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Abstract

In this paper, adaptive threshold generation using interval
models is analysed in time and frequency domains. In time
domain, the optimal threshold is generated through
determining the worst-case time evolution of the residual’s
energy, while in the frequency domain this worst-case
evolution is determined by means of the evaluation of the
worst-case evolution of the residual’s spectral contents. Both
results will be related through the Paserval’s Theorem.
Finally, a common application will be used to assess the
validity of both approaches and check the validity of the
derived results.

1 Introduction

Adaptive threshold generation has been a very active area of
research in robust fault diagnosis. Since the seminal works of
Horak [19] in case of structured uncertainty and Emami-
Naeini [14] in case of unstructured uncertainty, many
researchers have analysed how the effect of model
uncertainty should be taken into account when determining
the optimal threshold to be used in residual evaluation. Two
approaches have been followed: the first based on
determining the optimal threshold in the time domain [19]
[28] and the second in the frequency domain [11] [14] [15]
[30]. In the time domain approach, the uncertainty mainly
has been modelled using structured uncertainty (“interval
models”), while in the frequency domain approach first
unstructured uncertainty was used and recently structured
uncertainty has been taken into account. However, no
connection between time and frequency domain approaches
has been established yet. In Hamelin [18], it is suggested as a
future research. One of the difficulties in connecting both
approaches is that in the time-domain approaches the
optimal threshold is determined directly by determining an
interval for thre residual by propagating parameter
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uncertainty on the residual. On the other hand, in the
frequency domain approaches, optimal threshold is
determined by worst-case evaluating the residual’s energy on
a time window. This difference is due to that, either in
frequency or in time domain, the optimal threshold is
computed using the most direct form.

The structure of this paper is the following: in Section 2
adaptive thresholds using interval models are presented in
time-domain and in Section 3 in frequency-domain. In
Section 4 a relation between time-domain and frequency-
domain adaptive thresholding methods is presented using
Parseval’s Theorem. In Section 5, an application example
based on the DAMADICS benchmark is presented and
finally in Section 6 conclusions close the paper.

2 Adaptive thresholds in time-domain

Adaptive thresholding in time-domain has its roots in
Horak’s seminal work published in 1988 [19]. In this paper,
it is proposed to use an interval model to represent the model
uncertainty. And, then, this uncertainty is propagated to the
residual using a dynamic optimisation in continuous time-
domain. Since then, adaptive thresholding using interval
models has been studied by several researchers [1] [3] [27]
[28].

2.1 Basic adaptive thresholding

The problem of adaptive threshold generation in time-
domain using an interval model to describe the behaviour of
the monitored system, can be formulated mathematically as
follows: at every time-instant an interval for the residual

w1 = yie)-)0[rr)] o
should be computed subject to the interval for the predicted

behaviour (¢ )Dh(t ) (1 )] will be obtained from the

system interval model



X(t)=A(0)x(t)+B(0)u(t)
¥(1)=C(0)x(1)
where: @is the vector of uncertain parameters that belongs to

a convex set @ representing a bounded region of the
parameter space:

@

O=/0007| 6<0<0;} 0

and y(?) is real measurement. Then, in case that equation (1)
holds, no fault can be indicated. Otherwise, a fault should be
indicated. Of course, this simple test is very naive and should
be complemented with some other strategy that takes into
account the effect of the noise, as the ones proposed by
Basseville [6]. Alternatively, it can be used the residual
evaluation function proposed in the adaptive threshold
approaches coming from the frequency domain based on the
evaluation of the residual’s energy. In this paper, this will be
the approach proposed. At least three possible strategies for
generating the residual (1) are possible depending in which
scheme the model (2) is used, namely, simulation,
observation or prediction [29]. The most general scheme is
the observer strategy, being possible to consider the two
others as a particular cases. In case of using an observer,
equation (2) must be modified according to:

X(1)= A(0)%(1)+ B(O Ju(t)+ L(y(t)~C(0)%(1))
W(1)=C(0)x(t)
where L is the observer gain. Depending on which strategy is

followed a worst-case simulation, observation or prediction
algorithm must be used [29].

“4)

2.2 Worst-case temporal response

In order to determine (1) or, alternatively:

woolwse)] e
observer equation (4) can be expressed as:
X(1)= A, (0)%(t)+B,(0)u,(t)
y(t)=C(0)x(1)
where: A,(0)=A(0)-LC(0), B,(0)=[B(6) L| and
u () =[u(t) y(1)}.

Then, in order to compute the interval (5) enclosing the
temporal response two optimisation problems must be solved
for each output:

(6)

Vi(t) = max y;(t) %)
Y,(t)=min y,(t) ®)

subject to (6) and (3). This problem was first formulated by
Horak [19] in the context of adaptive threshold generation.

He proposed an algorithm called RMI (“reachable minimum
interval”) based on dynamic optimisation to solve it'. The
difficulty of this problem is due to that in general is not true
that considering only the responses at vertices of parameter
uncertain intervals would produce the tightest interval
containing all possible temporal responses. Only a small
number of systems with uncertain parameters satisfy this
desirable property [17]. In case that this property is not
satisfied the vertex solution only provides an inner solution,
according to Kolev [20]. The existent algorithms to
determine (5) follow mainly two approaches after applying
some kind of time-discretisation: the first based on trying to
solve the associated optimisations problems (7) and (8), as
for example Puig [28], or trying to find one step recursion
that provides interval (5) at present instant from previous
intervals determined in previous time instants, as for
example, El Ghaoui (1999). However, this is not in general
an easy task appearing some problems that must be handled,
namely: the wrapping effect, the uncertain parameter time-
invariance and the determination of global solution of
optimisation problems (7) and (8).

2.3 Advanced adaptive thresholding

In this paper, as proposed in Section 2.1, an advanced
adaptive thresholding technique will be used based not in
bounding directly the residual but instead a residual
evaluation function. The residual evaluation function is the
residual’s energy in a temporal window 7:

. =1l = [ rcorcar ©)

where T is a time window. Evaluation function (9) is the
most accepted by the frequency domain approaches. In this
case, the adaptive threshold J;, should be set to be:

T =sup ], (10

This threshold can be computed evaluating in the time
interval tD[T—T , T], the interval for residual r(#) given by

(1). The evaluation of this interval will follow the same
methodologies than in the case of the basic adaptive
thresholding strategy proposed in Section 2.1.

3 Adaptive thresholding
domain

in the frequency

Adaptive thresholding in the frequency domain has started
with the seminal work of Emami-Naeini [14]. Then, it was
followed by Ding [11] and Frank [15]. In these works, the

" In the literature this problem is found in many places: Qualitative Reasoning
[8] [22], Constraint Satisfaction [10], Validated Initial Value Problems [7]
[21] [23] [24] [25] [26], Automatic Control [4] [13] [31], Fault Detection
[31[19] [28] and Circuit Tolerance Analysis [16] [20].



uncertainty was considered unstructured. But, more recently,
Rambeaux [30] and Hamelin [18] have considered the case
of structured uncertainty. All these works try to bound the
residual’s energy taking into account the uncertainty in the
model. The first approaches considering unstructured
uncertainty use H., techniques to bound the effect of this
uncertainty and the second approaches considering
structured uncertainty use instead Kharitonov polynomials.
In the frequency domain approach, although the considered
residual evaluation function is again the residual’s energy, it
is evaluated in the frequency domain according to:

] rw , —
. = 18] = | [, BB o

where W is a frequency window.

In order to evaluate (11), the expression for the residual R(s)
will be derived. Observer equation (6) can be expressed in
input-output form as:

Yis)=G,,(s,0)u(s) (12)

taking into account only the effect of parametric uncertainty
and ignoring noise and disturbance effects. Then, from (12)
the residual can be written, according to Chen [9], as:

r(s)=W(s)AG , (5.0)u(s) (13

where: 4G, (5,0)=G(s5,0)-G(s,0,) with @, being the
nominal parameters and W/(s) a post-filter.

The threshold value for ||r||e using (10) and (13) will be:

J,, =sup "AGW (5,0 )u(s )|| (14)

in case W(s)=1. Then:
2 _ 1 (o 2
~Mﬂ¢;LWMMMWW%dw0$

3.1 Adaptive thresholding using H,,

In the H,, framework, it is assumed that

||AGW (w, ¢9)||oo <9, (16)

according to Chen [9]. Then (15) can be computed as:

52
Ta < j:’_W|u(w)|2dw

an
providing an upper bound of (14):

T <O |u(w)|, a9)
3.2 Adaptive thresholding using Kharitonov polynomials

On the other hand, the computation (15) requires to
determine:

(w,0) (19)

yu

sup |AG
600

according to Rambeaux [30]. Moreover, (19) can be
computed using Kharitonov polynomials associated with the
numerator and the denominator of 4G, (w,@) assuming

that the uncertain parameters € are independent, according
to Hamelin [18].

4 Relating time and frequency approaches

Once time and frequency domain approaches to adaptive
threshold generation have been presented, they will be
related through Parseval’s Theorem [2].

4.1 Parseval’s Theorem

In Fourier signal analysis, the Parseval’s Theorem
establishes a link between the evaluation of the signal’s
energy in the time and frequency domains, stating:

Il =lell, =1Rl,,, o

where:

Il = J,7 et e

[T e
”R"Z,a) = \/EJ._OOR (W)R(w)dw (22)

However, since (21) and (22) are unrealizable in practice due
to the residual signal should be known in the interval
tD[0,00] , the residual evaluation function (20) is, instead,
usually realized according to (9).Then:

W%M=Jﬁywwmw=Jﬁﬂwwmh4mu<m

where: r;(t) is the truncated version of r(¢) in the time

interval ¢ [ [t -T, t] . Then, applying Parseval’s Theorem to
(23):

\/j:r; (t)rp(t)dt = \/]—ITJ: R, (w)Rr(w)dw = ||RT||2’w 4)

where: R;(w) is the Fourier Transform of r, (7).
Therefore:

Il =1Rr ], @s)
However, ||RT|| s is still unrealizable due to only an

evaluation over a finite frequency band W is possible in
practice:

1 _
ol = 1, B R o



what is equivalent to band-limiting the residual by a filter of
bandwidth W. Then:

\/ILTJ‘(:OO R7 (W)ET,W (w)dw = "RTW ||2,w @7

being: Ry, (w) the Fourier Transform of rp(¢) band-

limited to a bandwidth W. Then, according to Parseval’s
Theorem applied to (27):

T
Rese =il =y oo O )
So, adaptive thresholds computed in time and frequency
domain would be equivalent even if they were evaluated as in
(28), i.e, considering that the residual would be evaluated in
a finite time window T and in a finite frequency band .

4.2 An example

In this section an example proposed by Ding [12] will be
used in order to compare time and frequency domain
approaches. Let us consider that the expression for the
residual to be evaluated is:

R(s)=A4G,,(s,0)U(s)= (29)

s+l

where:0 =7 with T D[T ] Or, alternatively in time

min ? Z-max
domain:

t

rit)=Le Tue) o
T

where: u(t) = 0 if t<0 and u(t) = I if ¢20. Then, applying
residual evaluation function (9) in time-domain:

I, =l =yJ_rercear =

t t-T
2

; o T 31)
= Z—T{(I—e Tu(t)=(1-e T )u(t—T):l

Using (31) the optimal threshold will be presented from Fig.
1 with,7r,, =2, 1,, =4 and time window T =10.
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Figure 1: Adaptive threshold in time domain

In case of considering the limits of the integral in interval
tO [0,00) as in Parseval’s Theorem:

R

Analogously, applying evaluation function (6) in frequency
domain:

(32)

1 @ -
I, =Rl 0 = \/; [, RwR(wdo= .

%(arctan(TW) +arctan(T(w, —W))

assuming that the signal r(?) is known in the time interval:
tD[0,00). Comparing this result with (31) it is clear that
both evaluation functions provide different results due to the

limitation introduced by the frequency window W. However,
taking infinite window length in frequency domain:

1o, = _
I, =18l = R0 R oht0 =0

what is not surprising due to Parseval’s Theorem.

But in practice, to determine adaptive threshold using (11)
some limitations in the time window used to compute
R(w) should be introduced. Using a time window of length
T as in (31), (11) provides (assuming than the bandwidth W
is infinity in order to be comparable with (31))*:

e for t<T:

1o, —
I, =1 == [ R R 100

(35)

_2
:\/2—1,( I=¢ T )tu(t)~u(t~T))

T _ . .
where:  Ryp(w) =J-0 r(t)e’“"dr. Obviously, this

expression tends to (32) if the time window used to
compute R (w) tends to infinity.

e for t>T:

1o, —
I, =1 == [ R R 1000
(36)

i T t
= Z_T(e T —e T u(t-T)

where: R (w) = J;t_r r(T)e /N dr

2 Otherwise, a band-limited version of the residual should used in computing
(31) in order to obtain the same results in frequency and time domain according
to (28).



Comparing (35) and (36) with (31) it can be seen that they
are completely equivalent. Then, the optimal threshold
represented in Fig. 2, with ,r,, =2, 1, =4 and time
window 7" = 10, is the same than the one presented in Fig. 1.

min m
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Figure 2: Adaptive threshold in frequency domain

5 Application example

The application example deals with an industrial smart
actuator consisting of a flow servovalve driven by a smart
positioner, proposed as an FDI benchmark in the European
DAMADICS project. The smart actuator consists of a control
valve, a pneumatic servomotor and a smart positioner [5].
Using physical modelling [5] and a mixed optimisation-
identification algorithm, the following linear discrete-time
interval model for booster, E/P transducer, servomotor and
displacement transducer has been derived using a sample
time of 1s:

x(k+1)= Ax(k )+ Bu(k)

(37)
(k) =x;(k)
with:  x(k) =[x, (k) x,0k) xy(k)],
0 1 0 0
A= 0 0 1 |, B=|0 and
_03 _02 _01 04

u(k)=CVP(k-2)

where: x;(k) is the position of the valve, y(k) is this position
measured by the displacement transducer (in Volt), CVP(k)
is the command pressure (in Pascal) and the uncertain
parameters are bounded by their confidence intervals

according to: [9,- -aog, ,0i +a0-9i] with a=0.05, being:

2 Og
-1.1444 0.0549
-0.4049 0.1078
0.5510 0.0530

0.2182¢-3 0.0030e-3

Using this interval model, a linear interval observer, as (12),
with L=/-0.9852 1.9166 —0.9087] will be used to detect
faults f; and f;y of the DAMADICS benchmark.

5.1 Fault f;y (“diaphragm perforation”)

In this case, a fault in the pneumatic servomotor is
introduced. The fault consists in servomotor’s diaphragm
perforation caused by fatigue of diaphragm material. In the
DAMADICS benchmark this fault is named as fj). In the
present experiment the fault scenario that will be used
corresponds to the abrupt big size [5]. The fault appears at
time instant ¢=600s. In Fig. 3, results from residual
evaluation using an adaptive threshold evaluated in time-
domain (solid line) according to (9) and in frequency domain
(dashed line) according to (11) are presented. Comparing the
results from time-domain and frequency-domain evaluation
it can be seen that both provide very similar values. The little
difference observed between the two approaches is due to
when residual signal present high frequency frequencies
(oscillations) the sample time of 1 s is not enough to have a
good discretisation. Frequency domain results would improve
if sample time could be decreased, been closer to time-
domain results’. The residual energy goes out the threshold
but due to the partial measure correction comes back inside
the envelope after some time instants. However, the
persisting fault during 70 seconds (from t=600s to t=670s) is
enough to detect a faulty behaviour of the system. Moreover,
is almost instantaneously detected, which is a good
performance for an earlier fault detection of this fault.

Residual Evaluation
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Figure 3: Residual Evaluation in Presence of Fault /7
5.2 Fault f; (“valve clogging”)

In this case, a fault in the control valve is introduced. The
fault is a “valve clogging”. It consists in blocking servomotor
rod displacement by an external mechanical nature event. In
the DAMADICS benchmark this fault is named as f;. In the

> In fact, when implementing the spectral evaluation of signal in discrete-time
the signal is band-limited to TV 7}, where 7 is the sampling time. Then, in order
to obtain the same results in time and frequency domain, the residual in time-
domain should be filtered to be band-limited to a band compatible with this
sampling time.



present experiments the fault scenario that will be used
corresponds to the abrupt big size [5]. The fault appears at
time instant t=600. According to Fig. 4, fault f;. is indicated
almost instantaneously and is persistently indicated during
300 seconds (from =600s to t=900s). These results allow to
confirm conclusions from experiments in presence of fault

Jo.
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.0.06 . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000
Time (in s)

Figure 4: Residual Evaluation in Presence of Fault f;
6. Conclusions

In this paper, interval models are proposed as means to
produce adaptive thresholds in robust fault detection using
techniques in time and frequency domains. In the literature,
interval models have been used to produce such adaptive
thresholds using one or the other technique but never before
has been put together defining a common evaluation index
and comparing them. Thanks to Parseval’s Theorem, it can
be concluded that from the theoretical point of view both
approaches produce the same results, but in practice some
difficulties appear when implementing them that prevent
from reaching this ideal results. Finally, an application
example based on DAMADICS benchmark is proposed as
the test case to compare results coming from the application
of both approaches.
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