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Abstract

The work reported in this paper focuses on an optimal joint
synthesis of controller and fault detection modules in the pres-
ence of model uncertainties. The presented method takes the
interactions between control and diagnosis into account in or-
der to make more efficient the fault detection performances. A
quadratic criterion combining both control and diagnosis aims
is defined in a worst case situation according to model uncer-
tainties and disturbances. The cases of proportional and pro-
portional integral controllers are examined in order to study
the P.I. controller influence on the joint approach. The resid-
ual evaluation is carried out using a threshold computed in an
uncertain closed-loop framework.

1 Introduction

Most of methods for model-based fault detection are usually
designed on an open-loop scheme of the system but only few
studies consider diagnosis in the closed-loop framework. Nev-
ertheless, the existence of interactions between control and
fault detection performances is described in [1], [2] and [3].
It is straightforward to note that control and diagnosis have op-
posite goals. Indeed, the diagnosis module aims at detecting
faults whereas controller should make the measured output in-
sensitive to both disturbances and faults.
Some diagnosis methods have been developed in a closed-loop
framework. Their main purpose is to design a fault sensitive
residual robust to disturbances such as model uncertainties and
noises. The authors of [4], [5], [6] and [7] present an inte-
grated approach based on a four parameters controller, propos-
ing a joint design of control law and fault detection algorithms.
Other works in this field use modules with two or three degrees
of freedom ([8], [2], [9]). In [10], the controller is synthesized
from a cost function, which combines both control law and
fault detection objectives. In this case, the closed loop system
has not only stability robustness properties, but also ensures
performance robustness for failure detection module.
When uncertain plants are involved, previous studies show that
a separated synthesis of both control law and fault detection
module does not lead to an efficient diagnosis. In this case, it

is interesting to synthesize the control and diagnosis modules
simultaneously and it is essential to trade-off control law and
fault detection performances.
The work presented in this article is issued from [10]. The main
technical contribution lies in the joint synthesis of both control
law and fault detection algorithms by taking their interaction
into account and in the analyse of P.I. controller influence on
the coupled approach. This study considers the dynamic be-
havior of the system for the control law design while the fault
detection is only based on the static mode analysis of the sig-
nals.
This paper is organized as follows. In section 2, work hypothe-
ses are presented. Later, the controller and the residual gener-
ator are separately designed according to the minimization of
a quadratic cost function established in a worst case situation.
The distinction between a proportional and a proportional in-
tegral control law is carried out. The residual is evaluated in
determining an optimal threshold which is based on an uncer-
tain representation of the closed loop system. In section 4.1, an
augmented cost function joining both fault detection and con-
trol law synthesis is introduced and the influence of P.I. con-
troller on the joint approach is also examined. The concluding
section 5 considers prospective developments.

2 Problem statement

The system considered in this article is assumed to be stable
and controllable. Its behaviour can be characterized, around an
operating point (U o; Y o), by the following input-output model

y(s) =Gyu(s)u(s) + Gyd(s)d(s)

+ Gyn(s)n(s) + Gyf (s)f(s) (1)

where u ∈ R
m and y ∈ R

p are respectively the input and
output vectors, d ∈ R

l represents unknown input disturbances
and the p measurement noises ni ∼ N (0, σ2

i ) are uncorrelated.
Each component of d is a piecewise constant signal and is such
as |di(t)| < dimax. The fault is denoted by unknown input
f ∈ R.
Note that if the model uncertainties are included in the system
description, the real behavior of the process is represented as
follows

y
real

(s) = y(s) + ∆Gyu(s)u(s) (2)



where unknown transfer matrix ∆Gyu(s) denotes the model
uncertainties. Other parametric uncertainties in transfers
Gyd(s), Gyn(s) and Gyf (s) are included in the time evolu-
tion of signals d, n and f .
In a closed-loop framework, the control law u is generated by
means of a controller K(s) such as

u(s) = −K(s)y
real

(s). (3)

Thus, the input-output relation (2) becomes

y
real

(s) =S(s)
(
Gyd(s)d(s)

+ Gyn(s)n(s) + Gyf (s)f(s)
)

(4)

where sensitivity function S(s) is defined by

S(s) =
(
I + (Gyu(s) + ∆Gyu(s))K(s)

)−1
. (5)

Efficient model-based fault detection relies on the generation
of a fault-sensitive residual. Since each component of n is a
zero mean noise, the output simulation error e(s) can be used
as a detection residual

e(s) = y
real

(s) − ŷ(s). (6)

Output vector ŷ(s) is simulated by means of expression (7) that
is deduced from (1)

ŷ(s) = Gyu(s)u(s). (7)

In the sequel, only the static behavior of the residual is consid-
ered for fault detection. This is the reason why the noise influ-
ence on the residual generation is neglected. Thus, in steady
state, the relation (6) in a noiseless situation becomes

e = Gedd + Geff (8)

with

Ged = lim
s→0

(
I − ∆Gyu(s)K(s)S(s)

)
Gyd(s)

Gef = lim
s→0

(
I − ∆Gyu(s)K(s)S(s)

)
Gyf (s). (9)

In order to improve the fault detection efficiency, a secondary
residual r(t) is built as follows

r = |HT e| (10)

where r ∈ R and H ∈ R
p is a projection vector. Diagnosis

enhancement implies an optimal choice of the vector H maxi-
mizing the fault effects while minimizing the influence of dis-
turbances.
For the sake of simplicity, the steady state transfer matrices
Gyu(s), ∆Gyu(s), Gyd(s), Gyf (s) is described by the follow-
ing notations

P =Gyu ∆Preal = ∆Gyu E =Gyd W =Gyf

Unknown uncertain matrix ∆Preal is assumed to belong to a
known interval Λ = [∆Pmin; ∆Pmax]. In a noiseless situation,

the following expression defines a set of possible outputs y
Λ

and inputs uΛ when the model uncertainties take any value ∆P
belonging to the interval Λ

y
Λ

= (P + ∆P )uΛ + Ed + Wf (11)

The static model useful to the simulation of the output vector
is given by

ŷ = Pu. (12)

In the sequel, sets GefΛ and GedΛ denote the family of transfer
functions (9) when the model uncertainties take any value
∆P ∈ Λ.

Referring to (9) and (10), it appears that the design of the pro-
jection vector H depends on the controller K(s). Thus, the ob-
jective of this work is to synthesize simultaneously an optimal
control law and an optimal fault detection algorithm by mini-
mizing an augmented cost function. The next section presents
both control and diagnosis aims as well as the decoupled syn-
thesis of the controller and the residual generator based on a
quadratic cost function optimization.
A threshold synthesis based on a closed loop framework is also
introduced.

3 Decoupled synthesis

The approach presented in this part consists in synthesizing
firstly an optimal control law then an optimal residual gener-
ator.
The control law synthesis has two main objectives :

− to trade off the control signal energy and the disturbances
rejection in steady state and in a worst case context ac-
cording to model uncertainties ans disturbances.

− to ensure an acceptable dynamic behaviour of the closed
loop system.

The aims of the fault detection synthesis are :

− to detect faults in steady state ( no isolation )

− to maximize faults affects and to minimize both distur-
bances and model uncertainties influences on the fault de-
tection algorithm.

Furthermore, in order to focus the consequences of the inte-
gral action on the fault detection, both proportional and pro-
portional integral control laws are studied.

3.1 Proportional controller

The control law is issue of proportional controller K(s) = Kp

and since only non-zero mean disturbances are considered, the
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Figure 1: Set S ′

problem consists in determining the optimal controller K ∗
p so-

lution of the following cost function

K∗
p = Arg min

Kp

max
∆P∈Λ,d

J (13)

with
J =

∥∥y
Λ

∥∥2

Q
+

∥∥uΛ

∥∥2

R
. (14)

under model constraint (11). Moreover, the controller deduced
from (13) must guarantee the dynamic objective of the closed
loop system. Thus, it is necessary to ensure that the controller
K∗

p places the closed loop poles in set S ′ depicted on figure
(1). The determination of K ∗

p consists then in solving the static
performance criterion (13) under model and pole location con-
strains.
Once the controller is determined, the residual generator has

to be synthesized. With respect to the simulation error defi-
nition (8), the residual (10) only depends on the disturbances
according to

r = |HT (Gedd + Geff)| (15)

where matrices Gef and Ged (9) are described by

{
Ged =

(
I−∆PrealK

∗
p (I+(P +∆Preal)K∗

p )−1
)
E

Gef =
(
I−∆PrealK

∗
p(I+(P +∆Preal)K∗

p )−1
)
W

(16)

In an ideal case, optimal vector H ∗ must be selected in order
to satisfy both fault sensitivity and non-zero mean disturbances
insensitivity purposes{

H∗T

GedΛ = 0
H∗T

GefΛ �= 0
(17)

for all model uncertainties belonging to Λ and where{
GedΛ =

(
I−∆PK∗

p(I+(P + ∆P )K∗
p )−1

)
E

GefΛ =
(
I−∆PK∗

p(I+(P + ∆P )K∗
p )−1

)
W

(18)

However, these conditions of perfect decoupling are often too
strong. Due to model uncertainties and disturbances, residual
r is not null without fault and it is then necessary to evaluate
it. In order to reduce the false alarms rate, the residual has
to be compared with a detection threshold, reflecting the worst
effect of disturbances and model uncertainties on the secondary
residual in a non-faulty case.

According to the closed-loop framework, threshold Γ is defined
by

Γ = max
∆P∈Λ, d

(|HT GedΛd|) (19)

According to the definition of Γ, a fault can be detected what-
ever the model uncertainties and the disturbances if

min
f,∆P

|HT GefΛ f | ≥ 2 max
d,∆P

|HT GedΛ d| = 2Γ (20)

The minimum detectable fault magnitude is then given by

|fmin| =
2 maxd,∆P |HT GedΛ d|

min∆P |HT GefΛ |
(21)

where matrices GefΛ and GedΛ are defined in (18). Referring
to ([11]) and ([12]), optimal projection vector H ∗ is then deter-
mined in solving the following optimization problem

H∗ = arg min
H

|fmin| (22)

3.2 Proportional Integral controller

If the systems considered are stable in open loop, only a pro-
portional integral controller depicted as follows

u = −Kpyreal
− Ki

∫
y

real
. (23)

can efficiently rejected disturbances d in steady state . More-
over, whatever the structure of the system, the static values of
the outputs and the control inputs are only influenced by the
integral gain Ki. Thus, the optimal integral gain K ∗

i is deter-
mined by

K∗
i = Arg min

Ki

max
∆P∈Λ,d

(‖y
Λ
‖2

Q + ‖uΛ‖2
R

)
. (24)

The proportional gain Kp is dedicated to the poles assignment.
However, if there would not exist Kp such as the poles of the
system belong to the set S ′ (figure( 1)), an iterative search of
the best couple (K∗

p , K∗
i ) minimizing cost function (24) and

ensuring the poles assignment must be undertaken.
The synthesis of the optimal projection vector H ∗ is then
deduced from (22). In the case of a proportional integral con-
troller (23), the existence of the control-diagnosis interactions
is subordinated to the numbers of inputs and outputs of the
system. The minimization of cost functions (24) and (22) is
studied in the 3 following cases :

p = m: For systems having the same number of control inputs
as outputs, the presence of integrations in the controller
implies a step disturbances rejection in steady state. The
static error is null by definition and the static value of the
control vector is only function of the disturbance magni-
tudes. Parameters Kp and Ki are then selected in order to
guarantee an acceptable dynamic behavior of the closed
loop system. For a sake of simplicity, the poles assign-
ment is based on the nominal model of the system. Un-
der the assumption that the system is commandable, the



choice of the dynamic performances is then arbitrary. The
synthesis of the optimal projection vector H ∗ is then de-
duced from the diagnosis cost function (22) where matri-
ces GefΛ and GedΛ are given by{

GedΛ = P (P + ∆P )−1E
GefΛ = P (P + ∆P )−1W

(25)

The main advantage of a proportional integral controller
is to make a perfect step disturbances rejection possible.
Furthermore, the residual generation in steady state be-
comes independent of the control law.

p < m: For a system where the number of outputs is lower
than the number of inputs, the static error is always null.
On the other hand, the steady value of each control vector
component depends of the integral gain K i. The control
problem consists in solving (24) ( with Q null ) under the
poles assignment constraint.
Then, the determination of the residual generator consists
in finding the projection vector H ∗ solution of (22) where
matrices GefΛ and GedΛ are defined by{

GefΛ = PKi

(
(P + ∆P )Ki

)−1
W

GedΛ = PKi

(
(P + ∆P )Ki

)−1
E

(26)

p > m: When the process has less inputs than outputs, the
controller gains are deduced from the minimization of
(24) and the projection vector is derived from (22) where
the matrices GefΛ and GedΛ are described by{

GefΛ = P
(
Ki(P + ∆P )

)−1
KiW

GedΛ = P
(
Ki(P + ∆P )

)−1
KiE

(27)

4 joint synthesis

As indicated in (18), (26) and (27), the performance of the
residual generator often depends on the controller character-
istics. Thus, instead of synthesizing the control law and the
residual generator sequentially, a joint synthesis of these two
algorithms is suitable.

4.1 Proportional controller

Without considering the control performances, best projection
vector H∗ and controller K∗

p would be determined in solving
the following cost function

min
H , Kp

|fmin| (28)

where |fmin| is defined by (21) and matrices GefΛ and GedΛ

are given by (18). In order to take the control performances into
account, the controller has to be equally solution of (13). The
computation of K ∗

p and H∗ thus derives from the minimization
of an augmented cost function

(K∗
p , H∗) = arg min

Kp,H

(
( max
∆P∈Λ,d

J) + γ|fmin|
)

(29)

under both model and pole assignment constraints. Indexes J
and |fmin| are respectively defined by (14) and (21). Since
projection vector H appears only in the fault detection index,
criterion (29) can be rewritten as

(K∗
p , H∗) = argmin

Kp

(
Jc + γ min

H
|fmin|

)
(30)

where
Jc = max

∆P∈Λ,d
J (31)

The criterion (30) could be minimized by means of several
methods as the game theory ([13]) or an algorithmic research.
For a sake of simplicity, only the second approach is carried
out in the sequel of this paper.
The choice of γ represents the crucial point of this problem
since it allows one to balance the importance of |fmin| in the
cost function (30).

4.2 Proportional Integral controller

For a proportional integral control law, the same reasoning as
previously is carried out. Whatever the system structure, the
computation of optimal gains K ∗

p and K∗
i and projection vector

H∗ consists in solving the following optimization problem

(K∗
i , H∗) = min

Ki,H
(Jc + γ min

Ki,H
|fmin|) (32)

where Jc and |fmin| are respectively defined by (31) and (21)
and under the constraint that the proportional gain K p assigns
the poles of the closed loop system in the location described on
figure (1).
When the process have the same number of control inputs and
outputs, the joint synthesis of both controller and residual gen-
erator becomes equivalent to a sequential synthesis.
In the other cases, the joint synthesis is achieved thanks to a
choice of the weighting matrices and by taking the suitable ma-
trices GefΛ and GedΛ into account.
The following part studies the influence of γ on the augmented
cost function minimization.

4.3 Study of γ influence on the augmented cost function
minimization

Since an analytic resolution of (30) is not carried out in this
work, the study of γ influence on the augmented cost func-
tion minimization consists in solving (30) in the case of several
randomly chosen systems. Due to the use of an algorithmic
research, only S.I.M.O (1 × 2) systems are considered. The
simulation is achieved in the case of a proportional control law
and in the following context :

- the static behavior of systems is described by

y
Λ

= (P + ∆P )(uΛ + d) + Wf (33)

with ∆P ∈ Λ = [−20%P ; +20%P ] and |d| < 1
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Figure 2: Evolution of |fmin|n with respect to γ
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Figure 3: Evolution of Jcn with respect to γ

- the fault appears on one of the two output sensors ( W =[
1 0

]T
or W =

[
0 1

]T
)

- the algorithmic research consists in finding the optimal so-
lutions of (30) among a set of controllers and projection
vectors. The optimal projection vector H ∗ is defined as
follows

H∗ =
[
cos(φ∗) sin(φ∗)

]T

where φ∗ is chosen in the interval [0; 2π].

- by means of the control and fault detection indices normal-
ization, the criterion (30) is rewritten as

(K∗
p , H∗) = arg min

Kp

(
Jcn + γ min

H
|fmin|n

)
(34)

where

Jcn =
Jc

Jcmax

and |fmin|n =
|fmin|

|fmin|max
. (35)

The evolution of indices Jcn and |fmin|n obtained for each sys-
tem and for several values of γ are depicted on figures (2) and
(3).

When γ → 0, optimal controller K ∗
p minimizes only the con-

trol index Jc and the joint synthesis becomes equivalent to the
decoupled synthesis exposed in section 3. In this case,

Jc = Jcmin and |fmin| = |fmin|max. (36)

If γ → ∞, K∗
p minimizes only the fault detection index and we

obtained respectively the worst and the best case for the control
and the fault detection performances

Jc = Jcmax |fmin| = |fmin|min. (37)

It appears that whatever the value of γ > 0, |fmin| and Jc

belong to the following intervals

Jc ∈ [Jcmin ; Jcmax ] (38)

|fmin| ∈ [|fmin|min; |fmin|max] (39)

Furthermore, referring to figures (2) and (3), if γ j = γi + ε
with ε > 0 then

J∗
cγ=γj

≥ J∗
cγ=γi

(40)

and
|fmin|∗γ=γj

≤ |fmin|∗γ=γi
. (41)

The use of normalized indexes in the optimization problem al-
lows to obtained a satisfactory trade-off between the control
and the fault detection objectives when γ = 1.

5 Conclusions

In this paper, an optimal joint synthesis of control law and fault
diagnosis algorithm is proposed in the presence of model un-
certainties. A cost function combining control and static fault
detection objectives is defined in a worst case context. This
cost function synthesis is based on the control-diagnosis inter-
actions. By a suitable choice of the weighting matrices, the
optimisation of this cost function achieves optimal trade-off be-
tween the control and the diagnosis aims. A detection threshold
based on an uncertain closed-loop framework is also presented.
The advantage of a proportional integral controller for both dis-
turbances rejection and fault diagnosis is shown through the ap-
plication to the 3-tank system. Future developments will con-
cerne the extension of this work to the dynamic fault diagnosis.
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