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∗ Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi Magna Græcia di Catanzaro, Via T. Campanella 115,
88100, Catanzaro, Italy, e-mail: amato@unicz.it
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Abstract

In this paper we deal with the problem of designing an output
feedback controller which guarantees, at the same time, that
the closed-loop poles are in specified regions of the complex
plane and that the system under control is finite time bounded.
This is accomplished by means of a dynamic compensator in
the controller-observer form. The design procedure is divided
in two steps: first, supposing that the state is available, a state
feedback controller which gives the desired closed-loop prop-
erties is designed; then a state observer which tries to retain the
properties guaranteed by the state feedback controller is syn-
thesized. All the conditions are expressed in terms of Linear
Matrix Inequalities and therefore the problem can be solved by
efficient numerical optimization algorithms.

1 Introduction

The problem we consider in this paper can be summarized as
follows: given a linear system subject to disturbances, design a
controller which places the poles of the closed loop system in
a specified region of the complex plane and, at the same time,
guarantees finite time boundedness of the state variables.

Pole placement is often required in control applications to en-
sure a desired transient behaviour of the closed loop system.
A classical example is represented by the flying qualities re-
quirements in the field of aircraft control; such requirements
specify, for example, an upper bound for the damping related
to the phugoid mode [7]. Sufficient conditions guaranteeing
the existence of a state and output feedback controller placing
the system poles in a desired region have been provided in the
literature (see [4] and the bibliography therein) in terms of fea-
sibility problems involving Linear Matrix Inequalities (LMIs)
[2].

On the other hand the concept of finite time control dates back
to the Sixties, when the idea of finite time stability (FTS) was
introduced in the control literature [8], [5]. A system is said to
be finite time stable if, given a bound on the initial condition,
its state does not exceed a certain threshold during a specified
time interval.

It is important to recall that FTS and Lyapunov Asymptotic
Stability (LAS) are independent concepts; indeed a system can

be FTS but not LAS, and viceversa. While LAS deals with the
behaviour of a system within a sufficiently long (in principle
infinite) time interval, FTS is a more practical concept which is
useful to study the behaviour of the system within a finite (pos-
sibly short) interval, and therefore it finds application whenever
it is desired that the state variables do not exceed a given thresh-
old (for example to avoid saturations or the exit from the linear
regime) during the transients.

FTS in the presence of exogenous inputs leads to the concept of
finite time boundedness (FTB). In other words a system is said
to be FTB if, given a bound on the initial condition and a char-
acterization of the set of admissible inputs, the state variables
remain below the prescribed limit for all inputs in the chosen
set. It is clear that FTB implies FTS but the converse is not
true.

FTS and FTB are open loop concepts. The finite time stabiliza-
tion problem concerns the design of a linear controller which
ensures the FTS or the FTB of the closed loop system. Suffi-
cient conditions for finite time stabilization in the presence of
constantdisturbances and zero reference input have been pro-
vided in [1] for the state feedback case.

To understand the importance of considering at the same time
FTS and pole placement, we refer again to the aircraft example.
In that context, given a certain flight condition and the corre-
sponding linearized model, a typical requirement for the de-
signer is that of synthesizing a controller which “augments the
stability” of the linear model (Stability Augmentation System)
guaranteeing a desired damping; however, at the same time,
it is important to ensure that the state variables do not exceed
some bounds to avoid the exit from the linear regime and/or the
attainment of nonphysical values.

This paper provides novel contributions in several ways. The
first result is a sufficient condition guaranteeing the existence of
a state feedback controller placing the poles of the closed loop
system in a desired region of the complex plane and ensuring
finite time boundedness in presence of both nonzero reference
inputs and exogenous disturbances, which are assumed to be-
long to a larger class than the one considered in [1].

When the state is not fully available, we consider finite time
stabilization via output feedback. The design, in this case, is
divided in two steps. First we design a state feedback controller
guaranteeing the desired pole placement and FTB of the system
supposing that the state were available; then a state observer
which tries to retain the finite-time properties guaranteed by



the state feedback controller is synthesized.

In both the state and output feedback cases, we shall provide
conditions for the existence of the controller in terms of LMIs
feasibility problems.

The paper is organized as follows. In Section 2 some prelim-
inary definitions are given and the problems we deal with are
precisely stated. In Section 3 sufficient conditions for the ex-
istence of a state feedback controller guaranteeing pole place-
ment and finite time stabilization are provided. In Section 4 the
output feedback problem is considered; finally the conclusions
are drawn in Section 5.

2 Problem Statement and Preliminaries

The following definitions deal with various finite time control
problems.

Definition 1 (Finite time stability (FTS)). Given three pos-
itive scalarsc1, c2, T , with c1 < c2, and a positive definite
symmetric matrixR, the linear system

ẋ(t) = Ax(t) , x(0) = x0 (1)

is said to be finite time stable (FTS) with respect to
(c1, c2, T, R), if

xT
0 Rx0 ≤ c1 ⇒ xT (t)Rx(t) < c2 ∀t ∈ [0, T ] .

3

Remark 1. Lyapunov Asymptotic Stability (LAS) and FTS are
independent concepts: a system which is FTS may be not LAS;
conversely a LAS system could be not FTS if, during the tran-
sients, its state exceeds the prescribed bounds. 4

Definition 2 (Finite time boundedness (FTB)).Given three
positive scalarsc1, c2, T , with c1 < c2, a positive definite sym-
metric matrixR and a class of signalsW, the linear system

ẋ(t) = Ax(t) + Gw(t) , x(0) = x0 (2)

is said to be finite time bounded with respect to
(c1, c2,W, T, R) if

xT
0 Rx0 ≤ c1 ⇒ xT (t)Rx(t) < c2 ∀t ∈ [0, T ] , (3)

for all w(·) ∈ W. 3

Remark 2. An important difference between LAS and FTB re-
lies in the fact that, for linear systems, LAS is a structural prop-
erty of the system which is not affected by the inputs, while
FTB clearly depends on the kind and amplitude of the inputs
acting on the system. For instance, referring to aircraft control,
it is important that during the execution of a certain task the
state variables do not exceed some threshold under all admissi-
ble pilot (reference) inputs and/or in the presence of wind gusts
(disturbance). 4

Note that FTS and FTB refer to open loop systems. The next
definition puts together FTS and FTB in the design context.

Definition 3 (Finite time stabilization via state feedback
(FTSSF)). Given three positive scalarsc1, c2, T , with c1 < c2,
a positive definite symmetric matrixR and two classes of sig-
nalsWr andWd, the linear system

ẋ(t) = Ax(t) + Bu(t) + Ed(t) , x(0) = x0 (4)

is said to be finite time stabilizable via state feedback with re-
spect to(c1, c2,Wr ×Wd, T, R) if there exists a control law in
the form

u(t) = Kx(t) + r(t) (5)

such that the closed loop system obtained by the connection of
(4) and (5), namely

ẋ(t) = (A + BK) x(t) +
(
B E

) (
r(t)
d(t)

)
, x(0) = x0 ,

is FTB with respect to(c1, c2,Wr ×Wd, T, R). 3

Remark 3. In [1] a sufficient condition for FTSSF has been
provided whenr(t) = 0 andWd is the class of constant, norm
bounded disturbances. In this paper we consider a more general
situation, since bothr(t) 6= 0 and, as we shall precise later,
the classWd we consider in this work is larger than the one
considered in [1]. 4

Next, we consider dynamic output feedback control. Note that,
when a dynamical controller is used, the state of the closed loop
system is given by the composition of the system state and the
controller state. Since we are only interested in the finite time
stabilization of the state of the original system (5), we give the
following definition.

Definition 4 (Finite Time Stabilization via output feedback
(FTSOF)). Given three positive scalarsc1, c2, T , with c1 <
c2, a positive definite symmetric matrixR and two classes of
signalsWr andWd, the linear system

ẋ(t) = Ax(t) + Bu(t) + Ed(t) , x(0) = x0 (6a)

y(t) = Cx(t) (6b)

is said to be finite time stabilizable via output feedback with
respect to(c1, c2,Wr × Wd, T, R) if there exists a dynamic
controller in the form

ξ̇(t) = AKξ(t) + BKy(t) + EKr(t) , ξ(0) = 0 (7a)

u(t) = CKξ(t) + DKr(t) (7b)

such that (6a) subject to (7b), namely

ẋ(t) = Ax(t) +
(
BCK BDK E

) ξ(t)
r(t)
d(t)

 , x(0) = x0 ,

is FTB with respect to(c1, c2,Wr ×Wd ×Wξ, T,R), where
Wξ is the set of all solutions of (7a). 3

In the next assumption we characterize the classes of signals
Wr andWd considered in this paper.



Assumption 1. The classWr andWd are defined as follows

Wr :=
{

r(·) : ṙ(t) = Arr(t) , r(0) = r0 ,

rT
0 Γrr0 ≤ ρ , Γr > 0

}
Wd :=

{
d(·) : ḋ(t) = Add(t) , d(0) = d0 ,

dT
0 Γdd0 ≤ δ , Γd > 0

}
.

3

Note that the setsWr andWd capture, among others, the
classes of canonical polynomial and sinusoidal inputs. Con-
stant disturbances (considered in [1]) are a particular sub-class
of the setWd.

Now let us consider the pole placement problem. According
to [3] we refer to the so-called LMI regions of the complex
plane.

Definition 5 (LMI Region [3]). An LMI region is any subset
D of the complex plane defined as

D :=
{
z ∈ C : Λ + zΘ + z∗ΘT < 0

}
(8)

whereΛ andΘ are real matrices andΛ is symmetric. 3

LMI regions include, among others, the strip, the disk and
the cone with apex at the origin. For example the half plane
<(z) < −α is characterized by the inequality

z + z∗ + 2α < 0 ,

while the conic sector with apex at the origin and inner angle
2θ is described by(

sin (θ(z + z∗)) cos (θ(z − z∗))
cos (θ(z − z∗)) sin (θ(z + z∗))

)
< 0 .

Definition 6 (D-Stability). System (1) is said to beD-stable if
all the eigenvalues ofA are in the regionD. 3

A generalization of the Lyapunov Theorem for linear systems
leads to the following necessary and sufficient condition forD-
stability; in the sequel, given two matricesF andG, the symbol
F ⊗G denotes the Kronecker product ofF andG [6].

Theorem 1 (D- Stability [3]). System (1) isD-stable if and
only if there exists a positive definite matrixP such that

Λ⊗ P + Θ⊗ (AP ) + ΘT ⊗ (PAT ) < 0 . (9)

Note that (9) is an LMI in the variableP .

Now we are ready to state the main problems we will consider
in this paper.

Problem 1 (FTSSF and Pole Placement).
Given three positive scalarsc1, c2, T , with c1 < c2, a positive
definite symmetric matrixR, the classes of signalsWr andWd

considered in Assumption 1,find a control law in the form (5)
which guarantees FTSSF of the linear system (4) and places
the closed loop poles in the regionD. 3

Next we consider the output feedback case. To this end note
that the pole placement problem is greatly simplified if we con-
sider a dynamical compensator in the controller-observer form.
Such compensator can be obtained from (7) by letting

AK = A + BK + LC

BK = −L , EK = B , CK = K , DK = I .

Indeed in this case the well known Separation Principle ensures
that the poles of the closed loop system are that ones ofA+BK
andA + LC. Following this consideration, in the sequel we
shall refer to output feedback dynamical controllers in the form

ξ̇(t) = Aξ(t) + Bu(t) + L(Cξ(t)− y(t)) , ξ(0) = 0
(10a)

u(t) = Kξ(t) + r(t) . (10b)

Problem 2 (FTSOF and Pole Placement).
Given three positive scalarsc1, c2, T , with c1 < c2, a positive
definite symmetric matrixR, the classes of signalsWr, Wd

considered in Assumption 1,find a dynamical controller in the
form (10) which attains FTSOF of the linear system (6) and
places the poles ofA + BK in the regionD. 3

Remark 4. In order to be consistent with the formulation of the
FTSOF problem, in Problem 2 our only concern is the place-
ment of the poles of the original system (6). 4

3 A Sufficient Condition for FTSSF with Pole
Placement

In this section we shall provide a sufficient condition for the
solvability of Problem 1.

First consider the following result.

Lemma 1. Consider the regionD defined in (8); then system
(2) isD-stable and FTB wrt(c1, c2,W, T, R), where

W :=
{

w(·) : ẇ(t) = Aww(t) , w(0) = w0 ,

wT
0 Γw0 ≤ µ , Γ > 0

}
, (11)

if, letting Q̃1 = R−1/2Q1R
−1/2, Q̃2 = Γ1/2Q2Γ1/2, there

exist three symmetric positive definite matricesQ1, Q2, Q3, a



nonnegative scalarα and two positive scalarsλ1, λ2, such that(
Ψa G
GT Ψb

)
< 0 (12a)

λ1I < Q1 < I (12b)

Q2 < λ2I (12c)(
λ2µ− c2e

−αT √
c1√

c1 −λ1

)
< 0 (12d)

Λ⊗Q3 + Θ⊗ (AQ3) + ΘT ⊗ (Q3A
T ) < 0 , (12e)

where

Ψa := AQ̃1 + Q̃1A
T − αQ̃1

Ψb := AT
wQ̃2 + Q̃2Aw − αQ̃2 .

Proof. Assume there exist positive definite matricesQ1, Q2,
a numberα ≥ 0 and positive scalarsλi, i = 1, 2, satisfying
conditions (12b)-(12d). We have

c1

λmin(Q1)
+ λmax(Q2)µ <

c1

λ1
+ λ2µ

< c2e
−αT

<
c2e

−αT

λmax(Q1)
. (13)

Now defineP1 = Q−1
1 , P2 = Q2; in this way inequality (13)

can be rewritten

λmax(P1)c1 + λmax(P2)µ < λmin(P1)c2e
−αT (14)

Let

V (x,w) = xT R1/2P1R
1/2x + wT Γ1/2P2Γ1/2w

:= xT P̃1x + wT P̃2w (15)

and denote, as usual, bẏV the derivative ofV along the solu-
tions of system (2). Suppose that the condition

V̇ (x(t), w(t)) < αV (x(t), w(t)) (16)

holds for allt ∈ [0, T ] and allw(·) ∈ W. We will first demon-
strate that conditions (16) and (14) imply that system (2) is
FTB with respect to(c1, c2,W, T, R). Then we will show that
condition (16) is equivalent to (12a).

Our first claim is that conditions (16) and (14) imply the
Finite-Time Boundedness of system (2) with respect to
(c1, c2,W, T, R). Introducing the matrix

P =
(

P̃1 0
0 P̃2

)
and the vector

z =
(

x
w

)
it is easy to show that from (16) it follows that

zT (t)Pz(t) < zT (0)Pz(0)eαt (17)

and

zT (t)Pz(t) ≥ λmin(P1)xT (t)Rx(t)

+ λmin(P2)wT (t)Γw(t)

≥ λmin(P1)xT (t)Rx(t) (18a)

zT (0)Pz(0)eαt ≤
(
λmax(P1)xT (0)Rx(0)

+ λmax(P2)wT (0)Γw(0)
)
eαt

≤ (λmax(P1)c1 + λmax(P2)µ) eαT . (18b)

Putting together (17) and (18) we have

xT (t)Rx(t) <
λmax(P1)c1 + λmax(P2)µ

λmin(P1)
eαT . (19)

From (19) and (14) it readily follows thatxT (t)Rx(t) < c2 for
all t ∈ [0, T ].

Now we shall prove that condition (12a) is equivalent to (16).
It is simple to recognize that inequality (16) is equivalent to the
following (we omit the time argument for brevity)

xT AT P̃1x + wT GT P̃1x + xT P̃1Ax + xT P̃1Gw

+ wT AT
wP̃2w + wT P̃2Aww − αxT P̃1x− αwT P̃2w < 0

which can be rewritten as

(
xT wT

)
·(

AT P̃1 + P̃1A− αP̃1 P̃1G

GT P̃1 AT
wP̃2 + P̃2Aw − αP̃2

) (
x
w

)
< 0

(20)

From (20), pre and post-multiplying by

(
Q̃1 0
0 I

)

the proof follows.

For what concerns theD-Stability, it is ensured guaranteeing
that condition (12e) holds, as stated in Theorem 1.

Based on Lemma 1 we can state the following result.

Theorem 2. Problem 1 admits a feasible solution if let-
ting Q̃1 = R−1/2Q1R

−1/2, Q̃2 = Γ1/2
r Q2Γ

1/2
r , Q̃3 =

Γ1/2
d Q3Γ

1/2
d , there exist three symmetric positive definite ma-

tricesQ1, Q2, Q3, a nonnegative scalarα, three positive scalars



λi, i = 1, 2, 3, and a matrixN such thatΨ1 B E
BT Ψ2 0
ET 0 Ψ3

 < 0

λ1I < Q1 < I

Q2 < λ2I

Q3 < λ3I(
λ2ρ + λ3δ − c2e

−αT √
c1√

c1 −λ1

)
< 0

Λ⊗ Q̃1 + Θ⊗
(
AQ̃1

)
+ Θ⊗ (BN)

+ΘT ⊗
(
Q̃1A

T
)

+ ΘT ⊗
(
NT BT

)
< 0 .

where

Ψ1 := AQ̃1 + Q̃1A
T + BN + NT BT − αQ̃1

Ψ2 := AT
r Q̃2 + Q̃2Ar − αQ̃2

Ψ3 := AT
d Q̃3 + Q̃3Ad − αQ̃3

If the above set of LMI is feasible, then a controller in the
form (5) solving Problem 1 can be found by lettingK =
NQ̃−1

1 .

Proof. It is sufficient to apply Lemma 1 with the following sub-
stitutions

A← A + BK , G←
(
B E

)
, w(t)←

(
r(t)
d(t)

)
,

W ←Wr ×Wd , Aw ←
(

Ar 0
0 Ad

)
,

Γ←
(

Γr 0
0 Γd

)
, Q̃2 ←

(
Q̃2 0
0 Q̃3

)
,

and to define a new optimization variableN := KQ̃1.

Remark 5. Note that we used the same matrix variableQ̃1 in
the first and in the last condition of Theorem 1. This is neces-
sary in order to obtain a condition for FTSSF with pole place-
ment entirely expressed in terms of LMIs. 4

4 The Output Feedback Case

When the state of the system under consideration is not fully
available, it can be estimated via a classical Luenberger ob-
server. However the observer may destroy the finite time stabi-
lization obtained via the state feedback, due to the inaccuracy
of the state estimate during the transients.

To better investigate this point let us consider the closed loop
system obtained connecting the controller (10) to system (6)

ẋ(t) = Ax(t) + BKξ(t) + Br(t) + Ed(t) , x(0) = x0

ξ̇(t) = −LCx(t) + (A + BK + LC) ξ(t) + Br(t) ,

ξ(0) = 0 .

It is well known that, using the state transformation which
brings the system into the state-estimation error base(

x
e

)
=

(
I 0
I −I

) (
x
ξ

)
, (21)

the system dynamics can be rewritten as

ẋ(t) = (A + BK)x(t) + Br(t) + Ed(t)−BKe(t) ,

x(0) = x0 (22)

with

ė(t) = (A + LC) e(t) + Ed(t) , e(0) = x0 . (23)

Therefore the system state evolution is influenced by the be-
haviour of the exogenous inpute(t). Since we assume that in
the previous phase a controllerK solving Problem 1 has beed
designed according to Theorem 2, fore(t) = 0 system (22)
is obviously FTB and its poles are located in the regionD;
however the presence of a nonzeroe(t), while not affecting the
locations of the poles ofA + BK, could bring the norm of the
statex(t) outside the prespecified bounds.

On the basis of the above discussion, we will develop a method-
ology to find an observer gainL in (10) such that the FTB prop-
erty of the system

ẋ = (A + BK) x + Br + Ed

is not lost in presence of the estimation error.

Theorem 3. Assume thatK is a static feedback controller
which solves Problem 1 for the system (6a). LetQ̃1 =
R−1/2Q1R

−1/2, Q̃2 = R1/2Q2R
1/2, Q̃3 = Γ1/2

r Q2Γ
1/2
r ,

Q̃4 = Γ1/2
d Q3Γ

1/2
d . If there exist four symmetric positive def-

inite matricesQ1, Q2, Q3, Q4, a nonnegative scalarα, four
positive scalarsλi, i = 1, . . . , 4, and a matrixM such that

Φ1 −BK B E
−KT BT Φ2 0 E

BT 0 Φr 0
ET ET 0 Φd

 < 0 (24a)

λ1I < Q1 < I (24b)

Q2 < λ2I (24c)

Q3 < λ3I (24d)

Q4 < λ4I (24e)(
λ2c1 + λ3ρ + λ4δ − c2e

−αT √
c1√

c1 −λ1

)
< 0 (24f)

where

Φ1 := AQ̃1 + Q̃1A
T + BKQ̃1 + Q̃1K

T BT − αQ̃1

Φ2 := AT Q̃2 + Q̃2A + MC + CT MT − αQ̃2

Φr := AT
r Q̃3 + Q̃3Ar − αQ̃3

Φd := AT
d Q̃4 + Q̃4Ad − αQ̃4

then Problem 2 admits a solution; a possible solution is given
by the pairK, L, whereL = Q̃−1

2 M.



Proof. System (22) can be put in the form (2) by making the
following substitutions

A← A + BK , G←
(
−BK B E

)
,

w(t)←

e(t)
r(t)
d(t)

 , W ←We ×Wr ×Wd ,

Aw ←

A + LC 0 E
0 Ar 0
0 0 Ad

 , Γ←

R 0 0
0 Γr 0
0 0 Γd

 ,

Q̃2 ←

Q̃2 0 0
0 Q̃3 0
0 0 Q̃4

 ,

where

We :=
{

e(·) : ė(t) = (A + LC)e(t) + Ed(t) ,

e(0) = x(0) , eT
0 Re0 ≤ c1 , R > 0

}
,

andM = Q̃2L; then the conditions (24a)-(24f) are easily de-
rived from Lemma 1.

Remark 6. In Theorem 3, because of the separation princi-
ple, we are not concerned with the regional pole placement any
more. Therefore conditions (24a)–(24f) are only aimed at re-
taining the FTB properties of the closed-loop system (22).4

5 Conclusions

In this paper, given a linear system, we have considered the
problem of guaranteeing at the same time, via output feedback,
the finite-time boundedness of the system state during the tran-
sients and the placement of the closed-loop poles in some spec-
ified regions. The proposed controller design is divided in two
phases. First a state feedback controller which gives the de-
sired propeties in terms of pole location and finite-time bound-
edness is designed; then a state observer is built in such a way
that the finite-time performances obtained at the first step are
retained. The sufficient conditions for the existence of the con-
troller are given in terms of Linear Matrix Inequalities; this
allows to solve our problem by means of efficient numerical
optimization algorithms.
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