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Abstract

In this paper the normal and the failed behaviors of a sampled-
data system are modeled using two distinct uncertain models.
A proper auxiliary signal is an input signal for which the be-
haviors of the two systems do not intersect making guaranteed
failure detection possible. Algorithms for the design of opti-
mal proper auxiliary signals are developed.

1 Introduction

The active approach to failure detection consists in acting
upon the system using a test signal called anauxiliary signal
in order to detect abnormal behaviors which would otherwise
remain undetected during normal operation. The use of ex-
tra input signals specifically in the context of failure detection
has been introduced by Zhang [11] and later developed by
Keresteciǒglu and Zarrop [4, 5, 6].

In this paper, we study in particular the problem of active
failure detection in continuous-time dynamical systems with
sampled observations. This work follows previous works
where we have considered multiple models to represent the
behaviors of normal and failed systems and used a determinis-
tic set membership approach to seek guaranteed detectability
(see for example [7, 9, 8, 2]). Space prohibits a full discussion
of these works; this can be found in [3]. Many of the ideas we
use here come from these studies. What is new in this paper
is the hybrid nature of the model (continuous-time dynamics
with discrete-time observations). These models, which are
called sampled-data systems, are often encountered in prac-
tice where a physical process is connected to a digital con-
troller/detector.

The outline of the paper is as follows. In Section 2, we spec-
ify precisely the class of uncertain models we consider, and
we formulate the design of the auxiliary signal problem as an

optimization problem. We give a solution to this optimization
problem in Section 3.

2 Problem formulation

We consider the situation where there exist two uncertain
models denoted Model0 and Model1 representing respec-
tively the normal and the failed behavior of the system. We
assume that the system has inputv which can be used by the
failure detection mechanism over a period of time called the
test periodand an outputy which is available to the detector
during this test period and used for online detection.

In the sampled-data framework we are considering in this pa-
per, the inputv is piece-wise constant so, over a finite hori-
zon, it can be represented by a finite-dimensional vectorv.
And the values of the outputy are only available at sampling
times.

The problem is to construct a signalv, the auxiliary signal, in
such a way that

A0(v) ∩ A1(v) = ∅ (1)

whereA0(v) represents the set of outputsy consistent with
Model0 andA1(v) represents the set of outputsy consistent
with Model1. An auxiliary signalv for which this condition
is satisfied is calledproper.

It would be fairly easy to find proper auxiliary signals of very
large size. Such signals would in general not be of interest in
practice. That is why among all proper auxiliary signals, we
look for those which are optimal with respect to certain cost
criterion. Often we use the energy of the signal as the cost,
but other criteria can be considered as well.

The problem we consider is that of finding a constructive
method for the computation of the optimal proper auxiliary
signalv.



2.1 Uncertain model

Consider the following uncertain model over the test period
[0, tn]

ẋ = (A+M∆G)x+ (B +M∆H)v, (2)

y(j) = Cx(tj) +Nµ(j) (3)

σ(∆(t)) ≤ 1, (4)

(x(0)− x0)TP−1
0 (x(0)− x0) < 1, (5)

k∑
j=0

|µ(j)|2 < 1 (6)

for k ≤ n. Here∆ is a matrix time-varying uncertainty andµ
is a series of unknown vectors. This type of model has been
studied for example in [10].

The inputv is piecewise constant, i.e., forj ∈ [0, n− 1],

v(t) = vj if tj ≤ t < tj+1. (7)

This corresponds to the usual blocking following the D/A
conversion stage where the digital controller acts on the con-
tinuous time plant.y(j) is the sampled value of the output at
time tj produced by A/D conversion.

We reformulate this uncertain system as follows

ẋ = Ax+Bv +Mν, (8)

z = Gx+Hv, (9)

y(j) = Cx(tj) +Nµ(j) (10)

whereν andz are called respectively the noise input and noise
output. We assume that(A,M) is controllable and thatN has
full row rank. Letting

ν = ∆z (11)

and by introducing some conservatism we obtain the follow-
ing constraint on the noises (see Chapter 6 of [10]).

x(0)TP−1
0 x(0)+

∫ tk

0

|ν|2−|z|2 ds+
k∑

j=0

|µ(j)|2 < 2. (12)

The models we consider for the purpose of failure detec-
tion are of the type (8)-(10), (12). In particular, we con-
sider that we have one such model for the normal system
and another, for the failed system. We say that observations
y(0), · · · , y(k) are consistent with the model if there existsν,
x(0) andµ(j) such that (8)-(10) and (12) are satisfied. The
role of the auxiliary signal is to make sure that no observation
is consistent with both the model of the normal system and
the model of the failed system.

Note that clearly every observationy(0), · · · , y(k) consistent
with the original uncertain model (2)-(6) is also consistent

with the model (8)-(10), (12). Thus an auxiliary signal sep-
arating two models of the type (8)-(10), (12), also separates
their underlying uncertain models.

The consistency ofy(0), · · · , y(k) can be tested online using
a causal filter; see for example Chapter 6 of [10].

2.2 Multi-model optimization formulation

Consider two models of the type (8)-(10), (12), one represent-
ing normal behavior (i = 0) and the other, failed behavior
(i = 1):

ẋi = Aixi +Biv +Miνi, (13)

zi = Gixi +Hiv, (14)

y(j) = Cix(tj) +Niµi(j) (15)

with

Si = xi(0)TP−1
i,0 xi(0) +

∫ tk

0

|νi|2 − |zi|2 ds

+
k∑

j=0

|µi(j)|2 < 2. (16)

Clearly, the two models have different noises and states, butv
andy must be the same in the two models. Let

σ(vk, k) = min
ν0,ν1,y
x0,x1

max(S0,S1) (17)

where the vectorvk is defined by

vk =

 v0
:

vk−1

 (18)

and thevj ’s are defined in (7). Then, thanks to the fact that
Ni’s have full row rank, the non-existence of a solution to
(13), (14), (15) and (16) is equivalent to:

σ(vk, k) ≥ 2. (19)

Any vk satisfying this condition is proper. An optimal aux-
iliary signal is a signal in the set of proper auxiliary signals
minimizing a quadratic costq(vk). Often the cost is just the
energy of the signal, i.e.,

q(vk) =
k−1∑
j=0

|vj |2. (20)

But general positive quadratic cost functions can also be con-
sidered.



3 Optimal proper auxiliary signal design

To solve the optimization problem (17), we expressσ(vk, k)
as follows:

σ(vk, k) = max
β∈[0,1]

φβ(vk, k) (1)

where
φβ(vk, k) = min

ν0,ν1,y
x0,x1

βS0 + (1− β)S1 (2)

subject to (13)-(15),i = 0, 1. Thus for a givenk, the optimal
vk is obtained by solving the following optimization problem:

min
vk

q(vk), subject to max
β∈[0,1]

φβ(vk, k) ≥ 2. (3)

Using the fact that bothφβ andq are quadratic functions (φβ

is the solution of a quadratic cost optimization problem sub-
ject to linear constraints), we obtain the following key result.

Theorem 3.1 Let

λ∗ = max
vk, k<n
β∈[0,1]

φβ(vk, k)
2q(vk)

(4)

and supposev∗k∗ realizes the max. Then

v∗ =
1√

λ∗q(v∗k∗)
v∗k∗ (5)

defines an optimal proper auxiliary signal over the test period
[0, tn].

Note that the resultingv∗(t) entering the continuous time sys-
tem will be as follows: for0 ≤ t < tk∗ ,

v∗(t) = v∗(j), if tj ≤ t < tj+1. (6)

In casek∗ is less thann, the auxiliary signal does not make
use of the whole test interval.

Clearly the largerλ∗ is, the smaller the costq is. Soλ∗ mea-
sures how easy it is to separate the two models. That is why

γ =
√
λ∗ (7)

is called theseparability indexof the system.

After combining the two models and eliminatingy from (15),
we can use the following notations

x =
(
x0

x1

)
, ν =

(
ν0
ν1

)
, z =

(
z0
z1

)
, µ(j) =

(
µ0(j)
µ1(j)

)
,

A =
(
A0 0
0 A1

)
, B =

(
B0

B1

)
, C =

(
C0 −C1

)
,

M =
(
M0 0
0 M1

)
, N =

(
N0 −N1

)
, G =

(
G0 0
0 G1

)
,

H =
(
H0

H1

)
, P−1

β =
(
βP−1

0,0 0
0 (1− β)P−1

1,0

)
,

Qβ =
(
βI 0
0 (1− β)I

)
, Rβ =

(
βI 0
0 (1− β)I

)
,

to expressφβ as follows

φβ(vk, k) = min
x,ν,z,µj

x(0)TP−1
β x(0)+∫ tk

0

|ν|2Qβ
− |z|2Rβ

ds+
k∑

j=0

|µj |2 (8)

subject to

ẋ = Ax+Bv +Mν, (9)

z = Gx+Hv, (10)

0 = Cx(tj) +Nµ(j). (11)

We solve this optimization problem in two steps.

Lemma 3.1 The optimization problem (8) can be expressed
as follows:

φβ(vk, k) = min
xj ,µ(j)

Vk(x0, x1, . . . , xk) +
k∑

j=0

|µ(j)|2 (12)

subject to
0 = Cxj +Nµ(j) (13)

for 0 ≤ j ≤ k, where

Vk(x0, x1, . . . , xk) = min
x,ν,z

x(0)TP−1
β x(0)+∫ tk

0

|ν|2Qβ
− |z|2Rβ

ds (14)

subject to (9), (10) and

xj = x(tj), 0 ≤ j ≤ k. (15)

The optimization problem (14) is a well-posed LQ problem.
That is because thanks to controllability of(A,M), for all xj ,
there existsν such that (15) is satisfied. The solution to this
problem is obtained using the Lagrangian method.

Lemma 3.2 The solution to the optimization problem (14)
can be obtained by solving the following multi-point bound-
ary value problem

ẋ = Ax−MQ−1
β MTλ+Bv (16)

λ̇ = GTR−1
β Gx−ATλ+GTR−1

β Hv (17)

with boundary conditionsx(ti) = xi. The optimalν then
satisfies

ν = −Q−1
β MTλ (18)

Conditioning onx(ti) implies that we can solve the problem
separately over each interval[tj , tj+1[. Noting in addition that
over [tj , tj+1[, v(t) = vj is constant, we can explicitly solve
the boundary value problem.



Theorem 3.2 There exists matricesJβ(i) such that

Vk(x0, x1, . . . , xk) = xT
0 P

−1
β x0+

k−1∑
i=0

ψi(xi+1, xi, vi) (19)

where

ψi(xi+1, xi, vi) =
(
xT

i+1 xT
i vT

i

)
Jβ(i)

xi+1

xi

vi

 . (20)

If the system matrices are time-invariant andti’s form a reg-
ular grid (i.e., ti+1 − ti is constant), thenJβ(i) = Jβ for all
i.

Proof Let

ξ(t) =
(
x(tj + t)
λ(tj + t)

)
. (21)

Then it is straightforward to show that

ξ(τ) = Adξ(0) +Bdvj (22)

whereτ = tj+1 − tj . MatricesAd andBd are readily com-
puted from system matrices; they depend onβ. For example
if the system matrices are time-invariant, then

Ad = exp(Aβτ) (23)

where

Aβ =
(

A −MQ−1
β MT

GTR−1
β G −AT

)
. (24)

In the time varying case,Ad andBd are obtained by a straight-
forward integration.

In (22), ξ(0) andξ(τ) are partially known (their first vector
components arexj andxj+1 which are given). So, from this
equation we can completely characterizeξ(0) (andξ(τ)). We
obtain

ξ(0) = Sxj+1 + Txj +Wvj (25)

for some matricesS, T andW .

Noting that

ψj(xj+1, xj , vj) =
∫ tj+1

tj

|ν(s)|2Qβ
− |Gx(s) +Hvj |2Rβ

ds

and thanks to (18) and the fact that(
x(s)
λ(s)

)
= ξ(s− tj) = Ψ(s− tj)ξ(0) + Φ(s− tj)vj

whereΨ andΦ depend only on system matrices andξ(0) is
given in (25), we find thatψi(xi+1, xi, vi) is a quadratic func-
tion. �

Now that we have the solution to the inner optimization prob-
lem, we need to solve

φβ(vk, k) = min
xj ,µ(j)

xT
0 P

−1
β x0+

k−1∑
j=0

ψj(xj+1, xj , vj)+|µ(j)|2

(26)
subject to

0 = Cxj +Nµ(j). (27)

The minimization overµ is straightforward and gives

µ(j) = NT (NNT )−1Cxj . (28)

Thus

φβ(vk, k) = min
x
xT

0 P
−1
β x0 +

k−1∑
j=0

ψj(xj+1, xj , vj)+

xT
j C

T (NNT )−1Cxj . (29)

We can express this optimization problem as a large static
optimization problem

φβ(v, k) = min
x

(
xT vT

) (
Xβ(k) Yβ(k)
Yβ(k)T Zβ(k)

) (
x
v

)
(30)

where

Xβ(k) =


Xβ(0) JT

4

J4 Xβ(1)
. . .

Xβ(k − 1) JT
4

J4 Xβ(k)


(31)

where

Xβ(0) = P−1
β + J2 + CT (NNT )−1C (32)

Xβ(i) = J1 + J2 + CT (NNT )−1C (33)

Xβ(k) = J1 + CT (NNT )−1C (34)

for 0 < i < k and whereJ1 J4 J5

JT
4 J2 J6

JT
5 JT

6 J3

 = Jβ(i) (35)

(note that for simplicity of notations, we do not indicate ex-
plicitly the possible dependence of theJ ’s on i andβ).

Yβ(k) =


J6

J5 J6

J5 . . .
. . . J6

J5

 (36)

and
Zβ(k) = Diag(J3). (37)



AssumingXβ(k) > 0, we have that the minimum in (30)
exists and that the solution is given in terms of the Schur’s
complement of the matrix defining the quadratic form in (30):

Lemma 3.3 SupposeXβ(k) > 0, then

φβ(v, k) = vT (Zβ(k)− Yβ(k)TXβ(k)−1Yβ(k))v. (38)

The problem is thatXβ(k) can be very large making the direct
construction of the Schur’s complement impractical. Fortu-
natelyXβ(k) has a band structure which can be used to recur-
sively test its positivity and construct the Schur’s complement
of the large matrix.

Lemma 3.4 The matrixXβ(k) defined in (31) is positive def-
inite if and only ifΛβ(j), for j = 0, . . . , k, is positive definite
where

Λβ(j + 1) = Xβ(j + 1)− J4Λβ(j)−1JT
4 (39)

with Λβ(0) = Xβ(0), and theXβ(j)’s are defined in (32)-
(34).

If Xβ(k) is not positive definite for anyβ, there exists no
proper auxiliary signal of lengthk becauseφβ is −∞ and
cannot satisfy the constraint in (3).

Once we know that the minimization problem has a finite so-
lution, we can compute it recursively as follows.

Lemma 3.5 Let

∆β(k) = Zβ(k)− Yβ(k)TXβ(k)−1Yβ(k) (40)

whereXβ(k), Yβ(k) andZβ(k) are defined respectively in
(31), (36) and (37). Then∆β(k) is obtained from the follow-
ing recursive formulae

∆β(j + 1) =
(

∆β(j) 0
0 J3

)
− Γ(j)T Λβ(j)−1Γ(j)

Γ(j + 1) =
(
0 J5

)
− J4Λβ(j)−1

(
Γ(j) J6

)
with Ω(0) = [ ] andΓ(0) = [ ].

Sinceq is a positive quadratic function, for some positive-
definite matrixQ(k), we have

q(vk) = vT
kQ(k)vk. (41)

For example, ifq represents the energy ofvk, thenQk = I.

Lemma 3.6 Let

λβ(k) =
1
2

max
vk

φβ(vk, k)
q(vk)

. (42)

Thenλβ(k) is the largest value ofλ for which

Σβ(k) = ∆β(k)− 2λQk (43)

is singular.

Thus the computation ofλβ(k) amounts to solving a gener-
alized eigenvalue problem for which reliable computer pro-
grams exists. Note also that∆β(k) is constructed recursively,
soλβ(k) is obtained by a recursive formula.

The value ofλ∗ defined in Theorem 3.1 (and thus the separa-
bility index γ =

√
λ∗) can now be computed as follows

λ∗ = max
β,k≤n

λβ(k). (44)

Lemma 3.7 Let β = β∗ andk = k∗ yield the maximum in
(44). Thenγ =

√
λ∗ is the separability index of the system

and an optimal proper auxiliary signal is given by (5) where
v∗k∗ is any vector in the null-space ofΣβ∗(k∗).

4 Conclusion

We have presented a constructive solution to the problem of
optimal proper auxiliary signal design for a class of uncertain
sampled-data systems. The proposed solution can easily be
implemented in standard scientific software packages such as
Scilab [1] and Matlab.
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