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Abstract

In this paper, a simple derivation of the Riccati equa-
tion based solutions to the standard H∞control problem,
namely the well-known Glover-Doyle solution and DGKF
solution is given based on LMI solution. It is hoped that
this will be helpful for ordinary control engineers in deep-
ening the understanding of Riccati equation solutions.

1 Introduction

The ”two Riccati equation” solution (ARE solution here-
after) to the standard H∞control problem was first pre-
sented in 1988 in a paper by Glover and Doyle[3] (Glover-
Doyle solution hereafter) without proof. The complete
proof is given in [5] based on the so-called four-block prob-
lem. The derivation of this solution requires quite high
level mathematical techniques and is so complicated that,
to the knowledge of the authors, no textbooks are able to
include this proof. A more system-oriented approach was
published in the famous paper by Doyle, Glover, Khar-
gonekar and Francis[1] in 1989. This solution is widely
known as the DGKF solution and inspired numerous re-
lated researches afterwards. This DGKF solution and
Glover-Doyle solution paved the way towards the appli-
cations of H∞control. Although the approach of [1] is
theorectically sophisticated and self-contained, it is still
not easy for ordinary control engineers to understand.

Other approaches leading to the ARE solution are the J-
spectral factorization approach of [4] and the J-lossless
conjugation approach of [7]. However, these approaches
are also rather demanding on the readers.

In the mid 1990’s, a direct method for a more general
H∞control problem was proposed in [6, 2] which is based
on the use of LMI approach. The derivation of this LMI
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solution is easier to understand. But more effort of nu-
merical computation is required compared with the ARE
solution. So, for standard H∞control problems the ARE
solution is preferred.

A question arises: is it possible to derive the ARE solution
from the LMI solution? This question is asked because of
two reasons. First, it is theorectically interesting to know
the relationship between the ARE solvability condition
and the LMI solvability condition. Second and more im-
portantly, if a simpler derivation of the ARE solution can
be found, it will undoubtedly play a role in deepening the
understanding of ARE solution for average level engineers
and students.

Some effort has been made in this direction in the text-
book of Zhou[10] (Sec. 14.2) which derived the ARE so-
lution starting from a Riccati inequality condition under
some simplifying technical assumptions, namely assump-
tion A2 in the next section is strengthened to (A, B1) is
controllable and (C1, A) is observable. A similar proof
is given in the lecture notes of Scherer[9] (Theorem 47,
p. 139) under the same assumptions. Inspired by thses
works, this paper aims at deriving the solvability condi-
tion of the ARE solution in the most general form, based
on that of the LMI solution. It will be shown that this
can be done relatively easily. It is hoped that this result
will be useful, at least in an educational sense.

2 Problem Statement

First of all, following the convention a symmetric matrix
X will be called a stabilizing solution if it satisfies the
following Riccati equation

AT X + XA + XRX + Q = 0, RT = R, QT = Q

and A + RX is stable.

The state space realization of the generalized plant is given



by

G(s) =





A B1 B2

C1 D11 D12

C2 D21 0



 . (1)

The input of G(s) is [wT uT ]T and the output is [zT yT ]T .
Let nu, ny, nw, nz denote respectively the dimensions of
u, y, w, z, and n the dimension of the state. Also, γ > 0
will be used as the norm bound in H∞design.

Further, define a linear fractional tranformation (LFT) on
G and K as

F`(G, K) = G11 + G12K(I − G22K)−1G21

in which Gij is a block of a 2 × 2 partion of G that is
compatible with K. This is the closed loop transfer matrix
of the LFT connected system (G, K).

In the sequel, the abbreviations ARE and ARI will be
used for algebraic Riccati equation and algebraic Riccati
inequality respetively.

The assumptions made in [1] are the following:

A1 (A, B2) is stabilizable, (C2, A) is detectable.

A2 (A, B1) is stabilizable, (C1, A) is detectable.

A3 DT
12

[C1 D12] = [0 Inu
]

A4

[

B1

D21

]

DT
21

=

[

0
Iny

]

A5 D11 = 0

Subject to these conditions, the solvability condition for
H∞control problem is given by the following theorem[1]

Theorem 1 (DGKF Solution) Assume A1 to A5.
The H∞control problem ‖F`(G, K)‖∞ < γ has a solu-
tion iff
(1) ARE

AT X∞+X∞A+X∞(γ−2B1B
T
1
−B2B

T
2

)X∞ +CT
1

C1 = 0
(2)

has a positive semi-definite stabilizing solution X∞.
(2) ARE

AY∞ + Y∞AT + Y∞(γ−2CT
1

C1 − CT
2

C2)Y∞ + B1B
T
1

= 0
(3)

has a positive semi-definite stabilizing solution Y∞.
(3) ρ(X∞Y∞) < γ2

Meanwhile the most general assumptions on the standard
H∞control problem made in [3] are the following:

B1 (A, B2) is stabilizable, (C2, A) is detectable.

B2 D12 = [0 Inu
]T , D21 = [0 Iny

].

B3

[

A − jωI B2

C1 D12

]

has full column rank for all ω ∈ R.

B4

[

A − jωI B1

C2 D21

]

has full row rank for all ω ∈ R.

To state Glover-Doyle solution, let us define the following
matrices:

R := DT
1•D1• −

[

γ2Inw
0

0 0

]

, D1• := [D11 D12]

R̃ := D•1D
T
•1

−

[

γ2Inz
0

0 0

]

, D•1 :=

[

D11

D21

]

and decompose D11 as

D11 =

[

D1111 D1112

D1121 D1122

]

such that D1122 ∈ R
nu×ny .

Glover-Doyle solvability condition for H∞control problem
is given by the following theorem[3].

Theorem 2 (Glover-Doyle Solution) Assume B1 to
B4. The H∞control problem ‖F`(G, K)‖∞ < γ has a
solution iff
(1) γ > max{σmax[D1111, D1112, ], σmax[D

T
1111

, DT
1121

]}
(2) ARE

(A − BR−1DT
1•C1)

T X + X(A − BR−1DT
1•C1) −

XBR−1BT X + CT
1

(I − D1•R
−1DT

1•
)C1 = 0 (4)

has a positive semi-definite stabilizing solution X∞.
(3) ARE

(A − B1D
T
•1R̃

−1C)Y + Y (A − B1D
T
•1R̃

−1C)T −

Y CT R̃−1CY − B1(I − DT
•1R̃

−1D•1)B
T
1

= 0 (5)

has a positive semi-definite stabilizing solution Y∞.
(4) ρ(X∞Y∞) < γ2

Lastly, for a more general H∞control problem where only
B1 is assumed, the solvability condition is given by the
next theorem. First of all, define two matrices as follows.

NX = [BT
2

DT
12

]⊥, NY = [C2 D21]⊥

Here A⊥ denotes the orthogonal matrix of A, i.e. AA⊥ =
0. Or more precisely, Im(A⊥) = Ker(A). Also, when B is
a tall matrix (BT )⊥ = BT

⊥
and ((BT )⊥)T = B⊥ will be

used for simplicity of presentation.

Theorem 3 (LMI Solution) Assume B1. The
H∞control problem ‖F`(G, K)‖∞ < γ has a solu-
tion iff



(1) LMI

[

NT
X

Inw

]





AX + XAT XCT
1

B1

C1X −γInz
D11

BT
1

DT
11

−γInw





×

[

NX

Inw

]

< 0 (6)

has a positive definite solution X.
(2) LMI

[

NT
Y

Inz

]





Y A + AT Y Y B1 CT
1

BT
1

Y −γInw
DT

11

C1 D11 −γInz





×

[

NY

Inz

]

< 0 (7)

has a positive definite solution Y .
(3) X and Y satisfy

[

X I
I Y

]

≥ 0, rank

[

X I
I Y

]

≤ nK + n (8)

in which nK is the degree of controller K(s).

3 ARE and ARI

In the derivation of the ARE solution from the LMI so-
lution, the relationship between ARE and ARI is essen-
tial. The following lemma provides such a relationship
between ARE and ARI. This lemma is adopted from [8]
(Theorem 9.1.3) and is known as a comparison theorem.
See also Theorem 14.4 of [10] for a proof subject to the
condition that (A, B) is controllable.

Lemma 1 Suppose (−A, B) is stabilizable and QT = Q.
Then the following statements are equivalent.
(1) There exists a matrix XT = X satisfying

XA + AT X + XBBT X + Q < 0. (9)

(2) There exists a matrix XT
∞

= X∞ satisfying

X∞A + AT X∞ + X∞BBT X∞ + Q = 0 (10)

such that −(A + BBT X∞) is stable.

Further, these two matrices satisfy the relation

X∞ > X.

This lemma is further extended to the following general
case in which (A, B) is only assumed to be controllable
on the imaginary axis. This proposition plays a central
role in the derivation of the ARE solutions from the LMI
solution.

Proposition 1 Set a matrix function as

G(X,A,B, Q) = XAT + AX + XQX + BBT . (11)

Suppose (A, B) is controllable on the imaginary axis and
QT = Q. Then the following statements are equivalent.

1. There exists a matrix X̂ > 0 satisfying

G(X̂, A,B, Q) < 0. (12)

2. There exists a matrix X ≥ 0 satisfying

G(X,A,B, Q) = 0 (13)

such that A + XQ is stable.

Further, these two matrices satisfy the relation

X̂ > X.

(Proof) This proposition is obviously true when (A, B)
only has antistable uncontrollable modes by Lemma 1. So
only the case in which (A, B) has both stable and anti-
stable uncontrollable modes needs to be addressed. With-
out loss of generality, it can be assumed that (A, B) and
Q are decomposed as

A =

[

A1 A12

0 A2

]

, B =

[

B1

0

]

(14)

Q =

[

Q1 Q12

QT
12

Q2

]

in which (−A1, B1) is stabilizable and A2 is stable.

(1) ⇒ (2) Partition X̂−1 as

X̂−1 =

[

X̂−1

1
∗

∗ ∗

]

⇒

AT
1
X̂−1

1
+ X̂−1

1
A1 + X̂−1

1
B1B

T
1

X̂−1

1
+ Q1 < 0.

According to Lemma 1 there exists a matrix X−1

1
>

X̂−1

1
> 0 satisfying

AT
1
X−1

1
+ X−1

1
A1 + X−1

1
B1B

T
1

X−1

1
+ Q1 = 0

⇒ G(X1, A1, B1, Q1) = 0

and −(A1 + B1B
T
1

X−1

1
) is stable.

It is not difficult to verify that

X =

[

X1 0
0 0

]

⇒

G(X,A,B, Q) =

[

G(X1, A1, B1, Q1) 0
0 0

]

= 0

holds and

A + XQ =

[

A1 + X1Q1 ∗
0 A2

]

=

[

−X1(A1 + B1B
T
1

X−1

1
)T X−1

1
∗

0 A2

]

is stable. To prove X̂ > X , let ε > 0 and define a matrix

Xε =

[

X1

εI

]

.



Then obviously Xε ≥ X and

X−1

ε =

[

X−1

1

ε−1I

]

.

When ε is sufficiently small, X−1

ε > X̂−1 holds. Thus

X̂ > Xε ≥ X.

(1) ⇐ (2) Multiplying [0 I]T to the right of Eq.(13) yields
a Sylvester equation

(A + XQ)X

[

0
I

]

+ X

[

0
I

]

AT
2

= 0.

Since both (A+XQ) and A2 are stable, this equation has
a unique solution

X

[

0
I

]

= 0.

Therefore, X must have a structure of

X =

[

X1 0
0 0

]

, X1 ≥ 0.

Then it is clear that G(X1, A1, B1, Q1) = 0 and −(A1 +
B1B

T
1

X−1

1
) = X1(A1 + X1Q1)

T X−1

1
is stable. If X1 > 0,

then there must be a matrix X̂1 > X1 > 0 satisfying

G(X̂1, A1, B1, Q1) < 0 (15)

by Lemma 1. Now let

X̂ =

[

X̂1

X̂2

]

in which X̂2 is a compatible matrix and is assumed satis-
fying

X̂−1

2
A2 + AT

2
X̂−1

2
+ Q2 + ε−1I = 0. (16)

Then
G(X̂, A,B, Q) =

[

G(X̂1, A1, B1, Q1) (A12 + X̂1Q12)X̂2

X̂2(A12 + X̂1Q12)
T A2X̂2 + X̂2A

T
2

+ X̂2Q2X̂2

]

holds. Therefore,
[

I

X̂−1

2

]

G(X̂, A,B, Q)

[

I

X̂−1

2

]

=

[

G(X̂1, A1, B1, Q1) A12 + X̂1Q12

(A12 + X̂1Q12)
T −ε−1I

]

(17)

is obtained. When ε > 0 is small enough, Eq.(16) has
a unique positive definite solution and the right side of
Eq.(17) becomes negative definite by Schur complement
argument. Hence, G(X̂, A,B, Q) < 0. Obviously X̂ > X .

Finally, X1 > 0 is proved by reductive absurdity. Suppose
instead that Ker(X1) is not empty. Then there exists a
matrix T such that Ker(X1) = Im(T ). Hence there holds

0 = T T G(X1, A1, B1, Q1)T = T T B1B
T
1

T

⇒ BT
1

T = 0. (18)

Further

0 = G(X1, A1, B1, Q1)T = X1A
T
1
T

which implies that Ker(X1) is AT
1
-invariant. So there is a

matrix Λ such that

AT
1
T = TΛ. (19)

Eqs.(19) and (18) imply that the eigenvalues of −Λ are
uncontrollable modes of (−A1, B1) and must be stable
because (−A1, B1) is stabilizable. However, due to the
stability of A1 + X1Q1 and

T T (A1 + X1Q1) = T T A1 = ΛT T,

Λ must be stable. This is a contradiction. Thus X1 > 0
must be true. �

4 From LMI to DGKF

In this section, LMI solvability condition is reduced to
an ARI first, then Proposition 1 is applied to derive the
solvability of Theorem 1.

By assumptions A3 and A4, there exist matrices DT
12⊥

and
D21⊥ such that [DT

12⊥
D12], [D21⊥ DT

21
] are unitary, i.e.

[

D12⊥

DT
12

]

[DT
12⊥

D12] = I (20)

[

DT
21⊥

D21

]

[D21⊥ DT
21

] = I. (21)

Further, it is not difficult to show that

NX = [BT
2

DT
12

]⊥ =

[

I 0
−D12B

T
2

DT
12⊥

]

(22)

NY = [C2 D21]⊥ =

[

I 0
−DT

21
C2 D21⊥

]

(23)

holds. Therefore, the left side of LMI (6) becomes




AX + XAT − γB2B
T
2

XCT
1

DT
12⊥

B1

D12⊥C1X −γI 0
BT

1
0 −γI



 .

Noting DT
12

C1 = 0 and DT
12⊥

D12⊥ + D12D
T
12

= I,

CT
1

DT
12⊥D12⊥C1 = CT

1
C1

holds. Then by Schur complement argument, LMI (6) is
equivalent to

AX + XAT + γ
(

γ−2B1B
T
1
− B2B

T
2

)

+ γ−1XCT
1

C1X < 0

⇔ (X/γ)−1A + AT (X/γ)−1+

(X/γ)−1
(

γ−2B1B
T
1
− B2B

T
2

)

(X/γ)−1 + CT
1

C1 < 0.

According to Proposition 1 this condition is equivalent to
that ARE (2) has a stabilizing solution X∞ and

(X/γ)−1 > X∞ ≥ 0. (24)



Analogously, it can be proved that LMI (7) is equivalent
to that ARE (3) has a stabilizing solution Y∞ and

(Y/γ)−1 > Y∞ ≥ 0. (25)

Finally, if a full order controller is considered, i.e. nK = n,
then the rank condition

rank

[

X I
I Y

]

≤ nK + n = 2n

holds automatically. Further
[

X I
I Y

]

≥ 0 ⇔ X ≥ Y −1 ⇔ ρ(X−1Y −1) ≤ 1.

This condition turns out to be equivalent to

ρ(X∞Y∞) < γ2

due to Eqs.(24) and (25). Thus Theorem 1 is proven.

5 From LMI to Glover-Doyle

The derivation of Glover-Doyle solution is a little bit more
involved and needs some preparations. If D11 is assumed
as a zero matrix, then the presentation of the following
derivation process would be greatly simplified. However,
for completeness, Glover-Doyle solution will be derived in
its general form.

Only the equivalence between ARE (4) and LMI (6) will
be shown. The equivalence between ARE (5) and LMI
(7) follows by duality. And the equivalence between the
spectral radius condition and Eq. (8) has been proved in
the previous subsection.

The following matrix inversion formulae will be used ex-
tensively in the sequel

[

X Y
Y T I

]−1

=

[

I 0
−Y T I

] [

(X − Y Y T )−1 0
0 I

] [

I −Y
0 I

]

(I − AB)−1A = A(I − BA)−1

B(I − AB)−1 = (I − BA)−1B.

(A − BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1

As in the preceding subsection, due to assumption B2
there exist D12⊥, NX satisfying Eqs. (20), (22) respec-
tively. Hence, LMI (6) reduces to





AX + XAT − γB2B
T
2

XCT
1

DT
12⊥

B1

D12⊥C1X −γI D12⊥D11

B1
T DT

11
DT

12⊥
−γI





< 0 (26)

in which (22) and DT
12⊥

D12⊥ = I, D12⊥D12 = 0 have been
used and matrices A, B1 are defined as

A = A − B2D
T
12

C1, B1 = B1 − B2D
T
12

D11.

Since D12⊥ = [I 0], it is easy to see that

[

−γI D12⊥D11

DT
11

DT
12⊥

−γI

]

< 0 ⇔

γ > σmax[D1111, D1112].

So the following two matrices are positive definite

R := γ2I − DT
11

DT
12⊥D12⊥D11 > 0

E := I − γ−2D12⊥D11D
T
11

DT
12⊥

> 0.

Noting DT
12

D12 = I and D12D
T
12

+ DT
12⊥

D12⊥ = I, it is
obtained that

R−1 =
[

I 0
−DT

12
D11 I

] [

−R−1 0
0 I

] [

I −DT
11

D12

0 I

]

.

Then, some routine calculations yield

I − D1•R
−1DT

1• = DT
12⊥E−1D12⊥ ≥ 0

A − BR−1DT
1•

C1 = A − B1R
−1DT

11
DT

12⊥
D12⊥C1

BR−1BT = B2B
T
2
− B1R

−1B1
T (27)

where E−1 = I + D12⊥D11R
−1DT

11
DT

12⊥
has been used in

the calculation of the first equation.

Lemma 2 Subject to assumptions B2, B3 and γ >
σmax[D1111, D1112], the pair ((I −D1•R

−1DT
1•)

1/2C1, A−
BR−1DT

1•
C1) is observable on the imaginary axis.

(Proof) First of all, the following equation





I 0
0 D12⊥

0 DT
12





[

A − jωI B2

C1 D12

] [

I 0
−DT

12
C1 I

]

=





A − jωI B2

D12⊥C1 0
0 I





shows that

[

A − jωI
D12⊥C1

]

has full column rank. Then the

conclusion follows from equation

[

A − BR−1DT
1•

C1 − jωI

(I − D1•R
−1DT

1•
)1/2C1

]

=

[

I −B1R
−1DT

11
DT

12⊥

0 E−1/2

] [

A − jωI
D12⊥C1

]

immediately. �

In the following, LMI (26) is reduced to an ARI first, then
Proposition 1 is invoked to derive ARE (4).

Now define a matrix as

X̂ := γX−1 > 0.



An equivalent LMI





X̂A + AT X̂ − X̂B2B
T
2

X̂ ∗ ∗
D12⊥C1 −I ∗

γ−1B1
T X̂ γ−1DT

11
DT

12⊥
−I





< 0

is obtained by multiplying γX−1 to the first row block
and the first column block of the matrix on the left side
of (26), then dividing the whole matrix by γ. Since

[

−I γ−1D12⊥D11

γ−1DT
11

DT
12⊥

−I

]−1

= −

[

I 0
γ−1DT

11
DT

12⊥
I

] [

E−1 0
0 I

] [

I ∗
0 I

]

,

the LMI above is equivalent to the following Riccati in-
equality

X̂A + AT X̂ − X̂(B2B
T
2
− γ−2B1B1

T )X̂

+(∗)T DT
12⊥

E−1D12⊥(C1 + γ−2D11B1
T X̂) < 0.

Substitution of γ−2DT
11

DT
12⊥

E−1D12⊥C1 =
R−1DT

11
DT

12⊥
D12⊥C1 and R−1 = γ−2I +

γ−4DT
11

DT
12⊥

E−1D12⊥D11 as well as the equations
in (27) gives

(A − BR−1DT
1•

C1)
T X̂ + X̂(A − BR−1DT

1•
C1) −

X̂BR−1BT X̂ + CT
1

(I − D1•R
−1DT

1•)C1 < 0.

Then invoking Proposition 1 and Lemma 2 shows that this
is equivalent to that ARE (4) has a stabilizing solution
X∞ ≥ 0 and X̂ > X∞. This ends the proof.

6 Conclusion

A simple derivation of the Riccati equation based solu-
tions to the standard H∞control problems, i.e. DGKF
solution and Glover-Doyle solution, has been obtained
in this note, starting from the LMI solution for general
H∞control problems. It is hoped that this will serve as
a guide in the understanding of ARE based H∞control
theory.
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