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Abstract
This paper discusses the synthesis of a predictive controller for stor-
age problems in power conversion systems. The control algorithm is
based on solving an optimization problem, to optimally schedule the
power stored in a storage device so the total efficiency of the system,
in which the storage device is embedded, is improved. The model em-
ployed in the controller is power-based, including losses for the main
components of the system. The losses are modeled by quadratic, lin-
ear, and piecewise linear relations.
In general the systems for which this approach is applicable will con-
sist of a primary power converter that converts primary power (chem-
ical) to secondary power (mechanical), e.g., for propulsion, but also
has a power take-off for a secondary power converter that converts
secondary power to tertiary power (electrical) to fulfill the needs of
tertiary power users. When using a device to store tertiary power, the
actuation of this device can be scheduled to minimize the consump-
tion of primary power. To compute this schedule we formulate and
solve a standard QP problem. Piecewise linear relations are handled
by embedding in a larger design space.
We show that this approach can be effective, because the efficien-
cies of the converters depend on their workloads. Taking advantage
of sweet spots in the efficiency characteristics may improve the total
efficiency, depending on the characteristics of the storage device. The
storage device achieves these savings by decoupling the consumption
of and conversion to tertiary power. It appears that a reduction of the
primary power that is used to generate tertiary power is achievable
in the application presented. This reduction is determined by the ef-
ficiency characteristics of converters and storage device, and by the
workloads foreseen. The horizon of the predictive controller has to be
large enough to detect possible sweet spots, and therefore will depend
largely on the characteristic of the signals that determine the work-
loads. It is possible to pose the problem so the required horizon is
very small.

1 Introduction
We describe a power-based model approach to optimize the
schedule of stored (and thus generated) power, so as to get min-
imal primary power consumption in systems equipped with a
primary power converter, e.g., a fossil fuel converter, convert-
ing from primary to secondary power, and a secondary power
converter, e.g., an electrical generator, converting from sec-
ondary to tertiary power due to a power take-off at the primary
power converter. These systems are typically of a hybrid nature.
To be able to generate tertiary power mainly at times that do
not cause much increase in primary power consumption, while
still being able to meet the required tertiary power loads, the
system needs to be equipped with storage devices, e.g., a bat-
tery. Systems where this type of device configurations occur
are, for instance, ships and aircraft. Here, the primary power
converter is a gasturbine and the secondary power converter
is an electrical generator mechanically coupled to the turbine.
The power generated by the primary power converter is mainly
used for propulsion. The remaining power is used to drive the

secondary power converter, that supplies power to electrical de-
vices. Other power converters, like DC-DC converters, could
also be included. An objective in these systems is to get low
consumption of primary power (fossil fuel) while still meeting
propulsion requirements and the needs of tertiary power users.
Our goal is thus to schedule the tertiary power storage system,
to minimize the primary power consumption.
The areas in the working space where savings in primary power
can be achieved, the sweet spots of the converters, are those
where the primary power consumed does not increase that
much when more secondary power is converted. In Fig. 1 a
typical relation between power consumed, Pc, and power pro-
duced, Pm , in the primary converter is given. A comparable
relation holds for the secondary converter. The area where the

Pc

Pm

Figure 1: Relation between power consumed, Pc, and power
produced, Pm , by a power converter

slope of this characteristic is smallest, so for low or negative
Pm in Fig. 1, gives the best conditions to convert to secondary
power, because an increase in Pm only causes a relatively small
increase in Pc, so it is an area with low incremental cost. There-
fore, it may sometimes be worthwhile to postpone conversion
to tertiary power to a later and more profitable time interval,
and satisfy the requirements for tertiary power by taking power
from a storage device, or vice versa.
This type of control problem can be solved by scheduling [1],
but to do this the workloads need to be known in advance, at
least when using static schedulers. We target the case where the
conditions under which the converters are working vary quite
a lot in a short time, mainly due to hard to foresee external in-
fluences. The scheduling problem needs therefore to be solved
on-line, placing restrictions on the type of techniques that can
be employed, and on the intricacy of the models used, to cope
with real-time issues. This type of problems has also been stud-
ied in the area of computer networks with variable service re-
quests, see [2] for approaches using control theory and dynamic
scheduling.
In this paper we will use a predictive type of control algorithm
to produce the schedule. The controller computes the complete
schedule within the control horizon using predictions of the



workloads and a model, but only the first computed control ac-
tion is implemented at each sampling instant. After this instant
the control actions over the complete horizon, shifted 1 time in-
stant, are recomputed using new information that has become
available: this is the receding horizon principle. See [3] for an
introduction to this principle and for predictive control in gen-
eral.

We solve this problem within a QP (Quadratic Programming)
formalism, for efficiency and because we have to take account
of all kinds of constraints and losses, e.g., quadratic and piece-
wise linear ones. The embedding of piecewise linear storage
losses in a QP setup seems to be a novel feature for this type of
applications, which should be useful for other applications as
well, even in a more general setting.

The other key element in our approach is a power-based model,
that does contain hardly any dynamics, and is therefore effi-
cient to implement. Devices that can be power controlled are
discussed, e.g., in [4, 5].

In the following sections we present the power-based model,
the control objective and constraints, and give a worked exam-
ple of the approach using synthetic but realistic data, while we
will start with some assumptions and restrictions of the pro-
posed approach.

2 Assumptions and restrictions

It is assumed that the workloads, characterized by the speed,
ω, at which the converters are running, by the secondary power
consumed directly for propulsion, Pp, and by the tertiary power
consumed directly by certain loads, Pl , is known a certain time
interval in advance. This information is available for the com-
plete horizon of a predictive controller, but may change com-
pletely at each time instant. To get this data a suitable predic-
tion facility is assumed. Also, the controller is assumed to be
geared to solve optimization problems, but only with an ob-
jective that is quadratic and constraints that are linear in the
design variables. This restriction facilitates the on-line imple-
mentation, because fast solution techniques can be employed.

The model is formulated in terms of power, and it is assumed
that at least the storage device can be power controlled. What-
ever is needed to achieve this is not characterized by the model.
Also variables internal to the devices that are physically re-
stricted cannot be bounded directly by this approach. One has
to supply suitable models for the devices to make that possi-
ble. More involved models, however, make the control strategy
less insightful, complicate the design, and hamper the on-line
implementation.

The simple power-based model uses only a single dynamic
equation, namely for the storage device, but the simplicity of
the model facilitates the on-line implementation. The time scale
of interest, above about 1 [s], and the assumption that workload
data is available, makes this simplification possible. To get re-
liable results we assume to have accurate static data for the
efficiencies of the devices, which is a challenge to acquire in
itself, but not the subject of this paper.

To be able to efficiently handle piecewise linear loss terms
within a QP setup with linear constraints, we assume Pp ≥ 0
and Pl ≥ 0, so monotonicity of the objective function can be
implied, as will become clear later. This assumption makes the
approach inappropriate for some applications, e.g., automotive
propulsion systems, without modifications.

3 Power-based model
The relations between the powers for the basic system in Fig. 2
are as follows:

Pc = φc(ω, Pm),

Pm = Pp + Pg,

Pg = φg(ω, Pe),

Pe = Pl + Pb,

Pb = φb(Es, Ps),

with Pc the power consumed by the primary converter, Pm the
power delivered by this converter, Pg the power consumed by
the secondary converter, Pe the power delivered by this con-
verter, Pb the power consumed by the storage device, Ps the
power effectively stored, and Es the energy in the storage de-
vice.
The static characteristics that define the efficiency of the three
main components of the system, primary converter, secondary
converter, and storage process, are:

• φc(ω, Pm): inverse efficiency of the primary converter
times outlet power, as function of speed ω and outlet
power Pm , it also represents the losses when no net power
is generated, e.g., friction and aerodynamic losses in a fuel
converter,

• φg(ω, Pe): inverse efficiency of the secondary converter
times outlet power, as function of speed ω and outlet
power Pe, it includes the losses when no net power is gen-
erated, e.g., friction losses,

• φb(Es, Ps): inverse efficiency of the storage process times
stored power, as function of stored energy Es and stored
power Ps , including leakage effects, etc.

The relation between energy stored, Es , and power stored, Ps ,
is given by a simple integrator model,

Es(t) = Es(0) +

∫ t

0
Ps(τ )dτ.

4 Objective
To be able to get an objective that is at most quadratic in the
design variables – still to be determined –, we have to approx-
imate the different characteristics of the devices. To start with,
we approximate the primary converter with

Pc = φc(ω, Pm) ≈ ac(ω)P2
m + bc(ω)Pm + cc(ω),

by neglecting cubic and higher order terms in Pm . Figure 1
indicates that this is a reasonable approximation. If this relation
is not accurate enough and a tighter fit is needed we can use a
more “localized” relation, i.e., around the current or expected
workload,

Pc = φc(ω, Pm) ≈ ac(ω, Pp)P2
m + bc(ω, Pp)Pm + cc(ω, Pp).

This relation needs to provide a fit for the interval
[Pp, min(Pmax

m (ω), Pp + Pmax
g (ω))]. Here, Pp is used as an

indicator of the workload for the primary converter because it
determines the relevant interval.
For the secondary converter we can use the same type of func-
tion

Pg = φg(ω, Pe) ≈ ag(ω)P2
e + bg(ω)Pe + cg(ω),
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Figure 2: Outline of the basic power conversion system with storage

which is a common approximation for electrical systems with
copper and iron losses.
For the storage process, in general, we cannot use this model
structure, because the stored power Ps can be both positive and
negative, which is no problem for the quadratic term in the ap-
proximation, but it is for the linear one, which should change
slope depending on the sign of Ps , so it is piecewise linear. This
can be solved with a max-function objective. Furthermore, the
function φb depends on two variables that are not known in
advance, so that are functions of the potential design variables.
This last problem can be solved in different ways. One is to use
an approximation in both variables. Another one is to use pre-
dicted values for Es , because this variable changes relatively
slowly. For the storage device we can therefore use

Pb = φb(Es, Ps) ≈ ab(Ês)P2
s +max(b−

b (Ês)Ps, b+
b (Ês)Ps)+cb(Ês),

based on predicted values Ês for Es , or

Pb = φb(Es, Ps) ≈ ab P2
s + max(b−

b Ps , b+
b Ps) + cb Es + db Es Ps,

or another functional form for the approximation that better
matches the device data. It holds that 0 < b−

b < 1 and b+
b > 1

for storage devices with losses. The main difference between
these two relations is that the first one may involve complicated
relations for Ês , while the second one may not for Es , because
we need to end up with a quadratic relation in the end. The re-
lation between Es and Ps should be used in both cases, in the
first case to predict the future Es , e.g., based on the previously
computed optimal sequence of Ps , in the last to eliminate Es
and write the relation solely in terms of Ps .
The solution for the first problem we noted, a max-function in
the objective instead of piecewise linear ones, poses a prob-
lem itself. This is because it cannot be included directly in a
quadratic criterion, a problem we circumvent by introducing
an auxiliary variable and two constraints, in such a way that
the auxiliary variable will be equal to the outcome of this max
function. Recall from [6, p. 18] that this can be achieved by
solving the LP (Linear Programming) problem

min
Pa

Pa sub b−
b (Es)Ps ≤ Pa, b+

b (Es)Ps ≤ Pa,

as long as this problem is well defined, e.g., the solution is not
unbounded. See Fig. 3 for an illustration how this looks.
This figure expresses that for positive Ps we need to supply
more power than is stored, Pa > Ps , while for negative Ps the
power becoming available is less than taken from the storage,
|Pa| < |Ps|. By adding more constraints, the relation between
Pa and Ps can also approximate the quadratic term, so ab P2

s
could be skipped from the relation for Pb, but then the final
problem will have a Hessian that is not strictly positive definite,
which restricts the class of solvers that can be used, and the

b−
b Ps

Ps

Pa

b+
b Ps

Figure 3: Relation between auxiliary power Pa and stored
power Ps

number of constraints increases rapidly. The set of constraints
should also be convex.
The LP problem for Pa needs to be embedded in the original
optimization problem of finding minimal primary power Pc,
which is possible if the objective is monotonous, but for now
we are just going to write

Pb = φb(Es, Ps) ≈ ab(Ês)P2
s + Pa,

neglecting leakage also, because this is a slow phenomenon,
and will only give a small discrepancy between computed and
measured Es . Other effects will probably have a larger influ-
ence on the accuracy of the model.
Using the relation for Pb in the relation for Pg and this again in
the relation for Pc we can write

Pc ≈ a P2
a + c(Pa + ab P2

s ),

with

a = acb2
g + 2acagcg + bcag + 2acag Pp + 6acagbg Pl + 6aca2

g P2
l ,

c = 2acbgcg + bcbg + 2acbg Pp + 4acag Pp Pl

+ (2acb2
g + 4acagcg + 2bcag)Pl + 6acagbg P2

l + 4aca2
g P3

l ,

by dropping all terms of order 3 and higher in Pa and Ps and
also dropping terms that do not depend on Pa or Ps , because
these do not influence the solution. Because higher order terms
are dropped, the relations for a and c can better be fitted di-
rectly, as functions of ω, Pp, and Pl , using the available de-
vice data. The coefficients a and c are always positive, as are
their constituent parts, in the physically relevant domain with
Pp ≥ 0 and Pl ≥ 0.



The design variables are now apparent, namely Pa and Ps .
Thus, we now have to minimize the expression for Pc over
these design variables. The relation between Pc and Pa is nor-
mally strictly monotonic in the physically relevant domain,
with the sign assumptions on Pp and Pl , so the minimal value
for Pc is achieved at the constraints for Pa , which should there-
fore better consist of only those that enforce the relation be-
tween Pa and Ps . The piecewise linear loss relation between
Pa and Ps is thus taken care of automatically when we mini-
mize Pc subject to the two constraint relations between Ps and
Pa .

5 Constraints
Besides the constraints for the relation between Pa and Ps
we have several other constraints and simple bounds. The de-
sign variable Ps can be simply bounded by its allowed values,
Pmin

s ≤ Ps ≤ Pmax
s . Other common min/max physical con-

straints, e.g., on secondary power generated, Pmin
m (ω) ≤ Pm ≤

Pmax
m (ω), tertiary power generated, Pmin

e (ω) ≤ Pe ≤ Pmax
e (ω),

and stored energy, Emin
s ≤ Es ≤ Emax

s , are to be guaranteed
also, where the lower bounds are normally equal to 0. We can-
not involve Pa in these constraints, nor bound it directly, oth-
erwise we are not sure the piecewise linear relation between
Pa and Ps is effected, so we formulate the physical constraints
simply as

d Ps ≤ e,

where d and e can be functions of ω, Pp, and Pl . Some approx-
imations may be necessary to get this form, because only Es is
a linear function of Ps , while the variables Pm and Pe are not.
To put the bounds on Es in the stated form is therefore easy,
and will not be detailed.
To get the bounds on Pm and Pe in the required form can be
done in several ways

• by solving the relations between Pm , Pe, and Ps , as equa-
tions at the bounds, for Ps ,

• by approximating these relations conservatively, by ones
linear in Ps ,

• by using an (embedded) optimization problem formula-
tion.

The bounds on Pm and Pe are independent at each time in-
stant, unlike the bounds on Es , so they can be handled more
efficiently. A possibility is to compute these bounds off-line
and to tabulate the resulting data, expressed as lower and upper
bounds on Ps , as functions of ω, Pp, and Pl .
We omit further details of the constraints handling.

6 Predictive control problem
For predictive control, the criterion to be minimized is normally
the sum of the criteria for each time instant, while the con-
straints should be satisfied at all time instants inside the com-
plete horizon N . The constrained variables Pm and Pe change
fast and their bounds depend on ω, so they need to be bounded
at all time instants within the horizon, while for Es bounds at a
restricted number of points within the horizon are sufficient.
To summarize, the predictive controller should solve the fol-
lowing QP optimization problem

min
x

N∑
i=1

Pc(i) = min
x

1

2
x ′H x + g′x, sub Ax ≤ b,

where x contains the variables Pa(i), Ps(i), i = 1, . . . , N , H
is the sparse (diagonal) Hessian, and Ax ≤ b is the collection
of constraints for i = 1, . . . , N .
The objective normally causes the storage to be drained. We
can add an end-point constraint on Es , so Es(N) ≥ Es(0),
to avoid depleting the storage. This could also be handled by
discounting the stored energy in the criterion to be minimized,
but the rate at which to discount is not known in advance very
accurately. In the next section we give results for both cases
and discuss their pros and cons.
From the solution x the first element of Ps is implemented,
which will act as setpoint for the power controller of the storage
device.1 To continue for the next sampling time, the measure-
ments, normally only Es , are received, together with new pre-
dictions for ω, Pp, and Pl , that will have to be generated based
on measurements and other information. With this information
the next schedule can be computed 1 time instant further into
the future.

7 Application
The problem summarized in the previous section is setup, us-
ing synthetic, but realistic, data for the efficiency characteris-
tics, physical constraints, and workloads, and solved for dif-
ferent lengths of the horizon. The application is a model air-
craft equipped with a micro-turbine, for propulsion, and with a
power take-off to a micro-generator. The tertiary power is used
to drive the control surfaces and to feed the communication
equipment.
This application should give information about the physical
characteristics of the control actions, to gain insight in the prob-
lem, about the potential benefits, about the influence on the re-
sults of the length of the prediction/control horizon, and about
the time required to solve the problem at each step. A compro-
mise between available on-line computing time and quality of
the controller should give a lead to a useful horizon length.
We start with the results using an end constraint on the stored
energy and then give those for an objective where the stored
power is discounted.

7.1 End constraint Es(N) ≥ Es(0)

Figure 4 shows the contours of the criterion Pc, for a single
workload, while the optimal solutions for Ps and Pa are given
for all times, which also outlines the constraint relation be-
tween Ps and Pa . The contours demonstrate the monotonic re-
lation between Pa and Pc. The reason the solution is not always
at the lower left is the endpoint constraint on Es , the lower
bounds on Ps due to constraints on Ps itself and on Pe, and the
dependency of Pc on the workload. The optimal solutions are
for a pattern of ω, Pp , and Pl of 1800 [s] length, with a sam-
pling period of 1 [s], so we process sequences of at most 1800
data points in length, and the largest size of x is 3600 when
we use a horizon equal to the total data length, for which the
results are presented in this figure.
Figure 5 shows the values of the criterion for several situations.
Baseline situations are

• a situation where no tertiary power is consumed, Pl = 0,
this will give the lowest primary energy consumption,

1Here we assume that the actions of the power controller for the storage
device do not influence the behavior of the controllers for the power converters,
due to local feedback loops for these converters. Sending the storage power
setpoint signal to these control systems may facilitate this.
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Figure 4: Objective contours and piecewise linear relation

• a situation where no scheduling is taking place, so the ter-
tiary power demand is met by generating this power in-
stantly, Pe = Pl , and no power is stored, this will give the
highest primary energy consumption.

The two baseline situations are given in Fig. 5 at N = 0. The
other data points in Fig. 5 reflect results for different horizons
of the predictive controller. The results show how much pri-
mary energy is saved with the predictive controller compared
to the situation without scheduling, and give an indication of
the required horizon to realize the benefits.
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Figure 5: Normalized primary energy needed for a workload of
1800 [s]

Figure 6 shows the average computing time needed for sev-
eral control horizons. These results show, as expected, a more
than linear increase in time. Note that Fig. 6 shows the aver-
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Figure 6: Computing time needed for different control horizons

age time for a solution, while for real time implementation the
worst case is relevant, which is about 10 times as costly as the
average.
From these results it appears that a control horizon of about
N = 50 is sufficient to achieve savings in primary energy close
to those achieved with scheduling over the full data set, but
this is a function of the frequency of workload changes. The
savings are about 8% of the primary energy needed to feed
the secondary converter when no scheduling takes place, but
this number is a function of the efficiency data, physical lim-
itations, and workload characteristics. A horizon of N = 50
can be easily achieved, due to the simple model employed, but
even horizons up to N = 400 are no problem with commod-
ity hardware, because also in this case setting up and solving a
single problem needs less than the assumed sampling time of
1 [s], even in the worst case. This indicates that more involved
problems can be solved on-line without difficulty.

7.2 Discount stored power
When eliminating the endpoint constraint, and replacing it by
discounting the stored power Ps , to guarantee Es(N) ≈ Es(0),
and assuming the influence of Ês can be neglected, the QP
problem is completely independent at each time instant. The
optimal solution then does not require a prediction horizon
larger than N = 1, a substantial simplification. A reasonable
way to discount Ps is to include the term −c̄Ps in the crite-
rion, with c̄ the mean of c over a certain time interval. This
will not guarantee Es to be exactly equal at the start and end
of this interval, so small corrections to −c̄Ps are needed, like
−c̄(1 − ε(Es − Ed

s ))Ps , or a quadratic term in Es − Ed
s could

be added to the objective 1
2 xT H x + gT x , with Ed

s a desirable
value for Es .
To show all this, Figs. 7–9 give the contours of the criterion
for three different cases. The cases are selected for a low, zero,
and high value of Ps , specifically marked in the figures, which
also give all other values for the optimal solutions for Ps and
Pa , which are virtually identical, after tuning c̄, to the previous
results, but obtained with N = 1, so the computing time and
memory requirements are negligible. A much higher frequency
than 1 [s] is then possible.
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Figure 7: Objective contours and piecewise linear relation

From Figs. 7–9 it is easy to see how the control for N = 1
works. If the gradient of the objective is in the sector bounded
by two lines perpendicular to the two linear constraints, there
is no advantage in storing energy, so Ps = 0 will be optimal.



−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Stored power P
s
 (scaled)

A
ux

ila
ry

 p
ow

er
 P

a (
sc

al
ed

)
 P

c
 (scaled) and piecewise linear relation between P

s
 and P

a

0.10.2

0.2

0.
3

0.3

0.3

0.
4

0.4

0.4

0.4
0.

5

0.5

0.5

0.5

0.6

0.6

0.
6

0.7

0.7

0.8

0.8

0.9

Figure 8: Objective contours and piecewise linear relation

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Stored power P
s
 (scaled)

A
ux

ila
ry

 p
ow

er
 P

a (
sc

al
ed

)

 P
c
 (scaled) and piecewise linear relation between P

s
 and P

a

0.
1

0.
1

0.
2

0.
2

0.
3

0.
3

0.3

0.
4

0.
4

0.
4

0.
5

0.
5

0.5

0.
6

0.
6

0.
60.

7

0.
7

0.
7

0.
8

0.
8

0.
9

Figure 9: Objective contours and piecewise linear relation

When the value of c changes, the gradient of the objective ro-
tates and can leave this sector, leading to an optimal value of
Ps 6= 0. Referring to Fig. 1, Ps < 0 for large Pm , Ps = 0
for intermediate Pm , and Ps > 0 for small Pm will be opti-
mal.2 The boundaries between small, intermediate, and large
are determined by the storage losses (the sector’s angle) and
the changes in incremental cost (variations in, mainly, c) com-
pared to the average c̄ expected. One has to set c̄ so

∑
Ps ≈ 0

over a suitable time interval. Suitable normally means as large
as possible, without leaving the sweet spot of the storage effi-
ciency characteristic. When that is happening one has to reset c̄.
It would be more transparent to incorporate this in the predic-
tive controller, e.g., following one of the previous suggestions.
A result of using N = 1 is that control actions do not depend on
the far future, the only influence of the far future is in the factor
c̄, because only this value needs to be predicted, which com-
pletely eliminates prediction of the workloads. Not the work-
loads itself, amounting to 3N data points at each time instant,
are needed, but only c̄, a single number that does not even need
computation at each point in time, but could be set in advance,
not based on the actual workloads foreseen, but on some char-
acteristics, e.g., based on expected environmental conditions or

2When the power conversion system without storage control meets the
bounds on Pm , then also with this type of control the bounds on Pm will be
met, because the control “tends to the middle.” This means the bounds on Pm
need not be taken into account by the controller in this case.

restrictions.
Another advantage of N = 1 is that non-monotonous objective
functions can easily be handled. A way to do this is to solve
the optimization problem several times, once for each part of
the piece-wise linear objective terms, eventually by formulat-
ing several problems with a single equality constraint instead
of a single problem with several inequalities, and to choose the
solution with the smallest objective. This method is not practi-
cal for larger N , because in this case we are in fact solving a
mixed integer optimization problem.
Still another advantage of a small N lies in the relation for the
storage process losses, which has no need to use a predicted Ês ,
but only the latest measurement of Es , which is more accurate.

8 Conclusions
A power-based model approach to control a storage device in a
power conversion system with frequently changing workloads
is outlined. The efficiencies of power converters and storage
device are taken into account when computing the control ac-
tions. The controller employs a receding horizon to cope easily
with frequent workload variations in changing environments.
The results show that nice savings in primary energy can be
achieved by scheduling the storage device. These results, that
could be indicative of practical applications, suggest that the
primary energy needed to feed the secondary power converter
during a certain sequence of workloads can be reduced by 8%
using storage control. This number depends quite a lot on the
efficiency characteristics of the converters and storage device,
on the physical limitations of the devices, as well as on the
foreseen and realized changes in workload.
The approach is practical, because the demands on the horizon
of the predictive controller are moderate and the model used in
the controller is simple, so the scheduling can be done on-line
to cope with changing circumstances.
When avoiding the use of an end constraint on Es , which seems
quite simple to achieve, the computation of the predictive con-
troller is almost trivial, and therefore implementation seems not
to be a problem at all.
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