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Abstract

Handling of rate and amplitude constraints in guaranteed sta-
bility model predictive control problem of linear discrete-time
systems is considered. The method based on the barrier func-
tion is used to solve the constrained optimization problem. A
simulation based analysis of closed-loop control system stabil-
ity and performance is also given with respect to design param-
eters and constraints.

1 INTRODUCTION

Model predictive control is a popular control strategy because
of its simplicity and successful industrial applications. One of
the main advantages of the finite horizon predictive control is
that it can handle constraints. Taking constraints into account
in the design stage leads inherently to a solution of constrained
optimisation problem. The application of quadratic program-
ming (QP) techniques to solve the generalized predictive con-
trol (GPC) is widely used, see the comments given in [1] and
[2]. For example, the constrained GPC (CGPC) has been dis-
cussed in [3] where the QP problem is transformed into the Lin-
ear Complementarity Problem (LCP) which in turn is solved
using Lemke’s algorithm. This reduces the amount of com-
putation compared with the QP. Another attempt to reduce the
computation burden is presented in [4], where the Lagrange
multipliers method was used to handle separately with rate and
amplitude constraints. Some other approaches can be found for
example in [1], [2], [5], [6]. A general survey on constrained
model predictive control for state space models is given in [7].

In this paper, a guaranteed stability predictive control named
in [8] as a constrained receding-horizon predictive control
(CRHPC) is first shortly described. Then this control approach
is taken as a starting point to derive the predictive control algo-
rithm under amplitude and rate constraints. As an optimization
technique a method based on the logarithmic barrier function
[13] is proposed. A simulation-based comparison of the per-
formance with respect to design parameters and constraints is
given. To this end, the second order unstable and non-minimum
phase systems are taken for the simulation study. Additionally,
the computational load of this constrained predictive control

algorithm is also analyzed taking into account a potential real-
time implementation.

2 THE GUARANTEED STABILITY PREDIC-
TIVE CONTROL (CRHPC)

The input-output description of linear discrete-time system is
given by
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where �� is the output, �� is the control input and ����� are
polynomials in the backward shift operator ���, i.e.,������ �
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The goal of the control is to cause the output � � to follow a
reference signal �� taking into account the control effort. This
can be expressed by the cost function of the form
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where the weights �������� � �, �������� � � and the pre-
diction horizon 
 are basic design parameters of predictive
controller. The CRHPC algorithm [2] minimizes the cost (2)
subject to the set of � future terminal equality constraints
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The cost function (2) and constraints (3),(4) can be given the
form
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where �� � ����� � � � ������ �� . The following relations also
hold
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where the matrix � is composed of the step response coeffi-
cients ���� of the control channel, i.e., the points of 	


�

� �

�
���

�� � ��� � �
�� �� ��� � �
��� ��� ��� ��� ���
�� ���� ��� �� �

�
���



the matrix �� is

�� �

�
���

���� �� ��� ��
���� ���� ��� ��
��� ��� ��� ���

���� ������ ��� ��

�
���

and
�� � ������������ ������� � � � � ������ �

�� � ���������� ������� � � � � ������ �

�� � ������ � � � � �����
�

�� � ������ � � � � ���� ��

�� � �������� � � � � �������
�

�� � �������� � � � � ��������

�� � ������ � � � � �����
�

�� � �������� � � � � �������
�

where ���� is a prediction of ����, � � �� ���� 
 ��.

The optimal control minimizing (5) subject to the equality con-
straint (6) is then [8]
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The first element of the sequence (10), i.e. ���� , is applied to
the system. Then the optimization procedure starts again at the
next time instant ����� with the current data. This means that
in the control law (9) only the vectors ��� ��� ��� �� should be
updated.

As shown in [8], the closed-loop system under CRHPC is
asymptotically stable if
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3 HANDLING OF INPUT CONSTRAINTS

The above described CRHPC is considered under the following
control input constraints: the rate constraint

� ��� �� �� (14)

and the amplitude constraint

� �� �� � (15)

which formulates the problem of CRHPC under constraints to
be solved below.

The input constraints can be represented as follows

���� � �� (16)

where �� is a vector containing upper and lower constraints and
�� is a block matrix of the form
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where ����������� � ��� � � � � ��� , �������������� is a
lower triangular matrix whose nonzero entries equal to 1 and
�������������� is the unit matrix.

Taking (7) into consideration the cost function (5) can be ex-
pressed in the form
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and the equality constraint (6) takes a form
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Now, the problem consists in minimization of (18) under con-
straints (16), (19), however the equality constraint (19) can be
relaxed as follows
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where �� is a tolerance variable. The inequality constraints (16)
and (20) can be put together in the form
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4 THE LOGARITHMIC BARRIER
METHOD

Below the logarithmic barrier method is proposed to solve the
constrained predictive control problem. Taking the cost func-
tion (18) and the constraint (21) into account the following log-
arithmic barrier function can be given [13], [14]
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where �� is the �-th element of vector ��������������, ��� is
the �-th row of matrix �, and  � � is the barrier parameter.



Because of the singularity of the logarithm at zero this barrier
function will prevent the iterates from going outside the feasi-
ble region. Therefore the logarithmic barrier function method
is called an interior point method. To implement this method
the gradient and the Hessian of �	����  � are needed
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where �� � ���� � ��� ���, so 	������ � ��, 	������� � �.
Taking the Newton direction
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the following criterion to terminate the approximate minimiza-
tion of �	����  �
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where the norm is defined as
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and in the considered case depends on ��. Now the following
algorithm for finding an �-optimal solution can be proposed
[13]:

Input:
� - the accuracy parameter
# - the proximity parameter
% - the reduction parameter
 � - the initial barrier value
��� - a given interior feasible point such that
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��	������� #

begin
�� 
� ���� 
�  ��
while  � �
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� do
begin (outer step)
 
� ��� %� �
while 
 " 

�
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begin (inner step)
�& 
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 ��� &" � ' ��
�� 
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end (inner step)
end (outer step)
end
where ' � is the interior of the feasible region.

4.1 A simpler approach

It can be seen that in order to implement the barrier method
the gradient and the Hessian of the cost function 	 are needed.
From (9), the optimal CRHPC can be given the form

��� � ������� ������ (28)

Thus, the corresponding gradient and Hessian of the cost func-
tion 	 are
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and ��� �� resulting from (9) have the following forms
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The expressions (29),(30) can be used in (23), (24) to obtain
the needed forms for �

�
and�� and to implement the proposed

algorithm. Then in the functions �� only the constraint (16) is
included.

5 SIMULATIONS

In order to illustrate the performance of the derived algorithm
a few simulation runs are presented below. Since the main fo-
cus in this paper was put on solving constrained optimization
problem by means of barrier method, most of the simulations
were made with algorithm including equality constraint (6) in
the relaxed form of inequality (20). The other method includ-
ing this equality in the gradient presented in subsection 4.1 was
used only for comparison purpose.

The following second-order systems were taken for simulation:

1. unstable with �� � ���� �� � ����� �� � ���� �� � ���

2. non-minimum phase with �� � ����� �� � ���� �� �
����� �� � ���

Simulation runs were performed for a square wave as a refer-
ence signal given by

�������� � ������ � � �� �� � � � � ��� � � �� �� � � �

If not given otherwise, the design controller parameters were
set at 
 � ��� � �� �� � �� �� � �� ��� and the relax-
ation parameter �� set at 0.6 for both the systems 1 and 2. The
design parameters for barrier method itself were as follows:
� � �� # � ���� % � ����  � ���.

The signal values for both models where no constraints (unc)
are present are given in the table 1 to facilitate assessing ability
of the barrier method algorithm to suppress input rate and am-
plitude signals where ��(�!! denotes maximal signal values
calculated in single run by the barrier method procedure which
were taken from the whole control horizon. In turn index ��(
corresponds to maximal signal value applied to the model, i.e.
the first entry in the vector of controls.

In figs.1 and 2 the system 1 under rate constraint is simulated.
It can be seen that even weak constraint prevents the output
from overshooting, however tight constraints slow down con-
siderably changes of the output. The simulation showed that at
�� $ ���� the algorithm cannot find any appropriate solution



���������� ��������� ������������� ������������

1 2.403 2.630 3.815 2.938
2 1.192 0.726 1.239 0.726

Table 1: Maximal values of unconstrained input signals
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1
2

�� ���������� ����������+�������������

0.63 0.614 16.1%
0.18 0.172 13.8%

� ��������� ���������+������������

1.6 1.599 54.4%
0.23 0.222 30.5%

Table 2: Minimum feasible constraints of the barrier method

satisfying inequalities (20), therefore this value is considered to
be minimal rate constraint which can be applied to the system.
In the case of system 2 similar simulations are shown in fig.9,
and here the corresponding value �� is ����. Figs.3 and 10
present the amplitude-constrained run of the system 1 and 2, re-
spectively. The amplitude can be safely suppressed to � � ���
for system 1 what means that the output still follows the ref-
erence signal, however quality of this control deteriorates at
smaller constraint values. The simulation show that amplitude
of signal can continuously be suppressed even further but the
output is not able to follow properly the reference signal any-
more then in consequence such control can not be accepted.
At � $ ���� the inequalities (20) are not fulfilled, it means
the barrier method procedure can not find any feasible solution
yet. For system 2 relevant constraint values are � � ���� at
which the run is still acceptable and � � ���� which limits
possibility to find solution of the optimization problem. Since
inequalities (20) determine constraining capability of the algo-
rithm it is worthwhile to see how the relaxation parameter ��
influences this. Fig.4 indicates that the relationship between ��
and minimal feasible rate constraint value �� is almost linear:
the more tight constraint given by �� the poorer rate constrain-
ing capabilities the algorithm shows. An illustration to that is
also fig.5 performed with �� � ��� which presents maximal er-
ror of future equality constraints given by (19). It is calculated
as ��( ���*� � ��(���,��-�����, 
 � �� �����, � � �� ���� ��,
where �- � ���� � ��. It is clear that at more tight rate con-
straint the error increases approaching the limit �� � ��� and
at certain �� no feasible solution can be found. With dotted
line also the performance of the algorithm including equality
constraints in gradient is presented in the same constraining
conditions. As here no explicit control over fulfilling equation
(19) is present, the relevant error is essentially bigger than in
the previous method. On the other hand, lower number of con-
straint inequalities (see (16) and (17) vs. (21)) results in lower
computational complexity compared to the previous method.
This is illustrated in fig.6. It makes evident the fact that ma-
jor computational capacity is required by the barrier method
itself which starts constraining at �� � ����. To improve ac-
curacy of both methods the parameter � � ��� was taken and
the simulations were performed as presented in figs.5, 6 and
7. A general feature of barrier methods related to inability to

fully utilize available signal range is demonstrated in fig.7. Due
to singularity of the barrier function at boundaries, the algo-
rithm strives to move the solution away from the boundary so it
never reaches it (this is value ���� in this figure). It becomes
of course more and more difficult when the allowed range of
the signal gets more tight. Similarly as described previously,

������� denotes the maximal value in the whole run of the
first entry in the control vector (10), and�� �������� denotes the
maximal value of the whole vector (10). Finally, fig.8 presents
system 1 at simultaneous input rate and amplitude constraints
put close to the minimal acceptable values. These conditions
are of course even more severe for the system what results in
slightly slower output changes compared to rate and amplitude
constraints treated separately. To summarize capability of bar-
rier method to constrain input signals the table 2 lists minimum
feasible constraints which can be imposed for relevant mod-
els in assumed testing conditions. It can be seen that barrier
method is able to considerably reduce the input signal value.
However this is of course always a compromise between the
input value, quality of following the reference and computa-
tional load.
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Fig. 1: Unstable system under rate constraint

6 CONCLUSIONS

The input-constrained CRHPC problem is presented and solved
using logarithmic barrier algorithm. Second order unstable and
non-minimum phase systems were taken for simulation of the
control system operating with the proposed algorithm. The
simulations showed that algorithm is able to considerably re-
duce rate and amplitude input constraints which can be han-
dled simultaneously. However, the computational load of the
method is significant and strongly dependent on degree of sig-
nal constraining. Therefore in the case of potential real-time
application a compromise between signal suppressing, track-
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Fig. 2: Unstable system under rate constraint
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Fig. 3: Unstable system under amplitude constraint

ing quality and computational load must be balanced.
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Fig. 9: Nmp system under rate constraint
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Fig. 10: Nmp system under amplitude constraint


	Session Index
	Author Index



