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Abstract 
In this work, different predictive control strategies based on 
linear and non-linear models are described. Fuzzy models are 
considered in order to represent the non-linearlities of the 
process. A laboratory tank is used for testing and comparing 
the different control strategies proposed. 

 
1 Introduction 
 
The essence of model based predictive control (MBPC) is the 
optimisation of the future process behaviour with respect to 
the future values of the process manipulated variables. The 
use of non-linear models in MPC is motivated by the need of 
improving the quality of the prediction of the inputs and 
outputs [1].  

During the last years many works have emerged regarding 
non-linear fuzzy predictive control. Skrjanc [13] describes a 
predictive controller based on Takagi&Sugeno fuzzy models. 
The algorithm uses a GPC objective function and fuzzy 
models for the predictions. Using fuzzy logic also solves the 
optimization problem. The proposed controller uses an 
adaptive algorithm to solve the process parameter change 
problems or disturbances, by adjusting the membership 
function gains of the control action increment. 

Cipriano [4] describes a GPC controller based on 
Takagi&Sugeno fuzzy models. In this work, a linear GPC 
controller is derived for each rule of the fuzzy model. 
Therefore, the fuzzy controller includes the same premises as 
the fuzzy process model and the consequences are given by 
the resulting control action. The main disadvantage of the 
proposed control algorithms is that they require the 
parameters tuning for the different predictive controllers of 
each rule, however they have an easy and fast 
implementation. 

Roubus [12] proposes a fuzzy predictive controller based on 
the Takagi&Sugeno fuzzy model linearization. At every 
sampling time, a linear model is derived by evaluating the 
fuzzy model premises or the satisfaction degrees. Then, a 
linear predictive controller is designed for the resulting linear 
model and, in the next sampling time, the linear model is 
updated. This method is applicable to multivariable systems 
and a minor computing effort is required to calculate the 

control actions. Kim [10] points out, in a similar work, that 
the prediction with the literalized fuzzy model is not 
necessarily the optimal prediction. Huaguang [11] describes 
a similar controller that also includes a stability analysis of 
the closed-loop system. 

Espinosa [5] proposes a new fuzzy predictive control 
algorithm. This algorithm uses a fuzzy model prediction. In 
this case, the free response is obtained by simulating the 
fuzzy model with the constant future inputs equals to the last 
input u(t-1). On the other hand, the forced response is 
obtained by simulating the fuzzy model at the present 
sampling time. Hence, the predictive control analytical 
solution is similar to the one obtained with the GPC 
algorithm. 

Espinosa [6] extends the predictive control algorithm based 
on fuzzy models to multivariable systems. Hadjili [8] and 
Espinosa [7] describe a similar predictive controller. Then, 
fuzzy predictor uses the constant satisfaction degrees for the 
N future sampling times. The analytical solution of the GPC 
is considered for the resulting predictions. 

In Babuska [3] works a similar multi-step predictor is 
proposed. First, the fuzzy model is liberalized at the present 
sampling time. Next, the resulting control action is used to 
predict y(t+1) and again the non-linear model is liberalized 
around the last operational point. This procedure is repeated 
until t+N, that is to say, it is used for the prediction horizon. 
This prediction is more precise and it is useful for longer 
prediction horizons. However, this method implies more 
computing effort. 

Nounou [11] formulates a new fuzzy predictive algorithm by 
proposing the control action that is calculated for the lineal 
rule with the highest satisfaction degree at the present 
sampling time. This algorithm is favorably compared to 
Roubos [12] algorithms.  

In this work, the fuzzy predictive control strategies are first 
described. Then, the application to level control of a 
laboratory tank is shown including a comparative analysis of 
the proposed fuzzy predictive controllers. Finally, the 
conclusions are presented. 

 
2 Fuzzy predictive control strategies 
Non linear predictive control designates an integrated 
approach of control methods that uses a non-linear process 



model to obtain the control signal by optimising an objective 
function, even with constraints [2]. 
 
2.1   Predictive control 

In the model based predictive control area the most popular 
objective function used to calculate the control action is the 
quadratic one. The general expression for such an objective 
function is [1]: 
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where δ(j) and λ(i) are coefficients that weight the future 
behaviour, )jt(w +  is the future reference trajectory, N1 and 
Ny are the minimum and maximum prediction horizons and 
Nu is the control horizon. Summarizing, the control action is 
obtained minimising an objective function such as Equation 
(1). To do this, the prediction of the control variables is 
calculated as a function of past values of the inputs and 
outputs and of future control actions.  

In this work, the non-linear fuzzy dynamic models are 
considered for the design of non-linear predictive control 
strategies. 

 
2.2 Takagi & Sugeno fuzzy models 

Fuzzy models have been used for the identification of non-
linear systems [14]. This paper considers the following 
Takagi&Sugeno [15] fuzzy model: 
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where Ai
r  is the fuzzy set of variable i of rule r, i

jp  is 
consequence parameter of rule i associated with variable  j 
and yi is  the output of rule i. The output of the fuzzy model 
is: 
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where Nr is the rules number and wi is the normalized 
activation degree of rule i. The premise parameters can be 
obtained based on the process knowledge or using the fuzzy 
clustering method [14]. Next, the consequence parameters are 
obtained using the Takagi & Sugeno method based on least 
squares [15]. 

 
2.3 Fuzzy predictive control 

In this work, a fuzzy predictive controller based on Takagi-
and-Sugeno fuzzy models is considered where a linear 
predictive controller is derived for each rule of the fuzzy 
model. Therefore, the fuzzy controller includes the same 
premises as the fuzzy process model (see Equation (2)) and 
the consequences are given by the resulting control action. 
That is, 
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where fi denotes the predictive control law for the rule i. The 
proposed fuzzy predictive controller has an easy and fast 
implementation. 

 
3 Application to level control of a laboratory tank 
 
3.1 Tank description 
 
As shown Figure 1, a laboratory tank is considered, located at 
Automatization Laboratory, Universidad Nacional de 
Quilmes, Argentina. The control problem is to follow level 
set-point changes by adjusting the flow rate of liquid entering 
the tank. The position of the inferior valve is considered as a 
disturbance that regulates the exhaust water. It is important to 
remark that as the valves behaviour is clearly non-linear, the 
complete process becomes non-linear. 

 
Figure 1. The laboratory tank 

3.2 Tank level modelling 
 
In this work, two experimental data sets are obtained. The 
first data set is generated, when a pseudo white noise is 
applied to the input variable (input valve position) and the 
output response (tank level) values are saved. Also, in order 
to produce different operating points, the inferior valve 
position is randomly changed. 

In the second data set, closed loop identification is used in 
order to generate different data sub set for four operating 
zones, changing the inferior valve position to different fixed 
positions (25%, 50%, 75%, 100%). 

Next, different models are proposed for representing and 
controlling the laboratory tank level. 



3.2.1 Linear models 
 
Using the first experimental data set, the following 
Autorgresive with eXagenuoes variable (ARX) model is 
obtained: 
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where y(t) is the tank level and u(t) is the input valve position. 
 
3.2.2 Takagi & Sugeno fuzzy models based on empirical 

data 
 
The premise parameters of the Takagi & Sugeno models are 
obtained using the fuzzy clustering and the consequence 
parameters are determined by the least squared method. 

Then, using the first experimental data set (open loop 
identification), the following fuzzy model is obtained: 
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where y(t) is the tank level and u(t) correspond to the input 
flow rate. In Figure 2, the membership functions of the 
premises are presented. In Table 1, the consequence 
parameters are shown. 
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Figure 2. Membership functions 

 
Rule 

i 
i
0p  i

1p  i
2p  i

3p  i
4p  

1 -1.044 1.583 -0.583 -0.006 0.015 
2 -1.168 1.562 -0.562 -0.005 0.011 

Table 1. Consequence parameters 

3.2.3 Takagi & Sugeno fuzzy models based on process 
knowledge and empirical data 

 
As it was mentioned before, a second experimental data set 
(closed loop identification) is obtained for four inferior valve 
positions (25 %, 50 %, 75%, 100 %). 

In this case, four linear models are determined for each data 
subset that corresponds to the consequence linear models of a 
fuzzy model as shown in Table 2. The exhaust valve position 
is considered as the premise input variable because it 
determinates the different operating conditions. The 
membership functions are shown in Figure 3. 

 
% inferior  

valve position 
Rul
e i 

i
1p  i

2p  i
3p  

25 1 1.504 -0.503 0.008 
50 2 1.422 -0.425 0.013 
75 3 1.363 -0.366 0.012 
100 4 1.5677 -0.569 0.009 
Table 2. Consequence parameters 
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Figure 3. Membership functions for the inferior valve position 

 
Therefore, the fuzzy model is given by: 
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3.3 Tank level control strategies 
 
Next, the different control strategies are tested using the 
experimental tank. 
 
3.3.1 Evaluation basis 
 
In order to compare the different control strategies the 
following GPC index will be used: 
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where y(t+k) is k ahead prediction of the tank level, r(t+k) is 
the tank level reference, and ∆u(t) is the input valve position 
increment. N2 = NU = 35, given by the stabilising time. 



Also, Figure 4 shown the different tests that are used to 
evaluate and compare the different control strategies. Test 1 
corresponds to the disturbance given by the inferior valve 
position changes while the tank level reference holds constant 
(150). Test 2 represents reference changes in the tank level 
while the inferior valve position holds constant (50 %). 
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Next, the different controllers applied to the laboratory tank 
level control are described. 
 
3.3.2 Linear predictive control 
 
The predictive controller is designed in order to minimise the 
same index defined in Equation (9). Then, the control action 
is given by: 
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where ∆u(t) is the input valve position increment, y(t) is the 
tank level and r(t) is the tank level set-point. 
 
3.3.3 Fuzzy predictive controller 1 
 
Using the Takagi & Sugeno fuzzy model based on empirical 
data defined in Equation (6), the following fuzzy predictive 
controller is derived (see section 2.3): 
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Table 3 presents the consequence parameters. The 
membership functions are the same defined in Figure 2. 
 

Rule 
i 

i
1p  i

2p  i
3p  i

4p  i
5p  i

6p  

1 -0.13 -0.26 -17.94 27.42 -9.89 0.41   
2 -0.11 -0.22 -20.34 30.81 -10.89 0.42 

Table 3. Consequence parameters 
 

3.3.4 Fuzzy predictive controller 2 
 
Using the fuzzy model based on the process knowledge and 
empirical data (Equation (7)), the following fuzzy predictive 
controller is derived (see Section 2.3) 
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Table 4 presents the consequence parameters. The 
membership functions are the same defined in Figure 3. 

 
Rule i i

1p  i
2p  i

3p  i
4p  i

5p  
1 0.12 -15.24 22.08 -7.25 0.41 
2 0.14 -10.89 14.84 -4.35 0.41 
3 0.13 -10.88 14.23 -3.76 0.41 
4 0.13 -15.42 23.27 -8.25 0.41 

Table 4. Consequence parameters 
 
3.3.5 Comparative analysis 
 
In Tables 5 and 6 the results of the control strategies 
described before are compared for the two tests, including the 
mean value of the objective function defined in Equation (8) 
and the improvement (%) compared with the process with a 
linear predictive controller. Also, the standard deviations of 
the controlled and manipulated variables are presented. 
 

Control Strategy Mean J % 
Impr. 

Std(y) Std(u) 

Linear predictive 
controller 

4.093x106 - 2.119 35.806

Fuzzy predict. contr. 1 4.034x106 1.44 % 2.339 34.794
Fuzzy predict. contr. 2 3.993x106 2.44% 2.0680 32.909

Table 5. Index Test 1 
 

Control Strategy Mean J % 
Impr. 

Std(y) Std(u) 

Linear predictive 
controller 

3.390x106  52.415 78.092

Fuzzy predict. contr. 1 3.272x106 3.49% 51.193 64.660
Fuzzy predict. contr. 2 3.255x106 3.98% 51.787 73.208

Table 6. Index Test 2 

It is clear from Table 5 that the fuzzy predictive control based 
on process knowledge and empirical data (Fuzzy Predictive 
Controller 2) achieves the best results (2.44% regulation 
improvement), followed by the fuzzy predictive control based 
on empirical data (Fuzzy Predictive Controller 1). These 
results are due to the fact that Test 1 corresponds to the 
disturbance given by the inferior valve position changes, and 
the Fuzzy Predictive Controller 2 uses this variable as input 
for its fuzzy rules.  

Table 6 shows a significant improvement (3.49-3.98%) with 
fuzzy predictive controllers. In this case, the best results are 
obtained when the tank process is excited by different tank 
level references.  



Figures 5 and 6 show the controlled and manipulated 
variables for Test 1 and Test 2 respectively. The different 
control strategies are shown in the graphic with different 
colours. Linear predictive controller is given by green line, 
Fuzzy Predictive Controller 1 is red line, and Fuzzy 
Predictive Controller 2 is light blue line. 

It can be seen in the figures that the manipulated variable 
obtained with the Fuzzy Predictive Controller 2 has less 
variability, confirming the information obtained from the 
variance analysis presented on Tables 5 and 6. 

4 Conclusions 
In this paper, two fuzzy predictive control strategies based on 
Takagi & Sugeno models are described. Also, an application 
to a tank level control is presented. The results show a better 
behaviour using the fuzzy predictive controllers than linear 
predictive controllers. This fact confirms that fuzzy 
controllers are a good and suitable solution to control non 
linear systems. Finally, it was experimentally confirmed that 
the fuzzy predictive controllers have an easy and fast 
implementation. 
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Figure 5. Control strategies: Test 1 
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