
A NEURAL APPROXIMATION TO THE EXPLICIT
SOLUTION OF CONSTRAINED LINEAR MPC

H. Haimovich∗, M.M. Seron∗, G.C. Goodwin∗ and J.C. Agüero∗

∗ Centre for Integrated Dynamics and Control, The University of Newcastle, Callaghan, NSW 2308, Australia,
Ph: +61 2 4921 7072, Fax: +61 2 4960 1712

{hhaimo,seron,eegcg,jaguero}@ecemail.newcastle.edu.au

Keywords: Neural networks, model predictive control,
constrained linear control, explicit solution, approxima-
tion.

Abstract

The solution to constrained linear model predictive con-
trol (MPC) problems can be pre-computed off-line in an
explicit form as a piecewise affine (PWA) state feedback
law defined on polyhedral regions of the state space. Even
though real-time optimization is avoided, implementation
of the PWA state-feedback law may still require a signif-
icant amount of computation due to the problem of deter-
mining which polyhedral region the state lies in. In this
paper, a neural network approach to this problem is inves-
tigated.

1 Introduction

Model predictive control (MPC), or receding horizon con-
trol (RHC), is a state feedback strategy that employs the
first of a sequence of control actions corresponding to the
solution of an open-loop optimal control problem. For con-
strained open-loop optimisation problems, MPC typically
computes the control action on-line, given the current state
vector (see e.g., [10]).

Recently, different research teams ([2, 15]) have explored
the option of expressing the control action that solves the
constrained linear MPC problem as an explicit function of
the state. Given this explicit state-feedback law, on-line
optimisation may be avoided, rendering MPC suitable for
applications where a fast sampling rate is needed.

Even though the control action can now be calculated us-
ing the explicit state-feedback law, this may still require a
significant amount of computation due to the fact that this
law is expressed as a collection of affine control laws, each
one valid inside a polyhedral region of the state-space, and
that the number of polyhedral regions may be large. This
issue has motivated research aimed at increasing the effi-
ciency of the evaluation of the state-feedback law as well
as at finding approximate explicit solutions.

In [12], efficiency of the evaluation of the exact state-
feedback law is addressed by constructing a binary search
tree which achieves a computation time logarithmic in the
number of polyhedral regions. A method for generat-

ing an approximate state-feedback law based on a binary
search tree is also proposed. In [9], a suboptimal strat-
egy is considered, where an approximation to the optimal
cost function is utilized, imposing restrictions on the al-
lowed switching between the active constraint sets during
the prediction horizon. Input trajectory parameterization
is studied in [11], as well as the development of a search
tree for efficient evaluation of the PWA solution. In [1],
approximate (suboptimal) solutions to the multiparamet-
ric quadratic programming problem are found by relaxing
the Karush-Kuhn-Tucker optimality conditions. In [7], it is
shown how system structure can be exploited to derive re-
duced dimension multiparametric quadratic programs that
lead to suboptimal explicit PWA feedback solutions to the
state and input constrained LQR problem. In [8], approx-
imate explicit solutions to the MPC problem are built in
correspondence with given bounds for suboptimality and
constraint violation. In [4], approximate multiparametric
quadratic programming is used, structuring the partition as
a binary search tree. A neural network approximation to a
receding horizon regulator for a nonlinear dynamic system
with a nonquadratic cost function is proposed in [13].

The approach proposed here is novel in the sense that it
aims to approximate the determination of the region the
state lies in, i.e., given the state, determine which region
it corresponds to. We do this by constructing a multilayer
feedforward neural network and by developing a selection
procedure for the training points. An advantage of the pro-
posed neural network approach is that not every region in
the polyhedral partition has to be considered but only those
that have different control laws assigned. That is, regions
with equal control laws can be joined even if the resulting
partition involves nonconvex regions.

The remainder of the paper proceeds as follows. Section 2
outlines the formulation of the constrained linear MPC
problem as a multiparametric quadratic program. Section 3
details the construction of a neural network for the selec-
tion of a control law corresponding to a given state vector.
Section 3.1 develops a procedure for selecting the training
points for the network. The structure of the neural network
is adopted in Section 3.2 and an interpretation of the conse-
quences of the suggested approach is given in Section 3.3.
Section 4 applies the suggested approach to an example
and shows simulation results. Conclusions are drawn in
Section 5.

2 Explicit Constrained Linear MPC

The system model is given by

x(k + 1) = Ax(k) + Bu(k) , k = 0, 1, 2, . . . (1)

y(k) = Cx(k) , (2)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the in-
put vector, and y(k) ∈ R

p, is the “output” vector or com-
binations of states of interest. It is assumed that (A, B) is
stabilisable and that the matrices B and C have full column
and row ranks, respectively.

For this model, at time k, the RHC technique poses the
following finite-horizon open-loop optimal control prob-
lem: given the current state measurement x(k) = x, find
the N -move control sequence (Nm control vector)

u = col (u(k), u(k + 1), . . . , u(k + N − 1))

that minimises the performance index:

VN (x,u) =

k+N−1
∑

t=k

xT(t)Qx(t) + uT(t)Ru(t)

+ xT(k + N)Px(k + N) , (3)

subject to the constraints

Gu ≤ W + Ex. (4)

Once this N -move control sequence has been found, only
the first one of the moves (u(k)) is applied and the same
calculations are repeated at the next sampling instant, when
a new (measurement of the) state vector becomes available.

In (3), N is the prediction horizon; Q ≥ 0 and R > 0 are
the state and control weighting matrices, respectively, and
xTPx, P > 0, is the terminal cost function.

By some algebraic manipulations, the problem can be re-
formulated as

V ∗

z (x) =min
z

1

2
zTHz (5)

subject to Gz ≤ W + Sx , (6)

where z = u + H−1F Tx and H > 0. The solution of
the optimization problem (5)-(6) can be found in explicit
form z∗ = z∗(x). The solution, z∗(x), is a continuous
piecewise-affine (PWA) function of x defined on a poly-
hedral partition of the state space. For further details see
[2]. For a derivation of the explicit solution based on the
geometrical structure of MPC, see [15, 14].

Given the function z∗(x), the corresponding MPC control
law, u = κ(x) : R

n → R
m, can be easily found. The

control law κ(x) is also a PWA function defined on a poly-
hedral partition of the state space.

3 Neural Network Approach

As the number of polyhedral regions in the partition may
be very large, the evaluation of the exact explicit solution
may still require a considerable amount of computation ef-
fort. This fact motivates the search for efficient and/or ap-
proximate explicit solutions. The evaluation of the explicit
solution u = κ(x) may be separated into two stages: de-
termination of the current polyhedral region and evaluation
of the associated affine feedback law.

In [13], an approximation to the map u = κ(x) was im-
plemented by means of a multilayer feedforward neural
network. Here, we investigate the case where the neural
network is used only to approximate the region where the
current state x lies i.e., only for the first one of the stages
outlined above. As our aim in determining the region is to
select the correct control law, different regions with equal
control laws (e.g., saturated u) can be joined. This gener-
ates regions which are not necessarily convex but this can
be easily handled by the neural network approach. On the
other hand, the number of regions to consider is noticeably
reduced, as can be seen in Figure 1.

0 10 20 30
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Double integrator

0 10 20
0

100

200

300

400

500

600
Second order resonant system

0 10 20
0

100

200

300

400

500

600

700

800

900
Another second order system

Figure 1: Number of different convex regions (+) and of
different control laws (·) for 3 different second order sys-
tems as a function of the prediction horizon.

Figure 2 shows the structure of the proposed control sys-
tem. The neural network receives the current state as an in-
put and calculates a number that identifies the correspond-
ing control law. Once this number has been calculated, the
block named “Control Laws” is able to select the corre-
sponding (affine) control law and produce the desired con-
trol action u(k). The control laws stored in the “Control
Laws” block can be calculated, for example, by one of the
methods described in [2, 14, 15]. We emphasize that the
approach proposed here is to approximate the determina-
tion of which one of the stored control laws (previously
obtained by some other method) corresponds to a given
state vector.

The determination of the region to which a given state vec-
tor belongs can be thought of as the evaluation of a function
with finite range:

Reg(x) : R
n → {1, 2, . . . , Nl}, (7)

where Nl denotes the number of regions in the partition,
which in our case is the same as the number of different
control laws.

Figure 2: Control system structure.

3.1 Selection of the Training Points

We consider here the approximation of the function Reg(x)
within a hypercube defined by

x1min

x2min

...
xnmin

≤

x1

x2

...
xn

≤

x1max

x2max

...
xnmax

. (8)

Within this hypercube, some points have to be chosen as
training points for the network. There exists a tradeoff
in the selection of the training points: the more training
points used, the more accurate the approximation but the
greater the amount of calculation effort. Note that this cal-
culation effort represents off-line computation and is only
needed for the training of the network. Once the network is
trained, the amount of on-line calculation does not depend
on the number of training points previously chosen.

Although this calculation is made off-line, it may be im-
practical to perform without careful selection of the train-
ing points. For example, random selection of the training
points from a unique uniform distribution within the hy-
percube (8) would result in a very high number of train-
ing points needed to obtain a sensible approximation. One
good choice would be to draw the same number of sam-
ples from Nl different uniform distributions, each one sup-
ported on one of the polyhedral regions. The complexity
of this selection scheme motivated the use of a simplified
selection procedure.

Using an algorithm similar to the one described in [8], a
partition of the hypercube (8) is found imposing an orthog-
onal search tree structure on it. A slight modification of
this algorithm is made to avoid partitioning a hypercube if
the same control law applies for all of its vertices. Once
this orthogonal search tree partition is available, the set of
points for training the network is constructed by drawing
the same number of samples from uniform distributions
supported on each one of the hypercubes in the partition.

3.2 Neural Network Structure

It is well-known that multilayer feedforward neural net-
works are able to approximate, within a hypercube, any
continuous nonlinear mapping from a finite-dimensional
space to another, to any desired degree of accuracy (see
e.g., [6, 3, 5]), provided the activation functions meet some
requirements and the number of neurons in the network is
large enough. One of the requirements imposed on the
activation functions for pointwise approximation is that
they be continuous. Here, we intend to approximate the
piecewise-constant finite-range function Reg(x) (7), which
is not continuous. Our approach is to obtain Reg(x) by
quantizing a continuous function. This continuous func-
tion will be provided by the neural network and the quan-
tizing will be performed as a postprocessing step. The
adoption of this approach imposes some conditions on the
selection of the structure of the output layer of the network.

For example, if we consider a structure consisting of only
one neuron in the output layer with a linear activation func-
tion, whose output value has to be quantized to an inte-
ger between 1 and Nl, an important drawback will arise.
In Figure 3 the borders of 4 arbitrary regions are shown.
Points P1 and P4 belong to regions 1 and 4, respectively.
As we move from point P1 to point P4, following the line
joining them (shown as a dotted line in Figure 3), we ex-
pect the output of the network to change from a value close
to 1 to a value close to 4. If the activation functions of
all the neurons in the network are continuous (which is a
requirement, as explained above), then the output of the
network will take on values 2 and 3 as well for some in-
termediate points. Hence, in this scheme the control law
corresponding to region 3 will be used for a set of points
which lie far away from region 3, producing an undesired
control action.

Figure 3: Borders of 4 arbitrary regions.

A useful structure for the output layer can be obtained by
including as many neurons in the output layer as regions
in the partition. Neuron Ni in the output layer will be ex-
pected to approximate the indicator function of region Ri,
IRi

(x), defined as

IRi
(x)

.
=

{

1 if x ∈ Ri

0 otherwise
, i = 1, 2, . . . , Nl. (9)

The functions defined in (9) are not continuous but it is now
evident that they can be obtained by quantizing a continu-
ous function. To avoid classification of a given state vector
as belonging to more than 1 region simultaneously, the out-
put neuron with the highest output value will be selected as
the one which will indicate the corresponding region, as il-

lustrated in Figure 4. As the output value for any output
neuron needs vary only between 0 and 1, logistic sigmoid
activation functions are selected for the output layer.

Figure 4: Neural network output layer and region selection
scheme.

In [6], it is proved that a feedforward neural network with
as few as one hidden layer can be a universal approxima-
tor. However, this result does not say that a single hidden
layer is optimum in the sense of minimizing learning time
or simplifying implementation. Results of a large num-
ber of simulations lead us to believe that the complexity
in terms of on-line calculation is reduced by providing the
network with 2 hidden layers as opposed to only one. Hav-
ing made these considerations, it remains to select the acti-
vation functions for the hidden layers. We adopt a logistic
sigmoid activation function for the first hidden layer and a
linear one for the second hidden layer.

3.3 Interpretation of the Proposed Approach

A depiction of the consequences of the suggested neural
approximation is sketched in Figure 5. In the top subfigure,
a partition corresponding to the exact solution is shown, for
an arbitrary case. Every region, distinguished by a num-
ber, has an assigned control law, valid for all the points
in the same region. In the bottom subfigure, the borders
of the regions are different because of the neural network
approximation.

Figure 5: Regions approximated by the neural network.

4 Example and Simulation Results

We present here an example for the case of the double in-
tegrator with a prediction horizon N = 10, sampling time
Ts = 0.1, R = 1, Q = In (identity matrix) and P taken as
the solution of the discrete algebraic Riccati equation. The
control variable u is constrained such that

−0.5 ≤ |ut| ≤ 0.5, t = k, k +1, . . . , k +N −1. (10)

We will approximate the exact solution within the rectan-
gle (hypercube) defined by

[

−10
−6

]

≤

[

x1

x2

]

≤

[

10
6

]

. (11)

The exact explicit solution κ(x) consists of 93 different
affine control laws, with a convex polyhedral partition hav-
ing 201 polyhedral regions. Figure 6 shows the regions in
the convex polyhedral partition within the selected rectan-
gle (Equation (11)). The resulting 93 regions after joining
the ones with equal control laws are shown in Figure 7.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6
Projection to 1−2 axes

Figure 6: Polyhedral partition with convex regions.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6
Projection to 1−2 axes

Figure 7: Regions corresponding to different control laws.

For a suboptimality bound ε̄ = 5 and a constraint viola-
tion bound δ̄ = 0.1, the orthogonal search tree partition of
Figure 8 is found (see [8] for details). In this case, the par-
tition in Figure 8 contains 1810 rectangles. Note that the
bounds ε̄ and δ̄ are only used to find the orthogonal search
tree partition and are not directly related to the accuracy of
the neural network approximation to the explicit solution.

Within each one of the rectangles in the orthogonal search

−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

Figure 8: Orthogonal partition.

tree partition, 2 samples are drawn from a uniform distri-
bution, generating a training set of 3620 points (Figure 9).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

Figure 9: Training points and orthogonal search tree parti-
tion. Two points in each rectangle.

A multilayer feedforward neural network with two hidden
layers of 75 and 23 neurons, respectively, was created and
trained with the points in the set and their corresponding
regions in the partition shown in Figure 7. As explained
before, the activation functions were chosen as logistic sig-
moid for the output and first hidden layers and linear for
the second hidden layer. The training was performed using
backpropagation training with 5000 iterations.

Finally, the state space trajectories of the system corre-
sponding to the exact explicit solution and the neural net-
work approximation are compared in Figures 10 and 11.
It can be seen from Figure 10 that the plot corresponding
to the neural network approximation is very close to the
exact one. In Figure 11, a zoom has been included for dis-
tinguishing the difference between the two.

5 Conclusions

We have presented a novel approach to the approximation
of solutions for MPC through the use of a multilayer feed-
forward neural network. The novelty of the approach lies
in the use of the network for assigning a stored control
law to a given state vector. Because of the structure of

−10 −8 −6 −4 −2 0 2 4 6
−2

−1

0

1

2

3

4

State vector: 1st component

St
at

e
ve

cto
r:

2n
d

co
m

po
ne

nt

State−space trajectory.
Dashed line: exact solution. Solid line: neural network approximation.

Figure 10: Complete state-space trajectory. Dashed line:
Exact solution. Solid line: Neural network approximation.

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

State vector: 1st component

St
at

e
ve

cto
r:

2n
d

co
m

po
ne

nt

State−space trajectory.
Dashed line: exact solution. Solid line: neural network approximation.

Figure 11: Zoom of state-space trajectory. Dashed line:
Exact solution. Solid line: Neural network approximation.

the output layer of the neural network, the complexity of
the neural network grows at least linearly with the num-
ber of different control laws. With the benefit of hind-
sight, it turns out that the suggested scheme can be out-
performed by recent developments in other approximate
methods. Nonetheless, the ideas presented here could be
of independent scholarly interest and may be a worthy
starting point for hybrid algorithms which combine several
points of view.

References

[1] A. Bemporad and C. Filippi. Suboptimal explicit mpc
via approximate multiparametric quadratic program-
ming. In Proc. 40th IEEE Conf. on Decision and
Control, Orlando, Florida USA, 2001.

[2] A. Bemporad, M. Morari, V. Dua, and E.N. Pis-
tikopoulos. The explicit linear quadratic regulator for
constrained systems. Automatica, 38:3–20, 2002.

[3] Ken-Ichi Funahashi. On the approximate realization
of continuous mappings by neural networks. Neural
Networks, 2:183–192, 1989.

[4] A. Grancharova and T. A. Johansen. Approximate ex-
plicit model predictive control incorporating heuris-

tics. In Proc. IEEE Conf. on Computer Aided Control
Design, pages 92–97, Glasgow, 2002.

[5] S. Haykin. Neural Networks, A Comprehensive Foun-
dation. Macmillan, New York, 1994.

[6] K. Hornik, M. Stinchcombe, and H. White. Multi-
layer feedforward networks are universal approxima-
tors. Neural Networks, 2:359–366, 1989.

[7] T. A. Johansen. Structured and reduced dimension
explicit linear quadratic regulators for systems with
constraints. In Proc. 41st IEEE Conf. on Decision
and Control, Las Vegas, pages 3970–3975, 2002.

[8] T. A. Johansen and A. Grancharova. Approximate
explicit model predictive control implemented via or-
thogonal search tree partitioning. In IFAC World
Congress, Barcelona, 2002.

[9] T. A. Johansen, I. Petersen, and O. Slupphaug. Ex-
plicit sub-optimal linear quadratic regulation with
state and input constraints. Automatica, 38:1099–
1111, 2002.

[10] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M.
Scokaert. Constrained model predictive control: Sta-
bility and optimality. Automatica, 36:789–814, 2000.

[11] P. Tøndel and T. A. Johansen. Complexity reduction
in explicit linear model predictive control. In IFAC
World Congress, Barcelona, 2002.

[12] P. Tøndel, T. A. Johansen, and A. Bemporad. Compu-
tation and approximation of piecewise affine control
laws via binary search trees. In Proc. 41st IEEE Conf.
on Decision and Control, Las Vegas, pages 3144–
3149, 2002.

[13] T. Parisini and R. Zoppoli. A receding-horizon reg-
ulator for nonlinear systems and a neural approxima-
tion. Automatica, 31(10):1443–1451, 1995.

[14] M. M. Seron, J. De Doná, and G. C. Goodwin. Global
analytical model predictive control with input con-
straints. In Proc. 39th IEEE Conf. on Decision and
Control, Sydney, pages 154–159, 2000.

[15] M. M. Seron, G. C. Goodwin, and J. A. De Doná.
Characterisation of receding horizon control for con-
strained linear systems. Asian Journal of Control,
5(2):271–286, 2003.

	Session Index
	Author Index

