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Abstract

A fluid flow model of a FIFO queueing system is presented
and extended to the so-called token leaky bucket case. A sim-
ple feedback strategy that guarantees the boundedness of pack-
ets buffer queue is then introduced. Some simulations are pre-
sented and confronted to experiments run on a network made
of Linux machines.

1 Introduction

It is well known that the congestion avoidance features of TCP
have served the Internet for years in preventing congestion col-
lapse. However, the multiplication of TCP implementations
accessing the network and an increasing use of “delay sen-
sitive” applications are augmenting the number of flows that
are not sufficiently responsive to congestion notification. This
problem is discussed in RFC2309 [1] where the use of active
queue management techniques such as Random Early Detec-
tion (RED) are recommended in order to maintain an average
queue size sufficiently small. Nevertheless, these methods do
not apply to flows that are not responsive or not responsive
enough to congestion signals.

It is also widely accepted that TCP is not able to control
the traffic at a time scale smaller than a few round-trip-times
(RTT). This time scale, although suitable to ensure the global
stability of the Internet, is not sufficient to provide a sufficient
quality of service. The end-to-end nature of TCP does not seem
appropriate to ensure these type of service that require some
knowledge about the state of intermediary hops.

In this paper, we present a simple hop-by-hop feedback control
method that is acting at the layer 3 of the OSI model which
makes it immune to the “unresponsive flow” problem men-
tioned above. Basically, this approach ensures the conserva-
tion of packets at a hop-by-hop level. In practice the method
is implemented by using standard token buckets connected in
feedback. The simplicity and the feasibility of this approach is
demonstrated by illustrative experiments performed with User
Mode Linux (UML).

2 A fluid flow model of the FIFO queue

Consider a host computer connected to the network through
a single-server queuing system with constant service rate as
depicted in fig. 1
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Figure 1: A single server queueing system.

The host is supposed to deliver packets to the buffer at a rate
denotedu(t) which can be highly bursty. The load of the buffer
is denotedx(t) (i.e. the number of packets in the buffer at time
t). A continuous time fluid flow model of the buffer dynamics
is as follows :

ẋ = −v + u (1)

wherev(t) denotes the rate at which the packets are released to
the network. Assuming that the buffer operates under a stan-
dard FIFO basis, the following model is proposed in [8]:

ẋ = −r(x) + u (2)

with
r(x) =

x

θ(x)

r(x) is referred to as theprocessing rate functionand is de-
fined as the ratio between the loadx and the residence time
θ(x). It should be pointed out that we don’t make any a priori
assumption on the probability distribution of the incoming traf-
fic. Model (2) has to be interpreted as an averaged description
of a wide class of network buffers depending on the particular
form of the residence time functionθ(x). For instance, if we
select a linearθ(x) of the form :

θ(x) =
a + x

µ
with a > 0, µ > 0

then, for a constant inflow ratēu = λ, the corresponding steady
state load̄x is given by :

µx̄

1 + x̄
= λ or x̄ =

λ

µ− λ
(3)



In that case, we observe that we recover the classical formula
of queueing theory for M/M/1 systems withµ being the ser-
vice rate of the buffer. Hence, the steady state behavior of an
averaged model coincides with the steady state behavior of an
M/M/1 queue. Furthermore our averaged model is also suitable
for describing non steady-state situations such as the token-
leaky bucket case represented in the next section.

3 A fluid flow model of the token leaky buffer

An improvement of this basic queueing strategy is the so-called
“token-leaky buffer”(TBF) which allows the output to speed
up when large bursts arrive. In this algorithm, the buffer is
furnished with a “token bucket” which controls the service rate
of the buffer as shown in fig. 2. In this algorithm, the bucket
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Figure 2: The token leaky buffer.

is filled by tokens at a constant rateR > 0, while a token is
removed from the bucket each time a packet leaves the buffer.
In addition, the service rate of the buffer is modulated by the
level y of tokens in the bucket in such a way thatv = µ when
there are tokens in the bucket butv = R < µ when the bucket
is nearly empty.

A continuous time fluid model of the server-bucket system is
as follows:

ẋ = − µx

1 + x

y

ε + y
+ u

ẏ =

{
− µx

1 + x

y

ε + y
+ R if 0 6 y 6 σ

0 if y = σ

(4)

with v(t) = µx/(1 + x).y/(ε + y)

In this model, the termy/(ε + y) is the modulation function
mentioned above, with0 < ε ¿ 1. Wheny À ε, it is clear
that the bucket system is transparent and therefore operates as
a standard single-server queueing system with service rateµ
but wheny is small (y ¿ ε), then the outflow rate of the buffer
becomes close toR. σ is the size of the bucket which is initially
full.

3.1 Burstiness Constraint

For the fluid flow model (4), we have the following positivity
and boundedness property :

If u(t) > 0 ∀t, x(0) > 0 and0 6 y(0) 6 σ then0 6 x(t) and
0 6 y(t) 6 σ ∀t

By integrating the second equation of the model (4), we get :
∫ t1

t0

v(τ)dτ = y(t0)− y(t1) + R(t1 − t0) (5)

which implies the following inequality :
∫ t1

t0

v(τ) dτ 6 σ + R(t1 − t0) ∀t0, t1|t1 > t0 (6)

This inequality called “burstiness constraint” is well known and
is discussed for instance in [3] and [2]. IfR is a time varying
function R(t), the description given above is still valid. The
inequality (6) is generalized as

∫ t1

t0

v(t) dt 6 σ +
∫ t1

t0

R(t) dt ∀t0, t1|t1 > t0 (7)

This extension of the token leaky bucket is the core of the feed-
back strategy that is presented later in this paper asR(t) is used
as control variable.

4 A token leaky buffer with feedback

Let us now consider the interconnection of two buffers as
shown in fig. 3. These buffers belong to two neighboring
routers in a network. The first buffer is equipped with a token
bucket as presented above. The second buffer is just a standard
FIFO buffer. The point of interest here is the introduction of
the feedback strategy: indeed, we can see that the token bucket
is no longer fed at a constant rateR but rather at the rate at
which its neighbor is sending its traffic. The fluid model corre-
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Figure 3: Interconnection of two buffers with feedback.

sponding to this system is :




v1 = φ(y1)ψ(x1)µ1

ẏ1 = v2 − v1

ẋ1 = u1 − v1

v2 = ψ(x2)µ2

ẋ2 = v1 − v2

(8)

whereφ(y) = y/(ε + y) andψ(x) = x/(1 + x)

4.1 Property

If the fluid flow model is initialized as follows :

x1(0) = 0 x2(0) = 0 y1(0) = σ1 > 0



And if the inflow rateu1 is non-negative :u1(t) > 0 for all t
then

a) x1(t) > 0 x2(t) > 0 y1(t) > 0 ∀t
b) y1(t) + x2(t) = σ1 ∀t
c) y1(t) 6 σ1 x2(t) 6 σ1 ∀t

From this property , we observe that the presence of the feed-
back loop guarantees that the buffer queuex2 is naturally
bounded by the size of the token bucket and therefore that the
transmission is operated without packet loss. This is, at a hop-
by-hop level, very similar to the principle of “conservation of
packets” or “conservative flow” discussed in the famous paper
from Jacobson [5].

4.2 Burstiness constraint

From the fluid flow model (8), the following inequality can be
derived :

∫ t1

t0

v1 dt 6 σ1 +
∫ t1

t0

v2 dt ∀t0, t1|t1 > t0 (9)

This inequality can be interpreted as a flow constraint, the left
buffer is shaping its output according to the output of its neigh-
bor. It will send at most a burst ofσ1 packets and will then send
its traffic at a rate that can be sustained by its neighbor.

5 Interconnection with delay

Let’s now consider again the system depicted in Fig. 3 with the
addition of transmission delaysτ , both in the link between the
two buffers and in the feedback link. Although the addition of
a delay doesn’t destroy the boundedness property of the buffer
queue length, it may intuitively be thought that a long delay
will eventually cause the token bucket to be empty before the
feedback information is received, settingv1(t) to zero. This
situation can be analyzed by considering the flow of packets
around the bucket and around the second buffer :

ẏ1(t) = v2(t− τ)− v1(t) (10)

ẋ2(t) = v1(t− τ)− v2(t) (11)

By time shifting equation (11)

ẋ2(t− τ) = v1(t− 2τ)− v2(t− τ) (12)

and eliminatingv2(t− τ) between (12) and (10)

ẏ1(t) = v1(t− τ)− ẋ2(t− τ)− v1(t) (13)

If the system is in a quiescent state before timet = 0 and is
initialized as in Section 4.1, integrating equation (13) from0 to
t gives :

y1(t)− σ = −
∫ t

t−2τ

v1(ξ) dξ − x2(t− τ)

Therefore, asy1(t) > 0 ∀t, the following inequality is also
true :

1
2τ

∫ t

t−2τ

v1(ξ) dξ 6 σ − x2(t− τ)
2τ

(14)

The presence of a propagation delay limits the maximum
achievable average throughput of the system. This problem
is typical of systems with high bandwidth-delay product and is
discussed, for instance in [7].

6 Implementation of the feedback loop

In practice, the feedback loop cannot be implemented on a per
packet basis as it would generate too much overhead traffic.
Instead, the number of outgoing packets are counted and this
information is sent back at regular intervals,∆, to the neigh-
bor who originated these packets. As in the previous section,
this modification does not destroy the boundedness properties
discussed so far but puts some limits on the maximum average
throughput of the system. The following equation can be writ-
ten for ẏ1 (δ(t) indicates the Dirac function and1+(t) is the
step function) :

ẏ1(t) =
∞∑

k=1

∫ k∆

(k−1)∆

v2(ξ) dξ δ(t− k∆)− v1(t)

After integration, it comes :

y1(t)− σ =
∑∞

k=1

∫ k∆

(k−1)∆

v2(ξ) dξ 1+(t− k∆)

−x2(t)−
∫ t

0

v2(ξ) dξ

And finally, asy1(t) > 0 ∀ t,

1
∆

∫ k∆

(k−1)∆

v2(ξ) dξ 6 σ − x2(t)
∆

(15)

(k − 1)∆ < t < k∆, k = 1, . . . ,∞

7 Simulations and experimental results

In this section, fluid flow simulations of the TBF and the TBF
with feedback (TBFFB) are presented and confronted with ex-
perimental results. The experimental setup is realized with
User Mode Linux (UML)[4], a user mode port of the Linux
kernel into itself. With the help of a backend switch daemon,
virtual machines are connected together to form a virtual net-
work. The network sniffer “tcpdump”[6] is used to collect net-
work traces.

7.1 The simple token leaky bucket

We first consider the implementation of a simple TBF as traffic
shaper. The parameters used for the TBF are fixed as follows :

µ = 50 [pps] (packets per seconds)
R = 25 [pps] (packets per seconds)
σ = 10 [p] (packets)

In order to observe the shaping action of the TBF, the input
flow rateu(t) is set to a constant value greater thanR, namely

u(t) = 50[pps] > R = 25[pps]
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Figure 4: Fluid flow simulation and experimental result show-
ing the typical shaping action of a token bucket filter.The
dashed line is the output of TBF. The two graphics are iden-
tical.

The actual traffic is made of ICMP echo packets of 1024 bytes
sent every 0.02 [s], yielding a rate of 50 [pps]. The Linux im-
plementation of the TBF uses bytes counting but the packets
being of equal size, the result are here presented in packets per
second to make the comparison with the fluid flow model eas-
ier.

The result is shown in Fig. 4 where the cumulated number of
packets transmitted on the time interval[0, t] are presented. It
can be seen that the model and the experiment give very sim-
ilar results. After a timetl that can be approximated by the
following theoretical formula,

tl =
σ

µ−R
= 0, 4[s]

the token bucket is empty and the output ratev(t) is limited to
25 [pps]. This result is a clear experimental validation of the
fluid model (4) of the TBF.

7.2 The token leaky buffer with feedback

Fig. 5 shows the experimental setup used to illustrate the prop-
erties of the token bucket with feedback. The source is config-
ured with a token leaky bucket with feedback while the router
is configured with a classical token leaky bucket with the fol-

σfb

R, σ

.2
v1(t) v2(t)

.1

11.0.0.0/2410.0.0.0/24

ping source ping destination

Figure 5: Experimental setup

lowing parameters :

R = 25 [pps] (packets per second)
σ = 10 [p] (packets)

In order to implement the feedback loop, A new protocol has
been registered in the Linux kernel which is used to transmit
the feedback information. As can be seen in Fig. 6 (see [6] for
details about the trace format), the payload of this protocol is a
single 4 bytes field holding a long integer carrying the follow-
ing value (see Section 6) :

∫ k∆

(k−1)∆

v2(ξ) dξ

The remaining part of the packet is filled with random data to
reach the minimal Ethernet frame size.

0.0 fe:fd:a:0:0:1 fe:fd:a:0:0:2 0888 78:

8fa0 0000 0000 0000 0000 0000 0000 0000

0000 0005 0000 0000 0000 0000 0000 7cee

8ea0 7cee 8ea0 0000 0000 0000 0000 009c

0000 0000 0000 0000 0000 0000 0000 0000

ethernet II
header

payload
4 bytes
tokens

new type for
feedback protocol

dst hw addr src hw addr

timestamp

Figure 6: Sniffer trace showing a packet used in our experiment
to carry the feedback information (five tokens are sent back).

Such a packet is sent every∆ = 200[ms] in an Ethernet frame
with type 0x0888. The size of the feedback bucket is set to
σfb = 15.

The router is in charge of updating this value as it forwards traf-
fic on the network. Upon reception of such a frame, the source
extracts the four bytes long integer (in the example of Fig. 6, the
number five)and adds its value to the amount of tokens present
in its bucket. Apart from this modification, the behavior of the
token leaky bucket is left unchanged.

The source tries to emit a constant ICMP (echo request) stream
at a rate of 50 [pps] but this transmission rate is modulated
(controlled) by the amount of tokens present in the bucket. The
feedback packets from the router to the source come as an over-
head traffic.

As in the previous experiment, the router will limits its output
ratev2(t) to 25 [pps] after 0.4 [s] but in contrast with the case
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Figure 7: Fluid flow simulation showing at the top, the accu-
mulated flowV1(t) andV2(t), at the bottom, the buffer length
x2(t), clearly bounded byσfb
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Figure 8: Experimental result showing the accumulated flow
and the vertical deviation between the two curves, bounded by
σfb

without feedback, the source is now adapting its sending rate to
this new network condition. In effect, it can be verified in fig.
7 and 8 that the input flowv1 is shaped so as to track the output
v2 as expressed by the inequality (9), ensuring the boundedness
of the buffer queue length toσfb = 15.

7.3 A more complex setup

The hop-by-hop feedback strategy is now confronted with a
more realistic topology made of five nodes, 2 sources and one
destination, shown in Fig. 9. Source 2 is trying to emit at a con-
stant rate of 50 [pps] during the time interval [0,14]. Source 1
will emit two small constant bursts of 10 [pps] during the two
time intervals [8,10] and [18,24]. The bottleneck is realized
with a classical token leaky bucket placed on.17 which is con-
figured with the following parameters :

σtb = 10 [p]
Rsust = 25 [pps]
burst rate = 50 [pps]

While this bucket is not empty, the burst rate is limited to 50
[pps]. The time needed to empty this bucket is therefore about
0.5 [s]. The parameters used to implement the token leaky
buffer with feedback are :

σfb = 15 [p]
∆ = 0.2 [s]

The results are displayed in Fig. 10 where the bandwidth limi-
tation of the tbf placed on.17 can be readily seen on probe.18.
After half a second, the throughput of the system is limited to
25 [pps] which causes the buckets placed on.13 and later,.1 to
empty themselves and limit the throughput of their own link to
25 [pps] (See probe.2 and.14).

By looking successively at probe.18, .14 and.2, it can be seen
that the initial burst becomes larger and larger. The burst seen
on .18 is limited by σtb, the burst seen on.14 by σtb + σfb

and the burst on.2 by σtb + 2σfb. The output of source 2 is
only reduced when the full buffer capacity of the network path
is exhausted.

At time t=4 [s], Source 1 starts to transmit at a constant rate of
10 [pps](See probe.6). The TBFFB placed on.17 is now shar-
ing its tokens between.9 and.13. The throughput of source 1 is
automatically reduced to a value close to 15 [pps]. This result
shows the ability of the feedback system to share the limited re-
sources of a bottleneck link between concurrent sources. This
point is the object of ongoing research and is still to be formally
expressed.

The last small burst of source 1 shows that the feedback system
is completely transparent in the absence of a bottleneck.

8 Conclusion

A fluid flow model that accurately describes the behavior of
typical queueing systems such as the token leaky buffer has
been presented. It has been shown that it is possible to derive
mathematical properties from this model. In particular, a feed-
back control scheme that guarantees the boundedness of buffer
queue length has been analyzed. Finally, the fluid flow model
has been confronted with a real implementation and the prop-
erties of the token bucket with feedback have been validated.
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