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Abstract

An efficient robust model predictive control (MPC) strategy us-
ing augmented ellipsoidal invariant sets is enhanced by intro-
ducing more general dynamics in the future control moves (re-
ferred to as prediction dynamics) than simple time recession.
This allows significant enlargements of the region of attraction
for a give control horizon. As control horizons down to a single
time step can be used, this implies online efficiency gains with-
out decreasing performance. The procedure renders the offline
problem a bilinear matrix inequality (BMI), thus algorithms for
solving the non-convex offline problem is discussed.

1 Introduction

Model predictive control (MPC) has gained significant pop-
ularity in industry as a tool to optimise system performance
while handling constraints explicitly. However, limitations on
robustness and computational efficiency have restricted the ap-
plication range. Early linear MPC algorithms [14, 10] guaran-
tee nominal closed-loop stability by enforcing the state at the
end of a given control horizon to be within a polytopic, feasi-
ble and invariant set. This requires the solution of a quadratic
program (QP). An MPC algorithm that is robustly stabilising to
certain classes of model uncertainty by applying semi-definite
programming online is presented by [6]. However, both strate-
gies quickly lead to computational intractability for large con-
trol horizons, which is frequently required to ensure initial fea-
sibility.

An efficient MPC strategy stable to similar model uncertainties
as treated in [6], but with online computational requirements
linear to the control horizon is presented in [8]. The online effi-
ciency is achieved by considering feasibility offline. Flexibility
of the control input over the control horizon is still permitted by
using an autonomous state-space formulation where the state
vector is augmented by the degrees of freedom in future control
input. Stability is ensured by enforcing the membership of the
augmented state vector to an invariant and feasible ellipsoid at
current time. For convenience this algorithm will be referred to
as efficient predictive robust control, ERPC. The major draw-
back of ERPC is that the region of permissible initial values is
conservative with respect to the original input/state constraints.

In this paper the autonomous state-space formulation of the
offline problem of [8] is generalised. More degrees of free-
dom are added by incorporating prediction dynamics in the
autonomous system. The price to pay is that this turns the
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convex linear matrix inequalities (LMI) problem of [8] into a
non-convex BMI problem. The prediction dynamics allow fu-
ture control to vary indefinitely with any control horizon, so in
this respect the new approach gives the advantage of an infi-
nite control horizon (although in a suboptimal manner) at the
computational cost of short control horizons. In addition to en-
largening the maximal range of initial values it turns out the
new approach can increase online efficiency as shorter control
horizons (down to just one time step) gives ellipsoids and per-
formance comparable to those reported in [7].

The model class and control objective are introduced in Sec-
tion 2, while Section 3 treats previous work on MPC using el-
lipsoidal invariant sets. Next, a specialised case of prediction
dynamics is introduced and simulation results presented (Sec-
tion 4). The general case of prediction dynamics, its interpreta-
tion, stability and a solver for the offline problem are presented
in Section 5, while the results are discussed in Section 6.

2 Model class and control objective

Consider the discrete state-space model subject to input and
state constraints

xk+1 = Akxk +Bkuk (1a)
subject to − u < uk < u, x < xk < x, (1b)

with dimensions x ∈ Rnx and u ∈ Rnu . It will be assumed
that perfect state knowledge is available and that the system
is stabilisable. For uncertain systems a polytopic uncertainty
model could be applied,

[Ak, Bk] ∈ Co
{

[A1, B1], · · · , [An, Bn]
}

, (2)

where Co denotes the convex hull, and Aj and Bj are corners
of the uncertainty set. However, for brevity a linear time invari-
ant representation will be used, i.e. Ak = A, Bk = B. The
generalisation to the polytopic uncertainty model is straightfor-
ward [8, 1].

The control objective will be to minimise (while satisfying con-
straints) the infinite horizon linear quadratic (LQ) cost func-
tion,

JLQ =

∞
∑

i=0

xT

k+i+1Qxk+i+1 + uT

k+iRuk+i, (3)

where Q and R are positive semi-definite, symmetric matrices
and xk+i+1 and uk+i denote predicted1 values of states and
control inputs. We want the controller to be stabilising for a

1Throughout the paper, we will not always use notation that distinguish
predicted variables from the “real” variables.



set of initial conditions (region of attraction) that is as large
as possible, but in doing this, we must sacrifice optimality for
some initial conditions.

In the following the system will be prestabilised by a feedback
controller [13], K, optimal with respect to (3) in the uncon-
strained case. Consider expressing the degrees of freedom as
the perturbation, ck, away from this optimal control, and let the
future predicted control input in the MPC controller be

ui =

{

Kxi + ci, i = k, . . . , k + nc − 1

Kxi, i ≥ k + nc

(4)

As a consequence the optimisation is carried out in terms of
the new free variables ci. The ci’s are minimised, but must be
large enough to prevent constraint violation. After the control
horizon nc, we can set ci = 0 assuming the optimal LQ control
is feasible. The system equation for (1) with (4) is

xk+1 = Φxk +Bck, (5)

where Φ = A+BK.

3 Background

This section reviews some of the results of [8, 7].

3.1 Augmented state-space formulation

Consider the autonomous state-space model created by aug-
menting the state vector with the future degrees of freedom.
Letting f denote the vector of future perturbations away from
optimal control, ck, over the control horizon, nc, the dynamics
of (5) can be described as

zk+1 = Ψzk (6a)

where z ∈ Rnx+nunc and

zk =

[

xk

fk

]

, fT

k =
[

cTk cTk+1 · · · cT

k+nc−1

]

(6b)

Ψ=

[

Φ [B 0 · · · 0]
0 M

]

, M=









0nu
Inu

0nu
··· 0nu

0nu
0nu

Inu
··· 0nu

. . .
0nu

··· 0nu
0nu

Inu

0nu
··· 0nu

0nu
0nu









. (6c)

Here zk is the augmented state vector, Ψ is the augmented tran-
sition matrix, Inu

is the identity matrix, and 0nu
is a matrix of

zeros, both of dimension nu × nu. The M matrix simply ac-
commodates the time recession of fk. Note that the structure
of M ensures

ck+nc+i = 0 ∀ i ≥ 0. (7)

3.2 Offline problem: maximal invariant set

Feasibility is handled offline by finding an estimate of the
region of attraction, the maximal set of initial values that
gives stability. Stability is ensured by requiring the current
augmented state, and hence implicitly all the predicted aug-
mented states, to be within an invariant feasible ellipsoid Ez :=
{z|zTQ−1

z z ≤ 1}. The projection of this ellipsoid onto the
state space (see [8]), Exz := {x|xT(TQzT

T)−1x ≤ 1} where

T is defined by x = Tz, should be as large as possible. The
volume of the ellipsoid is proportional to log det(TQzT

T) [1].
This gives rise to the following constrained minimisation prob-
lem

min
Qz

log det(TQzT
T)−1 (8a)

subject to

[

Qz QzΨ
T

ΨQz Qz

]

≥ 0 (8b)

ū2j − [KT

j eT

j ]Qz[K
T

j eT

j ]
T ≥ 0, j = 1, . . . , nu (8c)

F (Qz) ≥ 0 (8d)

where Qz is a symmetric positive definite matrix, ej is the jth
column of the identity matrix, and ūj and Kj correspond to the
jth input. The invariance requirement (8b) is expressed as an
LMI, (8c) ensures feasibility with respect to input constraints,
and (8d) (if present) should be interpreted as an affine function
representing ellipsoidal or polytopic “state constraints” (that is,
constraints that put restrictions on the shape of Exz). The opti-
misation problem is convex, and effective algorithms exist [1].

3.3 Online problem: minimising cost

As future control flexibility is part of the current augmented
state, the ellipsoidal stability constraint can be applied at cur-
rent time rather than at the end of the control horizon. This
reduces online optimisation to minimising a performance in-
dex based on the future degrees of freedom in the input, Jf ,
subject to membership of the precomputed ellipsoid

min
f

Jf subject to zTQ−1
z z ≤ 1. (9)

Here, Jf penalises the future control perturbations,

Jf =

nc−1
∑

i=0

cTi Wci (10)

where W is given by

W = BTPB +R

P = Q+KTRK +ΦTPΦ.

It can be shown that Jf and the LQ cost (3) differ by a bias
term, thus minimising the two indexes is equivalent [7]. The
ellipsoidal constraint in (9) leads to suboptimality. This can be
reduced to negligible levels by allowing a line search outside
the ellipsoid, which will be referred to as scaling [7].

To summarise, the online minimisation is reduced to norm min-
imisation subject to a single quadratic constraint, which can be
solved extremely efficiently.

3.4 Algorithm

We can now present an overall algorithm for ERPC.

Algorithm 1 (ERPC)
Offline: Choose an optimal unconstrained K. Find the optimal
invariant set, Exz by solving (8). If the required set of initial
values X0 ⊂ Exz , proceed to Step 2. If X0 * Exz , increase
nc.



Online: Perform the minimisation (9) and implement uk =
Kxk + ck, where ck is the first element of f , and move on to
the next time step.

The feasible, invariant set and the stabilising K render the al-
gorithm robustly asymptotically stabilising [8].

3.5 Conservative region of attraction

Whereas ERPC enjoys superior efficiency compared to tradi-
tional QP MPC approaches in terms of computation time, the
constraint region is conservative, that is the ellipsoidal region
of initial conditions is smaller than the maximal admissible re-
gion for the augmented system (6), which is a polytope created
by linear constraints [5]. This might severely limit the admissi-
ble initial conditions, and hence exclude practical applications.

Two recent approaches expand the region of attraction, but both
reduce efficiency. In [9] suboptimality is avoided by using
an invariant polytopic set. However, the increased complex-
ity of the region requires a linear programming (LP) solver
whose computational demands are comparable to those of con-
vex quadratic programming (QP). Triple mode MPC of [12]
uses a regular quadratic programming MPC for the first few
time steps.

4 Case study: introducing prediction dynamics

The main idea in this paper is to let the matrix M be a general
matrix instead of having the “time recession” structure of the
previous section. We will refer to this as “prediction dynam-
ics”.

This section introduces prediction dynamics for single input
systems with a control horizon of one time step. This turns the
“non-convex parameter” of the offline problem into a scalar,
rendering the offline problem readily solvable by line search.
Restating (6) we get

[

xk+1

ck+1

]

=

[

Φ b
0 m

] [

xk

ck

]

,

where the M matrix (6c) that shifts the future control freedom
ck, is reduced to a scalar, m. When m is allowed to vary, the
optimisation problem (8) becomes a bilinear matrix inequality
(BMI) problem. However, stability considerations confine m
to the interval [−1, 1]. This allows m to be used as a tuning
parameter instead of nc, where m is fixed at each iteration and
a line-search can be used to find the m that gives sufficiently
large area. We will refer to this as the Line-search Offline Prob-
lem, LOP. For the single input case, minimising Jf is equiva-
lent to minimising ‖f‖2 as m is a scalar. Using m as a tuning
parameter instead of nc has the significant advantage that the
online computation time is constant for different tuning param-
eters.

Example 1 Consider the following state-space model with
input constraints [7]:

A =

[

1 0.1
0 1

]

, B =

[

0
0.0787

]

(11a)

−1 ≤ u ≤ 1, (11b)

for which the optimal LQ gain with Q = diag(1, 0) and R =
0.1 is K = −[2.828, 2.826].

First, we investigate how varying m in the offline problem in-
creases the region of attraction. Figure 1 shows how the el-
lipsoidal volume varies with m (solid line). The area is mea-
sured by log det(TQzT

T)) as in the optimisation problem of
[8]. The dashed line that illustrates the area for m = 0 (which
equals ERPC for nc = 0), indicates that using an m on the in-
terval 0 < m < 1 produces larger areas than ERPC. The dotted
line illustrates the area for ERPC with nc = 10. For m > 0.83
LOP with nc = 1 gives a larger area than ERPC does with
nc = 10. Figure 2 illustrates that the ellipsoids of LOP (solid)
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Figure 1: Area of invariant sets for Example 1: LOP (–), ERPC
for nc = 0 (- -) and nc = 10 (· · · ).

with m = 0.85, 0.95 and 0.97 are much larger than the ellip-
soids of ERPC (dotted) with nc = 10, 20 and 30. In fact the
superiority of LOP is greater than the figure reveals, increasing
m further easily gives ten times larger ellipsoids than Figure
2 [3], whereas our implementation of ERPC breaks down due
to numerical difficulties for nc > 30. However, as Figure 2
indicates, the larger ellipsoids tend to get narrower and do not
necessarily contain the sets produced by ERPC as subsets. As
the ellipsoids are tilted as m varies, the union of ellipsoids for
different m values covers large parts of the second and fourth
quadrants for the given example.

To summarise, the region of attraction compared with ERPC
is increased. In fact, the prediction dynamics (which can be
said to allow control freedom beyond the control horizon) al-
lows LOP to produce larger regions of attraction than the max-
imal admissible set [5] for the augmented system (6) for the
same control horizon. In addition to the improved region of
attraction, LOP improves efficiency and to some degree perfor-
mance, at least for this example. The increased online compu-
tational efficiency is due to ERPC requiring a larger nc to in-
clude a given set of initial conditions. Experiments showed that
the online implementation of LOP is about three times faster
than ERPC for nc = 10. Of course, this efficiency superiority
increases if larger regions of attraction and hence larger nc is
required for ERPC.

Table 1 shows a minor performance improvement for a ran-
dom pair of initial conditions using the line search offline prob-
lem approach, measured by a suitably adapted cost index (10).
However, when the algorithms are extended with scaling [7],
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Figure 2: Invariant ellipsoids for ERPC (- -) and LOP (–).
ERPC is plotted for nc = 10, 20 and 30 and LOP is plotted
for M = 0.85, 0.95, and 0.97.

the difference is negligible.
Table 1: Cost for Example 1: ERPC with nc = 10 and LOP
with nc = 1 and M = 0.855

Without scaling With scaling
Initial position ERPC LOP ERPC LOP
xa = −[0.4 0.3]T 3.5088 3.4561 3.3499 3.3499

xb = [−1.4 0.5]T 15.7375 15.5839 14.8773 14.8773

Example 2 The successful application of the LOP approach
to a nonlinear system described by a polytopic model was
demonstrated by experiments on a nonlinear model of an in-
verted pendulum [3]. The nonlinear system was represented by
a linear difference inclusion, where state constraints were used
to restrict the system state to the domain on which the inclusion
is valid. The computations and simulations support the results
from Example 1.

5 General case: prediction dynamics and BMIs

5.1 Offline problem as BMIs

This section investigates the general case (several inputs and
control horizon longer than one step) of prediction dynamics,
BMIMPC. Consider system (6), with M in (6c) a general ma-
trix. The offline problem (8) remains unchanged except that Ψ
is now a variable as it contains M , which renders the offline
problem a (non-convex) BMI problem. As M is no longer a
scalar as in the previous section, a multivariable approach will
be devised. We will refer to this offline problem as BMIOP.
BMIOP is a generalisation of LOP as it solves the same prob-
lem as LOP when nc = 1. The online problem remains the
same as for ERPC, and is solved by the online part of Algo-
rithm 1.

5.2 Effect of prediction dynamics

Let us investigate the effects of the new degrees of freedom.
The update equation is

fk+1 = Mfk (12)

ck = [ Inu
0nu

· · · 0nu
] fk =: Dfk (13)

where M initially is defined as in (6c). If an element of M
is perturbed, the definition of fk as in (6b) no longer applies.
This makes the interpretation that each element of f specifies a
future open-loop input invalid for BMIMPC.

For ERPC, fk+nc
= Mncfk = 0, as the eigenvalues of M are

zero. This means it is implicitly required that the optimal LQ
feedback is feasible after the control horizon, as

ck+i = 0 ∀ i ≥ nc. (14)

However, inserting non-zero diagonal or sub-diagonal elements
into M gives non-zero eigenvalues and non-zero fk+nc

. This
implies that ci, and hence the feedback, can vary indefinitely,
even with a control horizon of only one time step. The input is
kept more restrictive than the LQ feedback as long as required
by the constraints, independently of nc. In effect, one could
say the tuning of nc is done implicitly, and instead M is tuned
to get sufficiently large invariant sets.

Interestingly, this means that BMIMPC tunes the region of at-
traction without affecting online computational requirements.
The result is that we in a way have the control freedom of
a large control horizon at the computational cost of a much
shorter one. But it should be noted that this effect of a longer
control horizon is sub-optimal, since it must obey the dynam-
ics of M . However, experiments have shown that tuning with
M can give significantly larger ellipsoids than tuning with nc

only.

If only super-diagonal elements of M are perturbed, the eigen-
values of M remain unchanged, (14) still applies and as ex-
pected, examples show negligible changes on the size of the
region of attraction.

Using a general M means that in general ci is non-zero af-
ter the end of the control horizon nc. This requires the per-
formance index (open loop cost) Jf to be altered, by letting
nc → ∞. Standard arguments show that this infinite sum can
be expressed as a quadratic function,

Jf =

∞
∑

i=0

cTk+iWck+i = fT

k Γfk (15)

where Γ is positive definite given by MTΓM − Γ = DTWD.

5.3 Algorithm and stability: BMIMPC

The general BMIMPC approach can be summarised as follows:

Algorithm 2 (BMIMPC)
Offline Choose an optimal unconstrained K. Find nc, M and
Qz that give a suitable invariant set, e.g. by using LOP or
BMIOP.
Online Perform online part of Algorithm 1

The stability proof of Algorithm 2 is similar to that of Algo-
rithm 4.1 of [8]:



Theorem 3 (Closed loop stability) If for system (1) there ex-
ist K, Qz , nc and M such that xk ∈ Exz , the closed-loop ap-
plication of BMIMPC is feasible and robustly asymptotically
stabilising.

Proof. Invariance of Exz ensures xk+i ∈ Exz∀ i > k, which
by an induction argument guarantees feasibility for all future
time steps. Stability follows as the stabilising control law u =
Kx is used in a region around the origin [8].

To prove convergence, note that f̃k+1 = Mfk is feasible and
‖f̃k+1‖

2
Γ = ‖fk‖

2
Γ − cT

kWck. Minimising ‖fk+1‖Γ gives
‖fk+1‖

2
Γ ≤ ‖fk‖

2
Γ− cT

kWck, from which we conclude that the
sequence ‖fk‖Γ converges (it is monotonically decreasing and
lower bounded). Since W > 0, this means ck must converge to
zero, which means that Algorithm 2 reverts to the control law
u = Kx, which is convergent.

5.4 Solving the BMIs

An augmented Lagrangian approach to sequential semi-definite
programming [4], which optimises all variables simultane-
ously, was chosen for solving the BMIOP. The approach, ex-
tracts the non-convexity of (8b) by including an equality con-
straint in the merit function, Fletcher’s augmented Lagrangian
[11],

L(Pz, Qz,Λ) = log(det(TQzT
T)−1) + tr(Λ(PzQz − I))

+
ν

2
tr(PzQz − I)T(PzQz − I), (16)

where Λ is a Lagrange multiplier matrix, ν is a penalty term,
tr denotes matrix trace, tr(PzQz − I) expresses the constraint
violation of the extracted equality, and I is the identity matrix
of dimension nx + nc. At each iteration we find the search
direction pi for a line-search update of the current value of wi

(a vector with the elements of Qz and Pz), by minimising a
quadratic approximation of (16),

∇LTpi +
1

2
(pi)T∇2Lpi, (17)

where∇L denotes the gradient of L and∇2L the (convexified)
Hessian. Formulated as a semidefinite program, this gives the
following minimisation,

min
pi,t

t subject to

[

t−∇LTpi (pi)T

pi 2∇2L−1

]

≥ 0 (18a)

wi + pi ∈ XLMI (18b)

where the quadratic objective is transformed to an LMI con-
straint (18a) with a slack variable, t. The convex set given by
XLMI (18b) refers to the LMI constraints (8d) and (8c) in ad-
dition to the invariance LMI,

[

Qz Ψ
ΨT Pz

]

≥ 0, (19)

which is equivalent to (8b) provided Pz = Q−1
z .

The optimisation strategy is to temporarily allow the iterates
to move away from the equality constraints to achieve rapid
movement towards the optimum. Eventually the iterates are

forced to approach the equality by the increasing penalty term,
ν. The termination criteria make sure the solution fulfills the
equality to a sufficient accuracy. The tuning of the Lagrangian
and penalty term is important to obtain good performance, see
[4] for suggestions.

A significant advantage is that exact expressions for the gradi-
ent and Hessian of the merit function are available. The gradi-
ent and Hessian of the log det(·)−1 function are

∂

∂A
log detA−1=−A−1,

∂2

∂A2
log detA−1=A−1⊗A−1

where ⊗ is the Kronecker product. The gradient and Hessian
of the two last parts of the merit function are the same as in [4].

Merely using optimality constraints as termination criteria is
not necessarily successful when not having added state con-
straints. This is because overly large ellipsoids rarely will be a
desired solution, as they tend to become narrow and have poor
numerical conditioning. Experience shows that checking feasi-
bility in addition to convergence of ‖PzQz − I‖ is important.

Lastly, it must be clear that this formulation of the problem is
non-convex, and any solution found by the above procedure is
local, and hence not guaranteed to be globally optimal. Also,
second order algorithms such as the one above typically re-
quires initial conditions not too far from a solution. Using the
ERPC solution as initial condition remedies this, and also en-
sures that the solution we find is as least as good as ERPC (in
terms of size of the ellipsoid).

6 Discussion

6.1 Comparison of LOP and ERPC

Simulations on two examples showed that the LOP approach
enjoys two important advantages over ERPC: It produces sig-
nificantly larger regions of attractions and improves efficiency.
At the same time it achieves equal or better performance to
ERPC. Example 1 was taken from a paper presenting ERPC
[7], whereas Example 2 was independently chosen [3].

Let us consider a couple of potential objections to LOP’s supe-
riority on region of attraction. First, it can be argued that the
main reason for the large difference in volume is caused by in-
adequacies of the semi-definite solver. However, an improved
solver would of course improve LOP as well. More impor-
tantly, ERPC’s numerical problems occur for control horizons
that are so large that their online computational burden might
preclude applications anyway.

Second, even though LOP’s region of attraction is a lot larger,
the shape is not necessarily the most convenient. Long, narrow
ellipsoids might be impractical. However, a suitable orientation
of an ellipsoid can be easier to find due to the LOP’s increased
flexibility (M varies continuously as opposed to nc) and effi-
ciency (nc is small).

The inclusion of prediction dynamics complicates the offline
problem only. LOP’s online efficiency is superior as long as
ERPC uses a control horizon longer than one time step. This
follows as the online problem is dominated by computations
with matrices that grow linearly or quadratically with nc. The
improved efficiency of LOP over ERPC is problem and imple-
mentation specific. Simulations indicate LOP is three times



faster when nc = 10.

Simulations without scaling gave information on cost differ-
ences (Table 1). It seems that for a given initial point the cost
is larger when the ellipsoid boundary is far beyond this point
as opposed to when it is close to the ellipsoid boundary. LOP
was found to give better performance than ERPC for the ellip-
soidal volumes that gave best performance. For the ellipsoids
that resulted in worse performance for both algorithms ERPC
produced the best results. On average the cost performance of
the two algorithms seemed to be similar. For the initial val-
ues of [7] varying m improved the cost by between 1 and 2
per cent compared to using ERPC. For both the considered ex-
amples, extending the algorithms with scaling eradicated these
differences.

6.2 Comparison of LOP/ERPC and BMIOP

BMIOP is applicable to both multiple input systems and larger
control horizons, as it systematically deals with a multivari-
able M . To interpret the results of BMIOP, consider BMIOP
as a hybrid of ERPC and LOP. ERPC tunes its region of at-
traction, ROA, by varying nc, LOP by varying M , whereas
BMIOP uses a combination of the two. For nc > 1 the initial
volume for BMIOP (calculated with M as specified for ERPC)
will be larger than the initial volume for LOP. This means a
smaller effect of varying M will be necessary for BMIOP to
get the desired volume. Hence, for low nc BMIOP resembles
LOP closer, and for large nc it resembles ERPC closer.

If operating regions are found where ERPC gives better cost
performance than LOP, the cost characteristics of BMIOP can
be made similar to ERPC by using the largest control horizon
allowed by online time constraints, and if necessary the ROA
can be increased further by optimising M .

The hybrid characteristics also allow BMIOP to combine the
strengths of LOP and ERPC and give a superior ROA to both
algorithms. Simulations indicate that the initial ROA, calcu-
lated by M as specified in ERPC, is contained as a subset when
the ROA is enlarged by varying M . Recall that LOP did not
include all ellipsoids of ERPC with high nc as subsets, even
though it produced larger ellipsoids. BMIOP with nc = 10 will
be expected to contain ERPC’s ROA produced with nc = 10
as a subset, but can be enlarged further just as LOP.

An easy way to achieve similar properties to BMIOP, is to al-
low perturbations of one single diagonal or sub-diagonal ele-
ment of the M matrix. Examples have shown that this can give
similar ROA and cost to BMIOP[3]. This approach can be in-
terpreted as an algorithm for BMIOP with constraints on the
structure of M , or a simple extension of LOP. Whether the po-
tential gain of more freedom in M is large enough to justify the
increased complexity of BMIOP is a topic for further research.

Triple mode MPC [12, 2] increases the region of attraction by
using a traditional QP MPC strategy on the first few time steps,
before switching to ERPC. The algorithm retains an efficiency
advantage over standard QP dual mode MPC approaches as the
control horizon used for QP is reduced. Of course, the inclu-
sion of the computationally demanding QP renders the algo-
rithm less efficient than ERPC and BMIMPC. If we interpret
“triple mode MPC” as an outer shell that uses ERPC as a black
box, the improvements of prediction dynamics apply equally to
triple mode MPC as it does to ERPC.

7 Conclusion

An efficient MPC algorithm for systems with polytopic uncer-
tainty is shown to be robustly asymptotically stabilising, sim-
ilarly to ERPC of [8]. The inclusion of prediction dynamics
has the potential to enlarge the region of attraction of ERPC,
even with a control horizon of one time step. The efficiency
gain is achieved at the cost of a more complex offline problem,
without loss of online performance.
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