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Abstract 2 Problem formulation

In this paper the normal and the failed behaviors of a sampledA/e consider the situation where there exist two uncertain

data system are modeled using two distinct uncertain modelmodels denoted Modél and Modell representing respec-

A proper auxiliary signal is an input signal for which the be-tively the normal and the failed behavior of the system. We

haviors of the two systems do not intersect making guaranteeassume that the system has inpwthich can be used by the

failure detection possible. Algorithms for the design of opti-failure detection mechanism over a period of time called the

mal proper auxiliary signals are developed. test periodand an outpuy which is available to the detector
during this test period and used for online detection.

1 Introduction In the sampled-data framework we are considering in this pa-
Th . h to fail d . L ) ger, the inputv is piece-wise constant so, over a finite hori-
e active approach to failure detection consists in actin on, it can be represented by a finite-dimensional veetor

upon the system using a test signal calledaxiliary signal And the values of the outpytare only available at sampling
in order to detect abnormal behaviors which would otherwis%mes

remain undetected during normal operation. The use of ex-

tra input signals specifically in the context of failure detectionThe problem is to construct a signalthe auxiliary signal, in
has been introduced by Zhang [11] and later developed bguch a way that

Keresteciglu and Zarrop [4, 5, 6].

In this paper, we study in particular the problem of active
failure detection in continuous-time dynamical systems with
sampled observations. This work follows previous works
where we have considered multiple models to represent the , .
behaviors of normal and failed systems and used a determiniéhereAo(v) represents the set of outpytsconsistent with

tic set membership approach to seek guaranteed detectabilldPde! 0 and.A; (v) represents the set of outpytonsistent
(see for example [7, 9, 8, 2]). Space prohibits a full discussioﬁ‘”th I\_/Io_del 1 An auxiliary signalv for which this condition

of these works: this can be found in [3]. Many of the ideas wdS Satisfied is callegroper.

use here come from these studies. What is new in this pap@fwould be fairly easy to find proper auxiliary signals of very
is the hybrid nature of the model (continuous-time dynamicsarge size. Such signals would in general not be of interest in
with discrete-time observations). These models, which argractice. That is why among all proper auxiliary signals, we
called sampled-data systems, are often encountered in pragok for those which are optimal with respect to certain cost
tice where a physical process is connected to a digital cortriterion. Often we use the energy of the signal as the cost,
troller/detector. but other criteria can be considered as well.

The outline of the paper is as follows. In Section 2, we specThe problem we consider is that of finding a constructive

ify precisely the class of uncertain models we consider, anghethod for the computation of the optimal proper auxiliary
we formulate the design of the auxiliary signal problem as aignalv.

Ao(v)N A1 (v) =0 Q)



2.1 Uncertain model with the model (8)-(10), (12). Thus an auxiliary signal sep-

i . ) . arating two models of the type (8)-(10), (12), also separates
Consider the following uncertain model over the test periogpqir underlying uncertain models.

[0, t,,]

The consistency a§(0), - - - , y(k) can be tested online using
t = (A+ MAG)z+ (B+ MAH)v, (2)  acausalfilter; see for example Chapter 6 of [10].
y(i) = Ca(t;) + Np(j) 3)
F(A(L) <1, (4) 2.2 Multi-model optimization formulation

(x(0) — 20)" Py H(2(0) —x0) <1,  (5)  Consider two models of the type (8)-(10), (12), one represent-

k , ing normal behaviori( = 0) and the other, failed behavior
> lG)* <1 6 (i=1):
=0
for £ < n. HereA is a matrix time-varying uncertainty and
is a series of unknown vectors. This type of model has been i = Az + Biv+ My, (13)
studied for example in [10]. 2z = Gizi+ Hiwv, (14)
The inputv is piecewise constant, i.e., fgre [0,n — 1], y(j) = Ciz(t;) + Nipi(y) (15)

o(t) =w; ift; <t <tj. (1) with

This corresponds to the usual blocking following the D/A t
conversion stage where the digital controller acts on the con- S; = x,(0)” P, ;' =;(0) + / lvil> — |2i]? ds
tinuous time planty(j) is the sampled value of the output at ’ 0
timet; produced by A/D conversion. k _

+ ) lm()IF <2. (16)
We reformulate this uncertain system as follows J=0

& = Az+ Bv+ My, (8) Clearly, the two models have different noises and states; but
— Gu+ Ho, ©) andy must be the same in the two models. Let
y(g) = Cux(t;) + Nu(j) (10) o(vi, k) = miny max(Sp, S1) a7
v0,V1,!1
Zo,T1

wherev andz are called respectively the noise input and noise
output. We assume thati, M) is controllable and thaV has  \yhere the vectoy, is defined by
full row rank. Letting

Vo
v=Az (11) - ( ) (18)
and by introducing some conservatism we obtain the follow- Uk—1

Ing constraint on the noises (see Chapter 6 of [10]) and thev;’s are defined in (7). Then, thanks to the fact that

t k N;’s have full row rank, the non-existence of a solution to
:c(O)Tpoflx(O)Jr/ lv|?—|z|? ds+z lw(i)? < 2. (12)  (13), (14), (15) and (16) is equivalent to:
0 =0
o(vi, k) > 2. (19)

The models we consider for the purpose of failure detec-
tion are of the type (8)-(10), (12). In particular, we con-Any v satisfying this condition is proper. An optimal aux-
sider that we have one such model for the normal systeriliary signal is a signal in the set of proper auxiliary signals
and another, for the failed system. We say that observatioriginimizing a quadratic cost(vy). Often the cost is just the
y(0),- - -, y(k) are consistent with the model if there exists ~ energy of the signal, i.e.,
x(0) and uu(7) such that (8)-(10) and (12) are satisfied. The

role of the auxiliary signal is to make sure that no observation kol )

is consistent with both the model of the normal system and q(vi) = Z |vs]°. (20)

the model of the failed system. 3=0

Note that clearly every observatigii0), - - - , y(k) consistent But general positive quadratic cost functions can also be con-

with the original uncertain model (2)-(6) is also consistentsidered.



3 Optimal proper auxiliary signal design

To solve the optimization problem (17), we expre$sy, k)
as follows:

J(Vka k) = ﬁrg[%ﬁ] ¢ﬁ(Vk, k) (1)
where
¢a(Vi, k) = uomy}fly BSo + (1 - B)S: (2)

subject to (13)-(15); = 0, 1. Thus for a giverk, the optimal
v}, is obtained by solving the following optimization problem:

)

min g(vy), subjectto max ¢g(vi, k) > 2.
Vk B€[0,1]

Using the fact that both s andg are quadratic functionsj

to expresspg as follows

¢3(vE, k) = min x(O)TPglx(0)+

TV, 2,
tr k
[ o, = el ds Yl ®)
0 =0
subject to
t = Ax+ Bv+ My, 9)
= Gx+ Ho, (10)

Cu(t;) + Nul(d)- 11)

We solve this optimization problem in two steps.

is the solution of a quadratic cost optimization problem sub-

ject to linear constraints), we obtain the following key result.

Theorem 3.1 Let

A = max PE0VER) (4)
Vi, k<n 2q(Vk)
B€[0,1]
and suppose;. realizes the max. Then
* 1 *

VA (Vi)

Lemma 3.1 The optimization problem (8) can be expressed
as follows:

k

Joe) + Y eGP (22)

=0

¢3(Vi, k) = min Vi(zo, 21, ...
‘iju(j)

subject to
0=Cz;+ Nu(j)

for0 < j <k, where

(13)

defines an optimal proper auxiliary signal over the test period

[0,t,].
Note that the resulting*(¢) entering the continuous time sys-
tem will be as follows: fo) <t < ¢+,

v (t) =v(j), ift; <t <tjqr.

(6)

In casek* is less tham, the auxiliary signal does not make
use of the whole test interval.

Clearly the largen* is, the smaller the cogtis. So\* mea-

Vie(zo, 21, ..., 25) = min x(O)TPglx(O)—i—

T,V 2

tk
| =l a5 @)
subject to (9), (10) and

r;=x(t;), 0<j<k (15)

The optimization problem (14) is a well-posed LQ problem.

sures how easy it is to separate the two models. That is whyThat is because thanks to controllability(ef, M), for all ;,

= VN

is called theseparability indeof the system.

(7)

After combining the two models and eliminatipdrom (15),
we can use the following notations

-(2)r= ()= () 0= (25
(Co —C),
)

11(7)
_ AO 0 _ Bo
1= (5 3)-o= ()€
Go 0
),N:(NO Nl),G:(OO a

_ (ﬂp 6.0 0 >

0 (1-B)P
0

8 —Omf) »Fo = (ﬁol (1- ﬂ)l> :

there exists’ such that (15) is satisfied. The solution to this
problem is obtained using the Lagrangian method.

Lemma 3.2 The solution to the optimization problem (14)
can be obtained by solving the following multi-point bound-
ary value problem

Az — MQ;"'M" X + Bv
G"R;'Gx — ATA+ G" R, Hu

(16)

A (17)

with boundary conditions:(¢;) = z;. The optimalv then
satisfies

v=—Qz M"\ (18)
Conditioning onz(t;) implies that we can solve the problem
separately over each interva), ¢, [. Noting in addition that
over[t;,t;+1[, v(t) = v; is constant, we can explicitly solve
the boundary value problem.



Theorem 3.2 There exists matrice§s (i) such that

k—1

Vi(@o, 21, .. k) = IoTpg_lﬂﬂoJrZ Vi(Tit1, i, v;) (19)
i=0

where

Ti41
Vi(@ivr, @i, v0) = (¢l «l o]) Ts() ( T ) . (20)

U5

If the system matrices are time-invariant ant form a reg-
ular grid (i.e., ;41 — t; is constant), thes (i) = J; for all
1.

Proof Let
(x(t;+ 1)
Then it is straightforward to show that
(1) = Aa&(0) + By, (22)

wherer = t;41 — t;. MatricesA, and B, are readily com-
puted from system matrices; they dependdori-or example
if the system matrices are time-invariant, then

Ay = exp(AgT) (23)
where -
B A —MQg M
Aﬁ - (GTRglG _AT > . (24)

In the time varying cased, andB, are obtained by a straight-
forward integration.

In (22), £(0) and&(r) are partially known (their first vector
components are; andz ;. which are given). So, from this
equation we can completely characterze) (andé(7)). We
obtain

5(0) =Sz +Tz; + Wo, (25)
for some matrice$, T andW.

Noting that

ti+1
(g0, 2p05) = / W(s)[3), — |Ga(s) + Huy[2,, ds

J

and thanks to (18) and the fact that
(I(5)> (s — ) = W(s — £)E(0) + B(s — ;)
)\(S) J J 2777

whereWw and® depend only on system matrices &f(0) is
given in (25), we find that); (x;1, z;, v;) is @ quadratic func-
tion. O

Now that we have the solution to the inner optimization prob-
lem, we need to solve

k—1
05(visk) = min a5 Py leotd vy, o)+l
7 J:O
(26)
subject to

0=Cz;+ Nu(j). (27)

The minimization ovey is straightforward and gives
u(j) = NT(NNT)~" L. (28)

Thus

k—1

QSg(Vk, k) = mgnxoTPﬁ_l:Eo + Z ¢j(xj+1,xj, Uj)+
j=0

el CT(NNT)"'Cx;. (29)
We can express this optimization problem as a large static

optimization problem

orteom =) (G5 25) (2) e

where

Xs(0)  J
Jo Xp(1)
Xs(k) =
Xp(k=1) Jf
J Xp(k)
(31)
where
X3(0) = Py'+L+CH(NNT)T'C (32)
X5(i) Ji+Jo + CT(NNTY"C (33)
Xs(k) = L +CT(NNT)'C (34)
for 0 < i < k and where
J o Ju Js
JE Ty Js | = TJs00) (35)
5T Js T

(note that for simplicity of notations, we do not indicate ex-
plicitly the possible dependence of thi& oni and3).

Js
Js Jg
Vs(k) = Js (36)
Js
Js
and
Z(k) = Diag(J3). (37)



AssumingX3(k) > 0, we have that the minimum in (30)

Thus the computation ofz(k) amounts to solving a gener-

exists and that the solution is given in terms of the Schur'salized eigenvalue problem for which reliable computer pro-
complement of the matrix defining the quadratic form in (30):grams exists. Note also thAtz (k) is constructed recursively,

Lemma 3.3 Supposets (k) > 0, then
0p(v. k) = v (Z5(k) — Vs(k)" X5(k) "' Va(k))v. (38)

The problemis thak’s (k) can be very large making the direct
construction of the Schur’'s complement impractical. Fortu-

so s (k) is obtained by a recursive formula.

The value ofA* defined in Theorem 3.1 (and thus the separa-
bility index v = v/A*) can now be computed as follows

A" = max Ag(k).

B,k<n (44)

nately X (k) has a band structure which can be used to recur-

sively test its positivity and construct the Schur’s complemen}_emma 37 Letd = * andk — k*

of the large matrix.

Lemma 3.4 The matrix¥3(k) defined in (31) is positive def-
inite if and only ifAz(j), for j = 0,. .., k, is positive definite
where

Mg +1) = Xp(G+1) = Lhs(j)"JL  (39)
with Ag(0) = X3(0), and theXz(j)'s are defined in (32)-
(34).

If Xg(k) is not positive definite for anys, there exists no
proper auxiliary signal of lengttt becauseps is —oo and
cannot satisfy the constraint in (3).

Once we know that the minimization problem has a finite so

lution, we can compute it recursively as follows.

Lemma 3.5 Let
Ap(k) = Z3(k) = Vs (k)" Xa(k) "' Vs(k)  (40)

where X5(k), Vg(k) and Z5(k) are defined respectively in
(31), (36) and (37). Thenhg(k) is obtained from the follow-
ing recursive formulae

(349 5) - 1o a6
LG+1) = (0 J5) = Jhs(i) " (DG)  J)
with Q(0) =[] andI'(0) = [].

Ap(i+1)

Sinceq is a positive quadratic function, for some positive-

definite matrixQ(k), we have
a(vi) = vi Q(k)v.

For example, ify represents the energy of,, thenQ;, = I.

(41)

Lemma 3.6 Let

bs(Vi: k)
== = 42
Aalk) = g max = 5 (42)
Then)\g(k) is the largest value of for which
Y(k) = Ag(k) — 229y (43)

is singular.

yield the maximum in
(44). Theny = v/ )\* is the separability index of the system
and an optimal proper auxiliary signal is given by (5) where
v}« is any vector in the null-space &i- (k*).

4 Conclusion

We have presented a constructive solution to the problem of
optimal proper auxiliary signal design for a class of uncertain
sampled-data systems. The proposed solution can easily be
implemented in standard scientific software packages such as
Scilab [1] and Matlab.
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