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Abstract

Actuator constraint handling is necessary for many cross-
directional controllers. We discuss how optimal steady state
performance can be guaranteed by modifying an internal model
control structure with a non-linear element. For the simple dy-
namics associated with most web processes this also gives good
closed-loop dynamic behaviour. Thus unconstrained control
design techniques may be applied directly to the constrained
control problem.

1 Introduction

Cross-directional control design is required for a wide class
of industrial web forming processes including paper making,
plastic film extrusion, coating processes and steel rolling (see
Fig 1). It has received considerable attention in the academ-
ic community—see for example [1] and references therein, as
well as [2] and associated contributions.

There are two main schools of cross-directional control de-
sign (exemplified by Chapters 6 and 7 in [1]): firstly uncon-
strained control (perhaps with limited anti-windup) based on
robust control methodologies and secondly constrained con-
trol achieved via MPC (model predictive control). Briefly the
former guarantees robust dynamic behaviour while the latter
offers improved steady state response (provided the model is
sufficiently accurate [3, 4]). In this paper we discuss how the
simple model structure common to most web forming process-
es allows optimal constraint handling to be incorporated as a
modification to an IMC (internal model control) structure. It
may be viewed either as an optimal anti-windup scheme for
robust control design or as a methodology for MPC design ac-
cording to taste.

We will make the standard assumption that the open loop be-
haviour of the output profile ���	��
 may be well approximated by
the model ���	��
������������������
������	��
��! "�	��
 (1)

Here ���	��
$#&%�' represents the measured profile across the we-
b and ���	��
(#)%�* represents the array of actuators. Typically

+-,/. . We assume the whole profile ���	��
 is available simul-
taneously; if raw measurements are obtained from a scanning
sensor, then a periodic Kalman filter [5, 6] can be used to esti-
mate ���	��
 . The dynamics are represented as a delay of 0 sample
and a biproper transfer function ����� ��� 
 . Usually ����� ��� 
 is low
order and often simply a first order response

���������1
2�/��35476�
���354768�����1
9��� (2)

We have assumed, without loss of generality, that ����� ��� 
 has u-
nit gain. The � +(:;. 
 interaction matrix � describes the steady
state response of the actuators on the profile. Finally  "�	��
<#&% '
represents disturbances on the plant.

Let � be decomposed as �=�/>@?@ACB with > and A orthonor-
mal (the description is rather general as we may allow either >
or A to be the identity matrix [7]). One possibility is the singu-
lar value decomposition [8, 1], in which case ? is diagnonal (if+D,). the upper block of ? is diagonal, while the lower block
is zero).

We can then write ���	��
 and ���	��
 in terms of basis functions
which are the columns of > and A respectively. We will as-
sume that these basis functions are “spectral” [9] in the sense
that they are naturally ordered according to some smoothness
criterion. With an abuse of terminology, we will classify them
as low, medium and high frequency modes. The effect of the
interaction matrix is assumed to attenuate for high frequencies.
In the case of the singular value decomposition the modes are
ordered according to the magnitude of the singular value.

Ultra-high frequency modes of > are uncontrollable [8, 9].
With model mismatch the relative uncertainty is greater at high
frequencies, and may result in closed-loop instability [1]. Even
in the case of closed-loop stability, attempting to control un-
certain modes may degrade steady state performance [3]. It
is thus generally accepted that the controller should not ac-
t on high order modes. It may also be useful to restrict the
dimension of the input space [10] — for example the actu-
ators are usually constrained to sum to zero. We will as-
sume the controller is designed to act only on EGF�HJI KL� +NM�. 

modes. It will be useful to define a reduced interaction matrix�;OP#/%2Q 'SR *<T which can be decomposed as �COD�U>$OV?$OVA BO
with >$OW#)%2Q 'SR O T representing the modes we wish to control,?$OG#X% Q O R O T and A;OG#X% Q * R O T . We will write Y��	��
C�Z>$BO ���	��

and [�	��
�\A BO ���	��
 .



Figure 1: Generic web forming process.

It will be useful to define A^]O #!%2Q * R * � O T as an orthonormal
matrix whose columns span the orthogonal complement to the
space spanned by the columns of ACO . The restriction on the
input space may then be expressed as requiring �_A�]O 
 B ���	��
5�`

.

If sufficient modes are excluded it is possible to design robust
controllers that do not violate actuator constraints [11, 10, 8,
1, 12]. It has been recommended [10] that E should be cho-
sen to ensure no actuator touches the constraint boundary. The
designs of [1] are based on IMC structures. The designs of
[10, 12] are modifications of Dahlin controllers, themselves
variants of IMC. Furthermore, any linear controller of the form

���	��
�/4;A;O�aJ��������
b> BO ���	��
 (3)

can be rearranged as an IMC

���	��
c�d4;A;O�ef�������1
b> BO ���	��
�^A;O�ef��� ��� 
b>$O�� ��� ����� ��� 
��;O����	��
 (4)

with

ef��� ��� 
�gaJ��� ��� 
$h i;�!� ��� ����� ��� 
b?$OjaJ��� ��� 
_k ��� (5)

Limited anti-windup schemes have been proposed for such
controllers [13, 10, 1, 14]. However there may be mid-
frequency modes where the model mismatch is relatively small,
but where unconstrained control action would require actuator
constraint violation even in steady state. In such cases restrict-
ing E as above would result in economic disadvantage [3, 4].
Similarly anti-windup schemes that take no account of actua-
tor directionality can lead to severe performance degradation
[15, 16].

In such cases optimal steady state performance requires the so-
lution of a constrained optimization. This was recognized for
the cross-directional control problem in [17], when limitation-
s in computing power were an impediment to implementation.
Subsequently several MPC strategies with a quadratic program
have been discussed in the literature, for example [9, 6]. Strate-
gies for minimising l � norms [18] and l�m norms [19] have also
been discussed. A number of control designs that seek approxi-
mate solutions to the quadratic cost have also been discussed—
for example [20, 21, 22, 23, 24, 1].

In this paper we discuss the design of cross-directional con-
trollers that preserve the robust properties of unconstrained

methods, whilst ensuring, where possible, optimal steady state
performance. We will also seek efficient computational imple-
mentation and good dynamic response. In particular we pro-
pose preserving the IMC structure for both control design and
implementation. The constraints can then be satisfied by solv-
ing a deadbeat optimization problem. This is, of course, well
known as a particular implementation of MPC [25] and may
be considered [15] as a generalization of standard anti-windup
schemes such as those in [26].

2 Constrained IMC
2.1 Control criteria

Suppose the disturbance  "�	��
 in (1) is fixed. Then the ideal
steady state performance criterion is to minimise nn nn >$BO ���	��
�nn nnfor some norm. The projection term > BO is included so that
higher modes are not penalised. Model mismatch may cause
steady state performance degradation [3]. If this degradation
is significant, then the number of modes acted upon should be
reduced. We will assume the number of modes is well-chosen.

It may not be possible to set > BO ���	��
 to zero since the actuator
movement is limited. Typically each actuator has a minimum
and maximum value, with a further bending constraint placed
on adjacent actuators. Thus for example we may have

�"oNp q(F)�sr��	��
<FX�"oNt�uv�"oNp q(F)�sr ��� �	��
�4Pw��sr��	��
��P�sr x � �	��
<F v�"oNt�u (6)

We will represent all such static constraints as requiring���	��
$#zy .

If a fixed (steady state) estimate { S|�| of  exists, then one
method for attempting to minimise nn nn > BO ���	��
 nn nn is to demand
that in steady state ���	��
2�}��|�| with

��|�|@��~��b�NHJI K� nnn nnn > BOD� ���J��{ S|�|1� nnn nnn
s.t. ��#Wy and ��A ]O� B �z� ` (7)

In some MPC schemes set points for inputs and outputs (and
states) are computed at each sample using such a static optimi-
sation criterion [6]. These set points are then used in the main
dynamic optimisation, which is also solved at each sample.

Consider the basic IMC scheme depicted in Fig 2. A distur-
bance estimate is obtained as

{ "�	��
2�-���	��
847� ��� ����� ��� 
������	��
 (8)

In turn the disturbance estimate is passed through a linear fil-
ter (we will assume that the set point is zero) to give { S���	��
C�ef��� ��� 
�{ s�	��
 . Finally the control action ���	��
 is generated via
a static non-linear function ���	��
�� NL ��{ S�"�	��
_� . If we chooseef��3V
��3 and the non-linearity to be

���	��
c��~��b�HJI K� nnn nnn > BO � ���J��{ S���	��
�� nnn nnn
s.t. ��#Wy and ��A ]O � B �z� ` (9)
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Figure 2: Basic IMC configuration with non-linear element for
anti-windup, and in modal form with feedback around the non-
linear element.

then we have a controller that satisfies (7), provided { S�"�	��
 con-
verges to some { S|�| . Under such conditions, if ���	��
 also con-
verges to a steady state value �S|�| then { S|�|@�}��|�|247����|�| .
Furthermore, if no constraints are active, then (under the as-
sumption that ?<O has full rank),

���	��
c�d4;A;Oj?5���O > BO ef�������1
�{ s�	��
{ "�	��
������	��
847����������������
������	��
 (10)

Thus we have a control scheme that behaves as a standard IMC
when away from the constraints, but satisfies (when stable) the
steady state optimality condition (7). This is achieved by in-
cluding a static non-linearity in the control structure, and may
be considered as an example of the anti-windup schemes rec-
ommended in [15]. The solution method for the non-linearity
will depend on the choice of norm, as discussed below. In the
remainder of this section, we discuss how the control structure
may be tailored for the cross-directional control problem.

2.2 Implementation in modal form

Solving (9) is equivalent to finding ���	��
2�gACO�[�	��
 with

[�	��
2��~��b�NHJI K� nnn nnn ?$O1[���{� ���	��
 nnn nnn s.t. A;O1[D#zy (11)

where {� ���	��
@��> BO { S���	��
 . We may write {� ���	��
5�/e^����� ��� 
�{� �	��

with {� �	��
2�g> BO { "�	��
 and e^����� ��� 
�\> BO ef��� ��� 
b>$O .
As stated this is merely a numerical modification. However it
is more elegant to design the controller in the context of the
modal decomposition [1, 9]. Thus we redefine eL����� ��� 
 to be
diagonal with e�����3V
&��i . Furthermore it may be seen that
careful exploitation of the chosen basis function representa-
tion can lead to significant increase in computational efficiency.
Nevertheless we stress that the use of basis functions is moti-
vated by the requirement to ensure robust performance rather
than computational efficiency.

It is insightful to consider both the unconstrained performance
and the steady state performance. Without the constraint ���	��
$#y (and under the assumption ?<O has full rank) this gives the
solution

[�	��
2��4;?5���O e^����������
�{� �	��
���	��
�\A;O1[�	��
 M {� �	��
2�\> BO ���	��
�47���������������1
b?$O�[�	��
 (12)

Meanwhile in steady state (under the assumption of closed-
loop stability)

[�|�|���~��b�HJI K� nnn nnn ?$O1[���{� |�| nnn nnn s.t. A;O1[D#zy
��|�|���A;O�[�|�| M {� |�|@�\> BO ��|�|24!?$O�[�|�| (13)

2.3 Choice of e��
The most natural choice for e������ ��� 
 is a scalar transfer func-
tion ����� ��� 
 times the identity matrix With ����� ��� 
 first order
(2) a Dahlin controller ����� ��� 
 would be chosen as����������
��� ��3@4D�8
���354768������
_ �� ��3@476�
���354D��������
_ ¡��� (14)

with � a tuning parameter.

Our contention is that if the dynamics of the plant are simple,
then designs for constrained systems should be based on design
strategies for unconstrained systems. Thus we refer the reader
to the modal designs in (for example) [13, 1, 12] for a more
detailed discussion on choice of e������ ��� 
 . Where necessary,
the transformation (5) should be exploited.

Note that if an IMC is designed for step output disturbances, it
may give unacceptable response for slow output or input dis-
turbances. Generally speaking good design requires a higher
order filter e^����� ��� 
 to ensure the appropriate sensitivities are
small in closed loop. Most cross-directional control problems
are regulator problems (i.e. the output set-point is zero), but if
a servo response it required it may be better to incorporate such
dynamics in the feedback path. See [27] for a discussion.

Often such controllers are designed mode by mode, with faster
action on the lower order modes (where in general the model
is better known), and slower action on the higher order modes.
Provided integral action is incorporated, this will have no effect
on the implicit steady state cost (7). However in [12] high gain
proportional action is used in place of integral action.

2.4 Feedback round the nonlinear block

It is well-known that for anti-windup schemes where the non-
linear element is saturation, better response can be obtained by
incorporating a feedback term around the non-linearity [26].
The natural generalisation of this to our case is also depicted
in Fig 2 with e�¢���� ��� 
 strictly proper. The control law can be
described as:{� �	��
c�£> BO ���	��
�47���������������1
b?$O�[�	��
{�j¤ �	��
c��e����������1
�{� �	��
�4Pe�¢��������1
b?$O�[�	��


[�	��
c��~��b�NHJI K� nnn nnn ?$O�[G��{�j¤ �	��
 nnn nnn s.t. A;O1[D#zy
���	��
c�£A;O1[�	��
 (15)



Once again we consider two conditions. Without the constraint���	��
$#Wy (and under the assumption ?<O has full rank) this gives
the solution

[�	��
2�/4;?5���O �¡i�4Pe�¢��������1
 � ��� e�����������
�{� �	��
���	��
�\A;O1[�	��
 M {� �	��
�\> BO ���	��
�47���������������1
b?$O�[�	��
 (16)

Meanwhile in steady state

[�|�|���~��b�NHJI K� nnn nnn ��i�4Pe�¢���3V
�
�?$O�[G�Xe�����3V
 {� |�| nnn nnn
s.t. A;O�[D#Wy��|�|¥�£A;O1[�|�| M {� |�|@�g> BO ��|�|24!?$O�[�|�| (17)

In order to ensure equivalence with the previous case under
these two conditions, it is sufficient that eL����3V
 is some scalar
times the identity and

e�¢��������1
2�-i�4Pe�����������
 h e^����������
 k ��� (18)

In particular if we choose

e������ ��� 
�g¦"e^����� ��� 
�����3@4P¦"
�e^�§� ` 
 (19)

for some scalar ¦ then eL¢���� ��� 
 is guaranteed strictly proper.
The choice of ¦ (in the context of a saturating non-linearity) is
discussed in [26].

The relation of the resulting controller to one step horizon M-
PC is discussed in [28]. Here we note that minimum variance
control gives one choice of � and ¦ . Suppose the plant is given
by (1) and (2) with

 "�	��
2�/��3547¨������1
���3@47������
9���1©S�	��
 (20)

where ©S�	��
 is some zero mean noise with ªW«§©S�	��
�© B �	�84P0�
�¬(�`
for 0�g3 . Suppose we want the minimum variance control

���	��
��~��b�HJI K� ªW® nn nn > BO {�s�	���X0�
 nn nn ¯¯
°

s.t. ���	��
<#Wy (21)

In the unconstrained case the solution is the Dahlin controller
[27]. With constraints this gives

e�����������
c�d��35476�
9������3@47¨�
���3@47¨�������
9���1ie�¢���������
c�±4568��������3@4768������
9���1i (22)

It can be observed that this corresponds to (14) with �=�²¨ .
The choice of eL����� ��� 
 and e�¢���� ��� 
 corresponds to ¦��´³³ ��µin (19).

2.5 Choice of non-linear function

So far we have not specified the choice of norm on the non-
linear function. The standard choice would be a 2-norm, which
results in a quadratic program. But as we have separated the
non-linearity from the dynamics it is straightforward to intro-
duce any other choice of norm, without changing the dynam-
ics away from the constraints. In particular both l � norm [18]
and l	m norm [19] criteria have been recommended for certain

cross-directional problems. Either may be substituted in this
scheme, resulting in a linear program. Such choices should be
motivated by the required steady state performance.

Similarly we may choose to weight each mode differently in
the cost function. For example, it may be preferred to weight
low order modes (where in general the model is better known)
more heavily than high order modes.

In [29] the authors recommend adding a barrier to the steady
state calculation in MPC. Such a barrier may also be includ-
ed in the non-linear function. It has the effect of ensuring the
inputs lie on the interior of the constraint set, while a limit is
put on the associated performance degradation by the duality
gap. Such optimization problems may be solved efficiently via
modified interior point algorithms [30].

Finally in [31] a modified steady state criterion is proposed that
is robust to model mismatch. It may also be incorporated into
the non-linear function. The associated optimization is then
usually a conic program.

3 Simulation example

Consider a cross-directional plant model in the form of (1) with. �¶3 ` 3 and + �¸· ` 3 , the delay term 0D��¹ and 6�� `�º » · .
For the purposes of this simulation, we assume the true inter-
action matrix is given by �5¼ and an estimate of the interaction
matrix is denoted by � . Their columns are both truncated sinc
functions. The steady state responses for both �½¼ and � to a
single actuator ��¾ � are shown in Figure 3. It was found that
for E , w�¿ , either the closed-loop response was unstable or the
steady-state variation became very large.

The disturbance term  "�	��
 was constructed as follows. Let©S�	��
<#&% ' be a zero-mean coloured white noise sequence with
covariance ªG� ©�r��	��
�©�ÀS�	��
_ �� `�º »�Á r � À Á `�º ` 3�Â `�º Ã 3 Then  "�	��
 is giv-
en by  "�	��
2� `�º ` 3���3<4 `�º »§» � ��� 
 ��� ©S�	��
 Note that once created,
this disturbance was fixed and used for each simulation.

Constraints on the actuators are present in the form of (6) with� min �/4^3 , � max �/3 , v� min �/4 `�º 3 and v� max � `�º 3 .
We introduce the measure v�7�ÅÄ�Æ8Çr È ÆNÉ�Ê ���	Ë�
 Ê ¯¯ to distinguish
between different controller designs, with Ì � F=Ì ¯ integers.
In what follows we fix Ì � ��w `§` and Ì ¯ �/3

`§`§`
.

Consider the second controller design from Figure 2. We
choose a Dahlin controller structure for eL����� ��� 
 as given by
(14) and consider two choices for � - namely �Å� `�º » and��� `�º Í . The feedback term eL¢���� ��� 
 is given by (18) withe������ ��� 
 given by (19) and ¦7� `�º · . An l ¯ norm was chosen
for the optimization problem (15). The number of modes was
chosen at E!�Î3V· . The measure v� for both choices of � are
shown in Table 3. The results shown in Table 3 are ordered ac-
cording to the value of v� . In this case the controller with faster
nominal response performs better, as would be expected.

Consider a fixed value of �D� `�º Í and four choices for ¦ given
by ¦W�/3 M `�º · M ` M ��Â��	�;4G6�
 . The latter choice of ¦ corresponds
to that for minimum variance control, albeit the value of � is



¦ � r Ï Controller v�
- - - - no w º ¹ Í§» 3j©2� ` ·

0.5 0.3 9 0 yes 3 º »§`§Í ¿�©2� ` ·
0.5 0.9 15 0 yes 3 º ¿ Ã§Í§Í ©2� ` ·
1 0.3 15 0 yes 3 º ¿�Ð�3Vw�©2� ` ·��Â��	�&476�
 0.3 15 1 yes 3 º ¿ Í ¿�w�©2� ` ·

0.5 0.3 15 0 yes 3 º ¿ Í§Í§» ©2� ` ·
0 0.3 15 0 yes 3 º ¿ Í w�Ð§©2� ` ·��Â��	�&476�
 0.3 15 0 yes 3 º ¿ Í w§·�©2� ` ·

Table 1: Set of simulation experiments with measure v� for dif-
ferent parameter values.

motivated differently here. The measure v� for all four cases is
also shown in Table 3. Figure 4 shows the final profile across
the strip at �J� Ã ¹S· for both the open-loop response and the
choice ¦W�}��Â��	�(4�6�
 . Once again the ordering is as expected,
with the latter choice of ¦ performing best.

To illustrate the benefits of constrained control, consider a fixed
value for ¦P� `�º · , a fixed value for �-� `�º Í and two choices
for E - namely E�� » and E��Ñ3V· . The smaller value of E��»

was selected as the largest E such that input constraints are
not violated. Figure 5 shows the output variation at each time
interval for both choices of E . The respective values of v� are
shown in Table 3.

As a final comparison, we considered a related optimization
problem to (15) which uses a logarithmic barrier function [29]
with fixed weighting term Ïf�/3 , to represent the constraint sety . The associated optimization problem is,

[�	��
2� arg min� Ê ?$O1[8�W{�j¤ �	��
 Ê ¯¯ 4½Ï-Ò
Ó
r È � ln �¡Ô1r�4CÕVÖCA;O1[�×Vr¡
 (23)

where ÕVÖCA;O1[�×Vr is the i’th element of ÖCACO1[ and Ö and Ô rep-
resent the inequality constraints on the inputs Ö5�)F=Ô . In the
limit as ÏGØ ` , the solution to (23) coincides with the solution
to (15). We chose �Ù� `�º Í , ¦W�}��Â��	�G4&6�
 , E���3V· and ÏG��3 .
The measure v� for this case is shown in Table 3.

The worst case completion time for the computation in all these
results was 40 milliseconds on a Pentium IV, 1.8GHz machine.
Computation issues are discussed in [28].

4 Conclusion

It has become standard to address the cross-directional control
problem by decomposing the inputs and outputs into modes.
For robust stability and performance it is necessary that the
controller acts only on a reduced number of these modes.

If the controller acts on a sufficiently small number of modes
the actuators will automatically lie within their constraints. But
to maximise economic performance it may be necessary to in-
clude a greater number of modes, requiring actuator constraints
to be taken explicitly into account. We have shown that in
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Figure 3: The cross-directional profiles for both �½¼ (solid) and� (dashed) with ��¾ � ��3 . Note that � is a stretched version of�@¼ .
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Figure 4: Cross-directional profile for �J� Ã ¹S· for �/� `�º Í ,¦��-��Â��	�&476�
 (solid) and open loop (dotted).
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Figure 5: Output variation over the simulation period. Three
cases are shown: no controller (dotted), Ú¶� » (dashed) andÚ���3V· (solid). The solid line corresponds to the same param-
eters as the closed-loop example shown in Figure 4

this case it is possible to guarantee optimal steady state perfor-
mance with a modified IMC structure. For the simple dynam-
ics associated with most web processes this also gives good
closed-loop dynamic behaviour. Thus unconstrained control
design techniques may be applied directly to the constrained
control problem.

We have demonstrated such a control design with a simulation
example. It illustrates that such a controller may be easily im-
plemented in real time, even on a systems with fast sampling.
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