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Abstract

An algorithm is developed for passivity preserving model re-
duction of LTI systems. The derivation is justified analytically
and implementation schemes are developed for both medium
scale (dense) and large scale (sparse) applications. The algo-
rithm is based upon interpolation of specified spectral zeros
of the original transfer function to produce a reduced transfer
function that has the specified roots as its spectral zeros. These
interpolation conditions are satisfied through the computation
of a basis for a selected invariant subspace of a certain blocked
matrix which has the spectral zeros as its spectrum.

1 Introduction

This paper is concerned with linear time invariant (LTI) sys-
tems
� � �� ��� � �� ��� 	 
� ��� �  ��� � �� ��� 	 �� ��� �

where� � � � �� , 
 � � � �� , � � � � �� ,� � � � �� . These
systems arise frequently in many branches of engineering. Cir-
cuit simulation is an important example and in this application
the system

�
is oftenpassive. Model reduction with a passivity

constraint is of great importance in circuit simulation andhas
been studied by many researchers, including Rohrer [9], Ober
[8], Feldmann, Freund, and Bai [6], [7], [3], [4], [5] Gugercin
and Antoulas [10] and others.

The goal is to produce a reduced model of much lower order
that preserves important system properties and response char-
acteristics. Projection methods construct matrices� � � � ��
and� � � � �� such that� � � � �� that are used to obtain
a reduced model�� � ��� ��� � �� �� ��� 	 �
� ��� � � ��� � �� �� ��� 	 �� ��� � (1)

where �� � � � �� � �
 � � � 
 � �� � �� � (2)

A new projection method is developed here that preserves both
stability and passivity. This method is quite novel becauseit
obtains the projection matrices� �� as a by-product of a cer-
tain eigenvalue problem. These matrices are constructed from a
basis set for an invariant subspace associated with that problem.

The mathematical foundation for the results follow from the
recent work of Antoulas [1] characterizing passivity through
interpolation conditions.

2 Passive Systems

Throughout the remainder of this discussion, it shall be as-
sumed that� � � , i.e., that
 � � � �� , � � � � �� . Moreover,
the matrix� is assumed to be stable ( the spectrum� �� � is
contained in the open left half-plane), and that the system

�
is

both observable and controllable. Finally, it is assumed that the
system is passive and that �� � 	 �� is positive definite
so that � � �! � ! with � ! nonsingular. The transfer func-
tion for

�
is denoted by" �#� � � �#�� $ � �%&
 	 � � The

results of this section are stated without proofs. For a complete
discussion of these results including detailed proofs, see[11].

Passive Systems: Informally, a system
�

is passive if it can-
not produce energy and strictly passive if it consumes energy.
Formally,

�
is

Passive if '( ) *%+ � �, ��  �, �-, . / for all � � � and all� � 01 �� �,
Strictly Passive if there is a 2 3 / such that
'( ) *%+ � �, ��  �, �-, . 2 ) *%+ � �, �� � �, �-, for all� � � and all� � 01 �� �.

There is an equivalent condition for LTI systems that is more
easily verified.

Positive Real: The system
�

is passive if and only if its trans-
fer function" �#� is positive real, which means that:

(1) " �#� is analytic for'( �#� 3 /),
(2) " �4#� � " �#� for all # � 5 ,
(3) " �#� 	 �" �#��6 7 8 9:; ' ( �#� 3 / �

For real systems, (2) is always satisfied. Property (3) implies
the existence of a stable rational matrix function� �#� (with
stable inverse) such that" �#� 	 "� �$#� � � �#�� � �$#�.
This is thespectral factorizationof " and the quantity� is a
spectral factorof " . The numbers<= , > � ?� @ @ @ � A , such that-BC� �<= � � /, are thespectral zerosof " .
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Then the spectral zeros of" are the set of all (finite) complex
numbers< such that

' �A	 �� $ <� � 
 �A 	 � �
i.e. the finite generalized eigenvalues� �� � � �. The set of
spectral zeros shall be denoted as� . It is easily seen that
< � � � $4< � � since

�� � � �< � ��� � � �$ 4<� ��� � ,
where

� 6 �� �� 6 �  6 � �6 �, and�� 6 �� � 6 � $� 6 � �6 � �
Now, suppose a reduced model

��
as defined in (1) has been ob-

tained and let
�" �#� �� �� �#� $ �� �%& �
 be the reduced transfer

function. It is desirable to place conditions on this reduced sys-
tem that provide for the inheritance of passivity from the orig-
inal system. The approach taken here is entirely motivated by
the following theorem of Antoulas proved in [1] that is stated
here in a form that is restricted to the problem at hand. This re-
sult indicates that a passive reduced model will be obtainedif
certain of the spectral zeros are preserved (interpolated)in the
reduced model. For real systems,� � must include conjugate
pairs of spectral zeros as well as their reflections across the real
axis.

Theorem 2.1 (Antoulas) If� � � � and
�" �<� � " �<� for

all < � � � , then the reduced system
��

is both stable and pas-
sive.

The following discussion will establish that these interpolation
conditions can be satisfied if a basis for an specified invariant
subspace of�� � � � can be constructed. Suppose

�� � � ��
is a partial real Schur decomposition for the pair�� � � �. Thus� � � � � and

�
is real and quasi-upper triangular. Let� � � �� � �� � � �� � be partitioned in accordance with the

block structure of
�

. Then�
�
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�
� � � (3)

In the following discussion, it will be useful to have the follow-
ing lemma.

Lemma 2.1 Suppose that
�

in (3) satisfies'( �<� 3 / for all
< � � �� �. Then

� � � � � � � is symmetric.

The matrices
�

and� will be used to construct the matrices
� and� with � � � � � . In this construction, it will be
useful to know something about the ranks of

�
and� .

Lemma 2.2 If
� �� � � �� are as specified in equation (3),

then
�

and� are both full rank. Moreover,� � � � � 	 � � �� � ��  � (4)�� 	 
� � � $ � � (5)

With these observations in hand, consider the following con-
struction of� and� . First, find a basis for an invariant sub-
space with all eigenvalues of

�
in the open right half-plane as

in (3) above. Let
���1� �� � � � � be the SVD of

� � � and
note that

�� � ���
where

�
is a signature matrix by virtue of

the symmetry of
� � � . For this discussion

�
is assumed to be

nonsingular. The singular case may be handled by truncation
(see [11] for details). With

�
nonsingular, put

� � ����%& � � � ��� �%& �
Then it is easily seen that� � � � �. Let

�� �� �� �� and�� �� �� �� and define

 ��
�
� �

8 8
8 � 8
8 8 �

�
� � ��- ! ��

�
� �

8 8
8 � 8
8 8 �

�
� �

Now, observe that! �  � � and it is straightforward to see
that

�� �� ! � � �
�
�
�� �


$ ��� $ ����� �
� � 	 ��

�
� �
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�
� � � (6)

This shows that the spectral zeros� � are a subset of the
spectral zeros� of the original system. Moreover, since
� � � � �� � " � �$� � � and� �� � is in the open right half-
plane, the reduced model has no spectral zeros on the imagi-
nary axis.

It turns out that this construction gives a reduced model
��

that
is stable and passive. One could apply Antoulas’ result in The-
orem 2.1 to establish this. However, it is instructive to prove
passivity and stability directly from the construction. This will
be established with the following results.

First, it is useful to note that
�� �� %& � �� �� �� �%& � � � since�� � ���

.

Lemma 2.3 The reduced model
��

satisfies
�� � �$� � 	 �$� � �� � $��! �! ��
� �$� � 	 � �! �! � �� �

� 	 �� � � �! � ! �
where�! �� $� !� �� %&.

The results of Lemma 2.3 may be used to verify the necessary
conditions for

��
to be positive real required by the Positive

Real Lemma [2] (Theorem (13.25) in [12]).



Lemma 2.4 If
� � $� in Lemma (2.3), then" is positive real

and the reduced order system
��

is stable and passive.

Passivity of the reduced system is established then by demon-
strating that

� � $� follows from the passivity of the original
system

�
. To do this, it is sufficient to show that

�� � �� is neg-
ative definite.

Lemma 2.5 The matrix
�� � �� in Lemma (2.3) is symmetric

and negative definite.

This result is obtained for strictly positive real systems by ex-
tending the partial Schur decomposition to one that includes
all A of the spectral zeros of

�
in the open right half-plane.

This gives extended matrices�� �� �� �� 1 � in place of
�

,�� � �� �� 1 � in place of� , �� �� �� � �1 � in place of�. Then
Lemma 2.2 is applied to this system to conclude that�� � �� is
symmetric and negative semi-definite by showing it is similar
to the solution� of a certain Lyapunov equation of the form�� � 	 �� � ���! ��!. Since

� � � is a leading principle sub-
matrix of �� � �� � it must also be negative semi-definite. More-
over, since

���1�� �� � �� � �� � �� � � � � �� � � � � � it
follows that the diagonal elements of

�1�
are non-positive. For

every positive diagonal element of
�

, the corresponding diago-
nal element of

�
must be negative, and since

�
was assumed to

be nonsingular, it follows that
� � $�. A continuity argument

is used to establish the result for positive real systems.

3 Algorithms for Passivity Preserving Reduced
Models

The results of the previous section establish the passivityof
��

and, in addition, they establish that� � � � corresponding
to the spectral zeros appearing as eigenvalues of

�
in (3). This

leads to the following algorithm.

function � �� � �
 � �� � = Posreal(� �
 � � � � � 	);

Compute a	-th order partial
real Schur decomposition�� � � ��

;

� � � �? � A � ��; � � � �A 	 ? � �A � ��;�� � � � ���� � ��- �� � � �; � � � &�1 ;
� � ����%&; � � ����%&;
�� � � � �� ;

�
 � � � 
 ;
�� � �� ;

Figure 1: Positive Real Model Reduction

In the algorithm shown in Figure 1, it is assumed that
�

and�
represent the blocked matrices defined in Section 2. For small
to medium scale dense problems, these matrices might actu-
ally be formed and then the desired partial Schur decompostion
would be extracted from the full eigensystem. For large sparse
problems, this would be impractical and inefficient. The algo-
rithm as posed is appropriate for real matrices and all arithmetic
stays real throughout. A real partial Schur decomposition is ap-
proproate since it will automatically keep complex congugate
pairs of spectral zeros together. The parameter	 that specifies
the order of the reduced model will perhaps need to be adjusted
by 1 to accomodate this. Modification of these algorithms to
accomodate complex matrices is relatively straightforward.

For large scale problems, an implicitly restarted Arnoldi (IRA)
method would be quite suitable. It naturally produces a par-
tial real Schur form corresponding to a desired set of eigen-
values (spectral zeros here). One could useeigs in Matlab or
ARPACK in Fortran to find such an invariant subspace. One
choice for selecting the spectral zeros might be to compute the	 eigenvalues of largest real part. However, there is another
choice that seems quite natural and which works well with an
IRA method.

A convenient spectral transformation is obtained with the Cay-
ley transformation

�� �� ��� $ � �%& ��� 	 � � �
where� . / is a real shift. With a proper choice of� this will
provide for rapid convergence to an invariant subspace corre-
sponding to	 transformed eigenvalues of largest magnitude:

��� $ � �%& ��� 	 � �� � � ��
so that

�� � � �� � 	
B;B � �� � � �� $ �� � �� 	 ��%& �
This gives the partial Schur decomposition as required by the
algorithm in Figure 1.

The implementation will require two sparse direct factoriza-
tions of � $ � � ��- � 	 � � �
The Cayley transformation

��
may then be applied to an arbi-

trary vector using a blocked matrix-vector product followed by
a blocked Gaussian elimination.

Interestingly enough, computing the	 eigenvalues of largest
magnitude for this Cayley transformation is related to comput-
ing 	 eigenvalues of largest real part for the original pair�� � � �
in a very special way. A circle of radius� 3 ? centered at the
origin is the image of a circle � of radius

1��� %& centered at
� �� &� %& . If � is the radius of the circle centered at the origin
drawn through the selected eigenvalue(s) of smallest magni-
tude, then the	 selected eigenvalues are images of the spectral
zeros interior to the circle � (shown in Figure 2) and this
gives the interpolation points. As� � ? the interior circle �
tends to include all of the right half-plane.
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Figure 2: The Cayley transformed spectral zeros (+) and inter-
polation points selected (o) (reduced order spectral zeros).

Example. The following graphs show the result of applying
this scheme to an RLC circuit of order 201. The circuit is an
RLC ladder network. The state variables are as follows:� �,
the voltage across

��; �� , the current through� �; �� , the volt-
age across

�� ; �� , the current through�� ; and�� , the voltage
across

�� , etc. In general,� is odd and��	
� is the voltage
across capacitor

�	 for � � � � � � � � �� �� � while ��	 is the cur-
rent through inductor�	 for � � � � � � � � �
�� . There are two
resistors� � � � � placed at either end of the “ladder” as shown
in Figure 3 for an order� � � example.

The input is the voltage� and the output is the current� as
shown in Figure 3. It is assumed that all the capacitors and
inductors have unit value, while� � � �� , �� � �� . A minimal
realization for the order� � � example is:

� �

�
�����

��  � � �
� �  � �
� � �  �
� � � � 
� � � � ��

�
�����
�  �

�
�����

�
�
�
�
�

�
�����
�

! � "� � � � ��# � $ � 

%

&
�� �� � �

�� �� � � � �

'

(

Figure 3: RLC ladder circuit of order 5

For general� The matrix
�

is simply extended with value 1
on the super diagonal, the value -1 on the subdiagonal and with
the values -2, and -5 in the (1,1) and (n,n) positions. The vec-
tors � ! are extended in the obvious way by introducing zero
entries in the first� �  positions.

The method was applied to an RLC ladder system of order
� � ��  using an IRA method with the Cayley transformation
(shift ) � �). A reduced model of order 20 was constructed.
The graphs in Figure 4 and Figure 5 illustrate the effectiveness
of the procedure. The distribution of the spectral zeros aresim-
ilar to those shown in Figure 2 for a smaller problem. That
figure shows the effect of the transformation and the interpola-
tion points.
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Figure 4: Plot of*+ ,��- . / * ,�- . 0 � for - 1 2 (left) and
plot of * ,3. real positive3 (right) .

These results are encouraging, but limited. The particularex-
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ample given here is quite difficult to approximate with a low
order reduced model. Additional research and experimentation
is needed to better understand this approach. The following
questions remain: 1) What is the best choice of interpolation
points? 2) Is it possible to derive a bound on the approximation
error? 3) What is the best choice for� in the Cayley transfor-
mation? Future work will include a study of these questions as
well as a far more exhaustive set of test examples.
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tion via the Lanczos process, Bell Laboratories, Lucent
Technologies, Numerical Analysis Manuscript 97/3-10,
November (1997).

[4] Z. Bai, P. Feldmann and R. Freund,How to make theo-
retically passive reduced-order models passive in prac-
tice, Proceedings of the IEEE 1998 Custom Integrated
Circuits Conference, pages 207–210 (1998).

[5] Z. Bai and R. Freund,Eigenvalue-based characterization
and test for positive realness of scalar transfer functions,
IEEE Transactions on Automat. Control,AC-45: 2396–
2402 (2000).

[6] P. Feldman and R.W. Freund,Efficient linear circuit
analysis by Pad́e approximation via a Lanczos method,
IEEE Trans. Computer-Aided Design,14, 639-649,
(1995).

[7] R. Freund, Passive reduced-order models for inter-
connect simulation and their computation via Krylov-
subspace algorithms, Proceedings ACM DAC 99, New
Orleans (1999).

[8] R. Ober,Balanced parametrization of classes of linear
systems, SIAM J. Control and Optimization,29: 1251-
1287 (1991).

[9] A. Odabasioglu, M. Celik, and L.T. Pileggi,PRIMA:
Passive reduced-order interconnect macromodeling al-
gorithm, IEEE Trans. Computer Aided Design of Inte-
grated Circuits and Systems,17: 645-654 (1998).

[10] S. Gugercin and A.C. Antoulas,On balancing related
model reduction methods and the corresponding error,
Technical Report, ECE Dept., Rice University, Septem-
ber (2002) (submitted).

[11] D.C. Sorensen,Passivity Preserving Model Reduction
via Interpolation of Spectral Zeros,CAAM Tech. Report
TR02-15, Rice University, December (2002).
(www.caam.rice.edu)

[12] K. Zhou with J.C. Doyle and K. Glover, Robust and Op-
timal Control, Prentice Hall, (1995).


	Session Index
	Author Index



