof: It follows from the proof of Lemma 3.7 part 5 that every
A ∈ Q2n has eigenvalues which appear in pairs; further each
eigenvalueλi corresponds to an eigenvector pair of the form:

{(
αi

βi

)
,

(−βi

αi

)}

for i = 1, 2, . . . , n. Let A have a spectral decomposition
A = UΛU ′, whereUU ′ = I and where the eigenvalues
have been ordered in non-increasing order, i.e.λi ≥ λi+1 for
i = 1, 2, . . . , n− 1. Then,

A =
n∑

i=1

(
αi −βi

βi αi

)(
λi 0
0 λi

)(
α′i β′i
−β′i α′i

)

=
n∑

i=1

λi

(
αiα

′
i + βiβ

′
i αiβ

′
i − βiα

′
i

βiα
′
i − αiβ

′
i αiα

′
i + βiβ

′
i

)
=

n∑

i=1

λiQi

where,Qi ∈ Q2n
≥ and have rank equal to 2. Thus,

[A]0 =
k∑

{i:λi≥0}
λiQi ∈ Q2n

≥

as required. ¤

4 Numerical example

The paper has presented two methods for solving problem (2).
The first is based on Theorem 3.3 and optimises the cost over

a (real) positive semi-definite dilated matrix, without impos-
ing any special structure. The second uses the special struc-
ture of the dilated matrix and the techniques developed in the
later parts of the paper. A numerical example involving the
two methods will be presented at the Conference. Computa-
tional experience suggests that the second algorithm always
converges much faster to the optimum solution compared to
the first, both in terms of iterations and computation time. This
is not surprising, since the second algorithm removes the over-
parametrisation of the problem, by restricting the search for
the optimal solution from an(2n2 + n)-dimensional space to
ann2-dimensional space.

5 Conclusions

This paper has presented an algorithm for solving the com-
plex version of the Procrustes problem. This is a least-squares
approximation problem over the cone of Hermitian, positive
semidefinite matrices. It was first shown that it is possible
to transform the problem to a real setting by inflating its di-
mension. Although in this case the real algorithm of [1] is di-
rectly applicable, the problem is over-parametrised and hence
the convergence properties of the algorithm are poor. The nec-
essary modifications to this algorithm have been indicated, re-
sulting in significantly accelerated convergence.
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