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Abstract 
 
The problem of model-based fault detection in the presence of 
both parametric uncertainty and noise is addressed in this 
paper. Intervals are used to represent the uncertainty in the 
system parameters and interval extensions of parity equations 
are used as adaptive threshold selectors. A proper 
combination in time of different (interval) parity equations, 
together with a robust indicator, is used to maintain a good 
sensitivity to faults whilst avoiding the effect of noise. The 
results in the application to the detection of different faults in 
a DC motor are used to show the good properties of the 
proposed method. 
 
1 Introduction 
 
In model-based FDI (Fault Detection and Isolation) methods, 
the actual behaviour of the system is checked for consistency 
with a mathematical model describing its non-faulty 
operation. But in most practical applications, it is not possible 
to obtain an accurate and complete model of the system. 
When the values of the system parameters are not exactly 
known but bounded, intervals appear as a natural framework 
to represent this uncertainty. Using this modelling approach, 
the model provides the set of feasible behaviours in normal 
system operation and a fault can be reported when the 
observed behaviour lies outside this set. Within this context, 
different strategies are proposed in the literature ([1], [2], [5], 
[8]) to attach the FDI problem. 
 

This paper focuses on the FD (Fault Detection) problem for 
continuous-time LTI systems. The described methodology 
considers both structured uncertainty, due to component 
tolerances, and measurement noise. The goals are to 
maximize fault sensitivity and to provide persistent fault 
indicators, whilst being insensitive to noise. 
 

The paper has the following structure. Analytical model-
based fault detection is briefly reviewed in section 2, focusing 
in implementation using parity equations and robustness 
issues. In section 3, extensions of parity equations to interval 
models are presented and compared. The proposed FD 

methodology, which combines in time different interval parity 
equations and uses a robust indicator, is presented in section 
4. Finally, a simple DC motor is used as a case study in 
section 5, before concluding with conclusions and future 
work in section 6.  
 
2 Model-Based Fault Detection 
 
2.1 Analytical redundancy 
 
Model-based FD methods rely on the concept of analytical 
redundancy. The simplest analytical redundancy schema (cf 
figure 1) consists in the comparison of measured values for 
system outputs (ym(k)) with corresponding analytically 
computed values (ye(k)),  obtained from measures of other 
variables and/or from previous measures of the same variable 
by means of a model. The resulting differences are called 
residuals (r(k)) and are indicative of faults in the system. 
Under ideal conditions, residuals are zero in the absence of 
faults and non-zero when a fault is present. However, in 
practical situations disturbances, noise and unavoidable 
modelling errors lead the residuals to non-zero values even in 
the absence of faults. Thus, the residual generation stage is 
followed by a decision making stage. The decision generally 
relies in comparing each residual with a fixed threshold 
chosen, according to empirical and/or theoretical 
considerations, to avoid false alarms and minimise hidden 
faults. 

 
2.2 Parity equations 
 
Parity equations ([3]) are the most straightforward method to 
implement residual generators. A time-domain derivation of 
parity equations for SISO systems is presented here. 

Figure 1. Analytical redundancy schema. 
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Given a nth order continuous-time SISO LTI system, the step- 
equivalent discrete-time approximation is given by a 
difference equation in the form: 
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Using equation (1) L times in a recursive way, y(k) can be 
expressed as function of  y(k-L),...,y(k-n-L) and u(k),...,u(k-m-
L). Using the controllable canonical form of  (1), the 
following general expression can be obtained: 
 

 ( ) ( ) ( ) ( )( )1( ) 2 1L Ly k c A x k L A bv k L Abv k bv k−= − + − + ⋅⋅⋅ + − + −

 (2) 
where: 

 

1 2 1

1

1
1 0 0 0

0
, ... ,0 1 0 0

...
0

0 0 1 0

( ) ( )
( ) ... , ( ) ...

( ) ( )

Tn n

m

a a a a
b

A b c
b

y k u k
x k v k

y k n u k m

−− − ⋅⋅⋅ − − 
  ⋅ ⋅⋅          = = =⋅⋅⋅       ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅⋅ ⋅       ⋅ ⋅⋅ 

   
   = =   
   − −   

 (3) 

 

Starting from (2)-(3), two alternatives can be considered to 
obtain an on-line estimation ye(k) of the output real value y(k): 
(a) prediction: use of measured values for prior system 
outputs ym(k-L),..,ym(k-n-L); (b) simulation: use of previously 
estimated values ye(k-L),.., ye(k-n-L). The obtained equations, 
called MA (Moving Average) and ARMA (Auto-Regressive 
MA)  Lth order parity equations ([5]) respectively, are: 
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2.3 Robustness 
 
Robustness in model-based FD systems is the property 
required to operate in the presence of disturbances, noise and 
modelling errors whilst maintaining sensitivity to faults. The 
most critical point in FD is robustness against modelling 
errors ([3]) and it can be considered at the residual generation 
stage or at the decision making stage ([6]). 
 

Active robustness techniques are decoupling techniques that 
try to eliminate the effects of  modelling errors and 
disturbances in the obtained residuals. But decoupling from 
modelling errors presents two main drawbacks ([6]). The first 
and main problem is that decoupling resolves the problem of 
modelling errors by avoiding rather than accounting for them. 
Obtained residuals are insensitive to uncertain parameters 
and, consequently, they are also insensitive to faults in these 

parameters. The second problem is that there is no residual 
generation algorithm which is robust under arbitrary model 
error conditions ([5]). Perfect decoupling is only possible 
under certain restrictive conditions and only approximate 
decoupling can be obtained in most cases. 
 

When perfect robust residual generation can’t be obtained, 
residuals are non-zero in the absence of faults and their 
magnitude is function of the system operating conditions 
(inputs and state). Hence, the use of fixed thresholds, for 
instance large enough to avoid false alarms when the input is 
high, can result in missing faults when the input is low. In 
general, there is no fixed threshold value that gives tolerable 
false and missing alarm rates across the whole operation 
range. In this situation, passive robustness techniques can be 
applied to enhance the robustness of the FD system. One way 
to enhance robustness against modelling errors is based on the 
use of adaptive thresholds which vary according to the state 
and the inputs of the system. The advantages of using 
adaptive thresholds is shown in figure 2. 
 

Different approaches for adaptive thresholding can be found 
in the literature (see [6] and references therein). The use of 
interval models was proposed by Adrot [1], Armengol ([2]) 
and Puig ([5]). 
 
3 Interval Parity Equations 
 
3.1 Fault Detection using Interval Models  
 
When the model structure of a system is known but only 
bounds for the values of its physical parameters are known, 
for instance when nominal values and tolerances are given, 
intervals appear as a natural framework to represent and 
include this uncertainty in the system model. The obtained 
model is said to be an interval model. 
 

The time response of an interval model is given by two 
curves, called envelopes ([2],[5]) or enclosures ([1]), which 
define at each time instant the minimum and maximum 
achievable values for the system output. At each time instant, 
an interval ( ), ( )e ey k y k− +    representing the maximum effect of 

the uncertainty in the system output is obtained. Hence, the 
envelopes define the optimal adaptive thresholds, i.e. the 
minimal thresholds that avoids false alarms. 
 

In this situation, a fault can be reported when the output goes 
outside the envelopes (cf figure 3). On the other hand, a 

Figure 2. Fixed vs. adaptive threshold. 
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normal situation is assumed when the output lies inside the 
envelopes, although for some faulty conditions the output can 
remain eventually or even definitively inside them ([7]). This 
is the price to pay for the lack of knowledge about the exact 
systems parameters. 

 
3.2 Obtaining Interval Parity Equations 
 
The extension of parity equations to interval models is 
derived here. The extension of other classical residual 
generation methods can be found in the literature, i.e. the 
parity space approach in [1] and the observer approach in [6]. 
 

It was omitted in section 2.2 that the coefficients in equation 
(1), and hence the matrix A and vectors b and c in (2), are 
function of the physical system parameters. Let 

1,..., pϖ ϖ ϖ =    be the vector of values for these parameters, 

then equation (2) can be rewritten as: 
 

 ( ) ( )( )1( ) ( ) ( ) ( ) ( )L Ly k c A x k L A b v k Lϖ ϖ ϖ ϖ−= − + − + ⋅⋅⋅  (6) 
 

Suppose that the exact values for the physical parameters are 
unknown but bounds are known for each of them 

,i i i iϖ ϖ ϖ− + ∈Θ =    and let Θ a vector containing these 

uncertain values 
1,..., p Θ = Θ Θ  . In this situation, equation (6) 

must be interpreted as: 
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Hence, the interval version of Lth order MA parity equation is 
given by the following expressions: 
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And the interval version of  Lth ARMA parity equation is 
given by: 
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These two options are also called interval sliding window 
prediction and simulation, respectively ([8]). For a given 

window length L, we will refer to L-prediction and L-
simulation. Note that for estimating the output value at instant 
k, L-prediction uses previous measured values whereas L-
simulation uses previous estimations in form of intervals. 
 

In both cases, the envelope generation problem at a given 
time instant is formalised as two global optimisation 
problems. Modern methods based on interval arithmetic and 
‘branch and bound’ strategies ([4]) can be used to guaranty 
global convergence, guarantying complete envelopes 
([2],[5]). 
 
3.3 MA vs. ARMA Interval Parity Equations 
 
Interval parity equations of different type (MA/ARMA) or 
with different window length produce different envelopes. 
This is due to the fact they use different information and 
because the are affected in a different way by two known 
problems ([2],[5]): temporal multi-incidence and wrapping 
effect. 
 

The temporal multi-incidence problem arises from the fact 
that multi-incidences exist for some parameters and variables 
in the relation used for estimating y(k) and y(k+1). Because 
these multi-incidences are not into account, the time-invariace 
assumption is not used and some faulty time-varying 
behaviours lie inside the envelopes and can’t be detected. The 
only way to thwart this problem  is by considering, at any 
discrete instant k, kth order parity relations (a constantly 
increasing window length). However, this is not applicable in 
practice, due to the increasing computational complexity. 
 

The wrapping problem arises because the state vector is 
multidimensional. The initial state is specified as a 
parallelotope, but within a prediction step, this volume suffers 
a transformation which does not necessarily ends as another 
parallelotope. However, it is approximated as so, which 
introduces spurious regions. If this overbounded region is 
used in subsequent calculations, there is a chain effect known 
as the wrapping problem. 
 

Fault detection using interval simulation is proposed by Puig 
et al. in [5]. Interval simulation is summited to both temporal 
multi-incidence and wrapping problems. The longer the 
length of the window, the lower the effect of these problems. 
However, it has been proved that the gain decreases 
drastically when the window lentgh is longer than the 
response time of the system ([5]); hence, this time defines the 
optimal window length for interval simulation. 
 

Interval prediction is proposed by Armengol et al. in [2]. 
Interval prediction, due to the fact that it starts with a real 
initial state, avoids wrapping and produces envelopes which 
are always included into the simulation envelopes. This 
provides the interval prediction method with a better 
sensitivity to faults and a lower detection time. The effect of 
window length is the opposite: the longer the window length, 
wider are the obtained envelopes; hence, small window length 
should be used. However, a different problem exists. When 
there is a fault in the system which leads the output y(k) 
outside the envelopes, the fault is detected. But the prediction 

Figure 3. Interval Model-Based FD. 
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algorithm uses this output value, which is know to be 
generated by a faulty system, in next prediction steps. The 
effect is that the envelopes will follow the faulty output and if 
noise is present, the system output can lie again inside the 
envelopes giving a non persistent indicator. 
 

To avoid this problem, a hybrid prediction-simulation 
approach, called Semi-Closed Loop (SCL) strategy, is used in 
the detection module of the Ca~En FDI system ([8]). This 
SCL strategy and some improvements are presented in the 
next section. 
 
4 Mixed MA/ARMA Strategy 
 
4.1 Semi-Closed Loop (SCL) Strategy 
 
Under fault-free conditions, 1-prediction provides the most 
restrictive envelopes. The use of this envelopes for fault 
detection is expected to provide the highest  fault detectability 
and the lowest detection time. But, once the output goes 
outside the envelopes and a fault is detected, it seems 
reasonable to switch to interval simulation to avoid the use of 
output measures that are known to be generated in a faulty 
situation (see figure 5). Hence, the “output following” 
problem is avoided and the envelopes are insensitive to noise, 
providing persistent fault indicators. 
 

But noise is also present in the absence of faults and must be 
considered. Due to noise, a local incompatibility between 
prediction and observation at some instant k does not 
necessarily mean that the system is faulty. Hence, a more 
robust indicator than just a simple comparison of the system 
output with the envelopes should be used. When the output 
goes outside  the envelopes, it is said to be alarming. But only 
when the output remains alarming during ν time instants the 
variable is said to be misbehaving (cf. figure 4) and the fault 
is reported. This temporal threshold ν introduces a delay but 
provides a more robust indicator. 

The SCL, as it is implemented in Ca~En works as follows 
([7]): 

! while the system output remains inside the envelopes, 1-
prediction is used and the output is labeled as normal. 

! when the system output goes outside the envelopes, 
there is a switch to 1-simulation and the output is 
labeled as alarming. 

! if the system output remains outside the envelopes for a 
whole interval time T=νTs, the output is labeled as 
misbehaving and a fault is reported; if not, the local 
incompatibilities are considered as effect of noise and 
the output is labeled again as normal. 

 
4.2 Improved SCL  (ISCL) Strategy 
 
Some improvements can be made to the described strategy. 1-
simulation presents a low computational cost but can provide 
divergent envelopes for many models ([5]). In these cases, 
after some period of time, the envelopes will reach the output 
and it will be considered as normal. Then there will be a 
switch to interval prediction an the faulty output will probably 
go outside the envelopes again, reporting correctly the fault. 
This process will be repeated providing non persistent fault 
indications. 
 

When the system output goes outside the envelope, the switch 
to 1-simulation is not the best option that can be used. If the 
output goes outside the envelopes at instant k0, then the output 
is labeled as alarming, but output prediction can still be used. 
At time k0+1, 2-prediction, which uses ym(k0-1), can be used 
to avoid the use of the “suspicious” measure ym(k0). This will 
provide a most restrictive interval for y(k0+1) than the 
obtained using 1-simulation. If the output remains outside the 
envelope at time k0+1, then 3-prediction will be used at time 
k0+2. This process is repeated using predictions which use the 
last measure inside the envelopes (see figure 6). 
 

If the output remains outside the envelopes after ν samples, 
then the output is labeled as alarming. Remaining the output 
outside the envelopes, when the window length equals the 
system response time there is a switch to interval simulation, 
using the optimal window length defined by this response 
time ([5]), to avoid an unnecessary computational effort. 
 
For simplicity, explanations and figures in this section 
correspond to first order systems. But the explained strategy 
can be  easily generalized to nth order systems. 
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Figure 4. SCL strategy. 
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Figure 6. Improved SCL strategy. 



5 Application Example 
 
5.1 DC motor description 
 
Consider the schema of a DC motor with a mechanical load 
shown in figure 7. 
 

The physical meaning of the parameters and the values used 
in the example (considering uncertain load parameters) are 
the following: 
! Ra: armature resistance; 1 Ω 
! La: armature inductance; 0.5 H 
! Kb: back emf constant; 0.01 V/rad/sec 
! Ki: torque constant; 0.01 (N-m/amp) 
! Jm: moment of inertia of the rotor; 0.01 kg-m2 
! bm: damping ratio of the rotor; 0.1 N-m/rad/sec 
! N/M: reduction constant; 1/10 
! Jl: moment of inertia of the load; [20,30] kg-m2 
! bl: damping ratio of the load; [10,15] N-m/rad/sec 

 

In the armature controlled configuration (if generates a 
constant magnetic flow and the speed is controlled by the 
armature voltage), the transfer function, where the rotation 
speed (wl(t)) is the output and the armature voltage (ea(t)) is 
the input, is the following: 
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5.2 Comparison of envelope generation methods 
 
The behaviour of the different envelope generation options in 
a fault-free situation is studied in this section. In all the 
scenarios, the used input is a step of amplitude 5 volts at time 
1 s. and  sample time is Ts=0.5 s. 
  

The results obtained using L-prediction using window lengths 
1 (continuous), 3 (dashed) and 5 (dotted) are shown in figure 
8. L-prediction envelopes grow when L increases, due to the 
fact that the uncertainty in the output increases across 
computation time. 

 

Figure 8. Interval prediction with L=1,3,5. 
 

Results obtained using L-simulation with  L equal to 5 
(continuous), 3 (dashed) and 1 (dotted) are shown in figure 9. 
L-simulation envelopes grow when L decreases, due to the 
effect of temporal multi-incidence and wrapping problems; 
when L is l, L-simulation results in divergent envelopes. 
 

 

Figure 9. Interval simulation with L=1,3,5. 
 

To study the effect of noise, white noise is added to the 
output. The results using interval prediction with L equal to  1 
(continuous), 3 (dashed)  and 5 (dotted) are shown in figure 
10. The three small subplots show the fault indicator: 0 when 
no detection, 1 when a fault is detected. Note that 1-prediction 
provides many false alarms. 
 

 
Figure 10. Interval prediction with L=1,3,5 (noise). 

 
5.3 Fault detection 
 
Three fault locations have been considered: 

! actuator: bias equal to 1 volt (additive). 
! process: 20% increment in torque constant (multiplic.). 
! sensor:  bias equal to 5*10-3 (additive). 

 
For each location, two fault patterns have been considered: 
! abrupt fault. 
! drift fault: the fault reaches its size after 5 seconds. 
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Figure 7. DC motor with mechanical load. 
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In all these fault scenarios, the following conventions have 
been made: 
! step input of amplitude 5 activated in t=1 s. 
! the fault appears in t=2 s. 
! single fault condition is assumed. 

 

In figures 11 and 12, the proposed ISCL strategy 
(continuous), using ν=2, is compared with 1-prediction 
(dashed) and 10-simulation (dotted). It can be observed that 
1-prediction provides a fast but non persistent fault indication. 
On the other hand, 10-simulation provides a persistent 
indication but  with high detection time. The proposed 
strategy appears as a good compromise between these two, 
providing persistent indications with an acceptable detection 
time. 
 

 
Figure 11. Abrupt actuator fault. 

 
Figure 12. Drift actuator fault. 

 

Persistency of the fault indicator can be taken into account 
using the definition for the detection time proposed in [9]: 
peridod of time the from fault time up to the moment of the 
last leading edge of the fault indicator (when the fault 
indicator is stabilised). 
 
The results, using this criterium, in all fault scenarios are 
summarised in the following table: 
 

Fault Detection time (sec.) 
Location Pattern 1-Pred 10-Sim ISCL 

abrupt 5.5 2.5 1.0 actuator 
drift 4.5 4.5 3.0 
abrupt 4.5 1.0 1.0 process 
drift 4.5 3.0 3.0 
abrupt 4.5 0.5 1.0 sensor 
drift 2.5 3.0 1.0 

Table 1. Fault detection results. 

6 Conclusions and Future Work 
 
The proposed SCL-strategy has shown to be effective in the 
detection of faults when both uncertainty in the model and 
noise are present. This strategy is more robust against noise 
than the L-prediction and it avoids the fault-following 
problem. Moreover, it provides higher fault detectability and 
smaller detection times than the L-simulation strategy.  
 

Envelope generation is obtained as the result of  an 
optimization problem. The used algorithms, based on interval 
arithmetic combined with branch and bound strategies present 
a high computational cost, limiting their application for real-
time applications. Alternative solutions should be studied in 
the near future. 
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