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Abstract

To design air quality plans, regional authorities need tools to
understand both the impact of emission reduction strategies on
pollution index and the costs of emission reduction. The prob-
lem can be formalized as a multi-objective mathematical pro-
gram, integrating local pollutant-precursor models and the esti-
mate of emission reduction costs. Both aspects present several
complex elements. In particular the source-receptor models,
describing transport phenomenon and chemical non linear dy-
namics, require deterministic modelling system with high com-
putational cost. In this paper a method based on neuro-fuzzy
models is proposed to identify local ozone-precursor models
on the basis of the simulations of a photochemical modelling
system (GAMES). The methodology has been performed for
Lombardia region (Northern Italy); this area, characterized by
a complex terrain, high urban and industrial emissions and a
dense road network, is often affected by severe photochemical
pollution episodes during summer.

1 Introduction

Since last decade photochemical smog episodes have become
more and more critical over Europe, mainly in Mediterranean
regions, where the sun radiation and the stagnating meteorolog-
ical conditions occurring in summer season play a significant
role in chemical transformations of urban and industrial pollu-
tant emissions. The cause-effect chain relations between pre-
cursors (typically nitrogen oxides (NO � ) and volatile organic
compounds (VOC)) and photochemical pollutants (mainly tro-
pospheric ozone, NO � , PAN and formaldehyde) are thousands
and characterized by different reactive times, resulting complex
and non-linear.

This property depends on the specific urban and industrial
structure of the area, on the local meteorological conditions, on
the contribution of regional and local emissions of photochem-
ical smog precursors, ”hot spot” areas occurring especially in
Mediterranean areas and the local photochemical regimes [18].

As a consequence of such complexity, the European Union
suggests regulatory Agencies to define the problem at regional
level in order to better interpret the air pollution situation and
to define plans in terms of reductions of the emissions of ozone
precursors.

Such measures can be selected on the basis of different
techniques such as the cost-benefit analysis or the cost-
effectiveness analysis ([12] and [19]).

As the estimation of pollution damages often is difficult to be
estimate proves unfeasible, the problem can be formalized as a
multi-objective optimization ([5], [13], [15] and [8]). This ap-
proach presents the difficulty of including the complex non lin-
ear dynamics of ozone formation within the optimization prob-
lem formulation.

The source-receptor relationship can be simulated by determin-
istic 3D modelling systems, describing transport and chemical
atmospheric phenomena. Such models require so high com-
puting times that they are virtually unserviceable in a multi-
objective mathematical program.

To get round the problem, in literature the source-receptor re-
lationship has been described using ozone isopleths [7], [11]
or with reduced form models. These last can be divided in
turn into simplified photochemical models (for instance, by
adopting semi empirical relations calibrated with experimen-
tal data, as in [20], or by using statistical regressions on the
results of very complex 3D transport-chemical models (long
term simulations for Europe domain in [13] and [8], short term
simulations for Lombardia domain in [1]). The final multi-
objective mathematical problem can then be solved by various
techniques, including genetic algorithms, as in [11].

In this paper, a two-objective analysis (air quality and costs) to
select effective ozone control plans is formalized.

The nonlinear relation between emission and pollution is de-
scribed for Lombardia Region (Northern Italy) by neuro-fuzzy
models, calibrated on long term simulations of GAMES [21]
photochemical modelling system.

2 Problem formulation

The ground level ozone control can be formulated as a two-
objective mathematical programming problem including the
effectiveness of emission reduction policies and their costs.

The air quality objective is the minimization of the seasonal ac-
cumulated ozone dose (AOT60) above the 60 ppb cut-off value
for daylight hours over a grid domain. This index measures
the population exposure in World Health Organization and EU
Directives.

The daily cell exposure can be formalized as follows:
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As photochemical pollution is formed from emissions of nitro-
gen oxides and of volatile organic compounds in the presence
of sunlight, the daily cell exposure is function of meteorologi-
cal parameters (that cannot be handled) and of emissions (de-
cision variables).

As a regional authority can impose a reduction to a certain
emission sector, the daily cell emissions is expressed with re-
spect to a reference situation and split in 11 sectors according
to the CORINAIR classification [4]. So the cell AOT60 can be
described stressing the emission dependance as follows:
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 �C� is the decision variable set, namely the per-
centage of sector precursor emission reductions (respec-
tively for NO � and VOC).

The formalization of source-receptor function, explaining com-
plex local and regional factors (transport processes, atmo-
spheric chemical non linear behavior, anthropogenic and bio-
genic emission mixture), is described in the next section.

The air quality objective, minimizing the seasonal domain pop-
ulation ozone exposure (POE), is:

V 7DW ��XY�#ZQ��� V 7[ W � \ �$
 � ]�= ���  5 ��
 � �������
	 ��
 � �0�1�^( (3)

where p
��
 �

is the population density in
� 798;: �

th cell and _ is the
amount of the summer days.

The second objective of the ozone planning is the minimization
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where:

f M J ��- MJ � and
f M J ��- PJ � are functions giving the unit costs re-

lated to NO � and VOC emission reduction;I J
and

OYJ
are the seasonal domain NO � and VOC emissions

in the reference case;k MJ and
k PJ are the maximum feasible reductions allowed by

the available technologies.

3 Pollutant-precursor models for Lombardia
Region

The precursors-AOT60 relationship (Eq. 2) remains to be de-
scribed. It could be performed by deterministic 3D modelling
systems, but they require so high computing times that they are
virtually unserviceable in an operational research procedure.
In this section neuro-fuzzy precursor-ozone models, tuned by
deterministic 3D modelling system simulations, are suggested
and implemented for Lombardia Region (Figure 1).

Figure 1: The simulation domain orography (m a.s.l.).



3.1 GAMES long term simulations

Ground level ozone concentrations and exposure have been
simulated implementing the GAMES modelling system con-
sisting of some main modules (Figure 2).
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Figure 2: The GAMES modelling system

The photochemical model TCAM [3] is an eulerian three-
dimensional model. It solves, time by time, by means of ade-
quate numerical algorithms, for each cell and pollutant species,
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where:fp�
is the concentration of the

7
-th species;t � 8 t,v 8 tFx are the components of mean wind speed;{ � 8 {�v 8 {�x are the turbulent diffusion coefficients;~ �

is the chemical production and reduction term;Z'�
is the emission term;_ � is the deposition term.

The TCAM implements simplified chemical mechanisms
based on both lumped molecule (SAPRC90 and SAPRC97,
[2]) and lumped structure approaches (CB4, [10]). The meteo-
rological pre-processor CALMET [14] provides to the TCAM
the 3D meteorological fields of wind, temperature and turbu-
lence. The emission data feeding TCAM are provided by the
emission processor POEMPM [6], specifically designed to pro-
duce present and alternative emission scenarios.

The modelling system has been performed over the whole of
Lombardia Region, a densely inhabited and industrialized area

located in the Po Valley (Northern Italy) which is regularly af-
fected by high ozone levels during summer months. The area is
characterized by a VOC-limited atmospheric chemistry in the
plain, suggesting that pollution control measures should first
aim at a reduction of VOC emissions, while the mountain re-
gion follows the NO � -limited photochemical regime, claiming
for NO � emission reductions [17].

The domain (240 x 232 km2) has been horizontally subdivided
into 60 x 58 cells, with a resolution of 4x4 km � each. Vertical
domain extends up to 3900m a.s.l., subdivided into 11 layers of
growing thickness.

Simulations have been performed for 1996 summer season
(from April to September), assuming initial and boundary con-
ditions from a nesting procedure of the European scale EMEP
Lagrangian Photo-oxidant Model ([4]).

Implementing the actual meteorology, emission and border
conditions of that period, the base case simulation has been per-
formed, supplying pollutant hourly concentration fields. The
comparison with the actual values measured during the simu-
lation period meets US EPA recommendations and recent Eu-
ropean Directive on modelling validation [9]. The computa-
tion of such a simulation takes few days and this explains why
GAMES cannot be directly used by an optimization procedure
that would processing hundreds of model runs.

Keeping the meteorology and border conditions of simulation
period as constant and arbitrarily reducing ozone precursor
emissions of a certain ratio, seven alternative scenarios (reduc-
ing or increasing NO � or/and VOC emissions) have been per-
formed and collected for the calibration of simplified source-
receptor models described in the following section.

3.2 Neuro-fuzzy source-receptor models

Simplified source-receptor models have been set up by means
of neuro-fuzzy architecture. In neuro-fuzzy systems, neural
networks are used to tune the membership functions of the
fuzzy system and to automatically extract fuzzy rules from nu-
merical data ([16]). In this work, a four-layer neuro-fuzzy net-
work has been considered. The nodes of the first layer represent
the crisp inputs. The activation functions of the second layer
nodes act as membership functions. Each neuron of the third
layer acts as a rule node so that this layer provides the fuzzy
rule base. The output of this layer determines the activation
level at the output memberships. As ordinary neural nets, the
neuro-fuzzy one learns from a training data set, tuning mem-
bership functions and rules.

One neuro-fuzzy model has been identified for each domain
cell. The input data are the cell maximum daily temperature
and the daily VOC and NO � emissions estimated for an area
around the cell within an radius of 4 to 10 km. The output data
are the daily AOT60 estimation performed by the GAMES sys-
tem. The neuro-fuzzy models, running in simulation mode, es-
timate the daily cell exposure from which the AOT60 seasonal
values are provided according to Equation 2.



The tuning and validation data series are selected processing
the eight performed GAMES simulations. Each simulation
covers the 1996 summer season, namely 183 days, so the avail-
able data correspond to 183x8 days. The validation set has
been yielded selecting, from the simulation pattern, groups of
data that are representative of different emission scenarios and
meteorological conditions, for a total amount of a entire sea-
son, i.e. 183 samples. The identification pattern includes the
remaining 183x7 samples.

4 Neuro-fuzzy model performances

The performances of the simplefied source-receptor models,
evaluated on validation data set, are assessed in terms of corre-
lation between neuro-fuzzy models and GAMES results. Fig-
ures 3, 4 and 5 show neuro-fuzzy models vs. GAMES simu-
lations, for three cell groups, respectively below 200m a.s.l.,
between 200m a.s.l. and 700m a.s.l. and above 700m a.s.l..
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Figure 3: GAMES versus neuro-fuzzy AOT60 estimation for
validation data set (cells below 200m a.s.l.).

The trend lines and correlations of the scatter diagrams show
that the neuro-fuzzy models perform high capability to repro-
duce the nonlinear source-receptor relationship with some re-
marks for the three elevation levers. In the plain, corresponding
to the most pollutant emitting part of the domain, the neuro-
fuzzy model underestimate the exposure about 5-10% (Figure
6).

The foothill area is better described and the error is limited to
about � 4% in the worst cases. The Alps region AOT60 are
overestimate by the the simplified pollutant-precursor models.

As the three area are characterized by different ozone accu-
mulation processes and photochemical regimes, these results
indicate that the neuro-fuzzy models� perform good AOT60 estimation for all emissions, trans-

port and photochemical conditions;� have high capability in describing Milan ozone plume at-
tracted by the breezes towards the foothill;
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Figure 4: GAMES versus neuro-fuzzy AOT60 estimation for
validation data set (cells between 200m a.s.l. and 700m a.s.l.).
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Figure 5: GAMES versus neuro-fuzzy AOT60 estimation for
validation data set (cells above 700m a.s.l.).

Figure 6: Neuro-fuzzy model AOT60 estimation error (%) for
validation period



� are biased by VOC emissions: the VOC-limited region
(the plain) is characterized by AOT60 underestimation, on
the contrary the AOT60 computed for Alps area (NO � -
limited) are overestimate.
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