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An algorithm is developed for passivity preserving model r&  pgssive Systems
duction of LTI systems. The derivation is justified analgtig
and implementation schemes are developed for both medilihmoughout the remainder of this discussion, it shall be as-
scale (dense) and large scale (sparse) applications. §he asumed thain = p, i.e., thatB € R"*?, C € R?*". Moreover,
rithm is based upon interpolation of specified spectral Zerthe matrixA is assumed to be stable ( the spectrifd) is
of the original transfer function to produce a reduced ti@ns contained in the open left half-plane), and that the sysiein
function that has the specified roots as its spectral zetossd both observable and controllable. Finally, it is assumadttne
interpolation conditions are satisfied through the comjioria system is passive and thRt := D + D7 is positive definite
of a basis for a selected invariant subspace of a certaikétbcso thatD = WI'W , with W, nonsingular. The transfer func-
matrix which has the spectral zeros as its spectrum. tion for X is denoted byG(s) = C(sI,, — A)~!B + D. The
results of this section are stated without proofs. For a detap

1 Introduction discussion of these results including detailed proofs,[44¢

This paper is concerned with linear time invariant (LTI) sysPassive Systems: Informally, a systen® is passive if it can-
tems not produce energy and strictly passive if it consumes gnerg

¥: x(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), Formally,X is

whereA € R™*", B € R"™™, C € R, D € R™™. These paggveif Re [ u(r)Ty(r)dr > 0forallt € R and all
systems arise frequently in many branches of engineeriing. G, o L2(R)
cuit simulation is an important example and in this appiarat

the systenX is oftenpassive Model reduction with a passivity Strictly Passive if there is a d > 0 such that
constraint is of great importance in circuit simulation aras e [*  u(n) y(r)dr > 8 [°_u(r)"u(r)dr for all
been studied by many researchers, including Rohrer [9]y Olb&e R and allu € L»(R).

[8], Feldmann, Freund, and Bai [6], [7], [3], [4], [5] Gugémnc
and Antoulas [10] and others.

There is an equivalent condition for LTI systems that is more
The goal is to produce a reduced model of much lower ordeasily verified.
that preserves important system properties and respoBse CBogitive Real: The systen® is passive if and only if its trans-
acteristics. Projection methods construct matrives R"™** fer functionG (s) is positive real, which means that:
andW € R™** such thatW 'V = I, that are used to obtain ’ '
a reduced model

) . . . . (1) G(s) is analytic forRe(s) > 0),

¥ x(t) = Ax(t) + Bu(t), y(t) =Cx(t) +Du(?), (1) (2)G(5) = G(s)foralls € C,
(3) G(s) + (G(s))* = 0 for Re(s) > 0.

where

A=WTAV,B=W'B, C=CV. (2)

For real systems, (2) is always satisfied. Property (3) iespli

A new projection method is developed here that preservés btite existence of a stable rational matrix funct®(s) (with
stability and passivity. This method is quite novel becaitisestable inverse) such th@(s) + GT(—s) = W(s)W7(—5s).
obtains the projection matricA8, W as a by-product of a cer- This is thespectral factorizatiorof G and the quantitiw is a
tain eigenvalue problem. These matrices are construateddr spectral factorof G. The numbers\;, i = 1,---,n, such that
basis set for an invariant subspace associated with thaliggno  detW ()\;) = 0, are thespectral zero®f G.



Let With these observations in hand, consider the following-con
A B 1 struction of V.andW. First, find a basis for an invariant sub-
_AT _cT and & := I space with all eigenvalues & in the open right half-plane as
¢ BT D4+DT [ 0 ] in (3) above. LeQ,S*Q) = X”'Y be the SVD ofX”Y and
o note thatQ, = Q,J wherelJ is a signature matrix by virtue of
Then the spectral zeros & are the set of all (finite) complex ¢ symmetry oX7'Y. For this discussio8 is assumed to be

A=

numbers\ such that nonsingular. The singular case may be handled by truncation
Rank(A — \E) < 2n + p, (see [11] for details). Witl$ nonsingular, put
i.e. the finite generalized eigenvalueéA,£). The set of V=XQ,S™', W=YQ,S™.

spectral zeros shall be denoted&g. It is easily seen that .
A€ Sg = —X € Sg sincedq = Eqr = §T A = (-N)§"€, Thenitis easily seen thaV”V = I. LetX := SQI and

whereq* := [x*, y*,z*], andq* := [y*, —x*, z*]. Y :=SQ] and define

Now, suppose areduced mo@hs definedin (1) has been ob- V 0 0 W 0 0
tained and leG(s) := C(sI- A)~'B be the reducedtransfer y,.— | o0 W 0 |, and W := 0V 0
function. Itis desirable to place conditions on this redlsgs- 0 0 I 0 0 I

tem that provide for the inheritance of passivity from thiger
inal system. The approach taken here is entirely motivayed Row, observe thatW”V = I and it is straightforward to see
the following theorem of Antoulas proved in [1] that is sthtethat
here in a form that is restricted to the problem at hand. Téis r

sult indicates that a passive reduced model will be obtaihed R - A - Ag
certain of the spectral zeros are preserved (interpolatettip A:=WTAV =  —A -C )
reduced model. For real systend, must include conjugate C BT D+D7

pairs of spectral zeros as well as their reflections acresseth

axis. and

X A B X X
Theorem 2.1 (Antoulas) IfSg, C Sg andG () = G()) for _AT _@T vi=|v IR (6)
all A € Sg, then the reduced systetis both stable and pas- e BT D+DT 7 0

sive.

The following discussion will establish that these intdgtion This shows that the spectral zerSg, are a subset of the
conditions can be satisfied if a basis for an specified inmarigspectral zerosSg of the original system. Moreover, since
subspace ofA, £) can be constructed. Suppad€) = EQR  Sg = o(R) U o(—RT) anda(R) is in the open right half-

is a partial real Schur decomposition for the gad; £). Thus plane, the reduced model has no spectral zeros on the imagi-
QTQ = I andR is real and quasi-upper triangular. Lepary axis.

T __ T T T i H i ~
ﬁ k_ t[X t’Y ’ff ']I'hbe partitioned in accordance with theItturns out that this construction gives a reduced madéhat
ock structure ol4. Then is stable and passive. One could apply Antoulas’ result ie-Th
X
=Y
0

A B orem 2.1 to establish this. However, it is instructive toyaro
—AT  -CT R.  (3) passivity and stability directly from the construction.ig kil
C BT D+DT
Inthe fO”OWing diSCUSSiOI‘\, it will be useful to have theltl- First, it is useful to note th&'X*l — SQTQZS*l — J, since
ing lemma. Q, = Q.J. v

X
Y
Y/

be established with the following results.

Lemma 2.1 Suppose thaR . in (3) satisfieske(A) > 0 for all

X € o(R). ThenXTY = YTX is symmetric. Lemma 2.3 The reduced mod&l satisfies

AT(-3)+(-HA = -Clc,,
The matricesX andY will be used to construct the matrices ]§T(—J) + WOTCO = C,
) T<r . ) oo
W andV with W'V = I. In this construction, it will be D+D” = WIWw,,

useful to know something about the ranksXoandY'. R
whereC, := —~-W,ZX 1.
Lemma2.2 If X,Y,Z,R are as specified in equation (3),

thenX andY are both full rank. Moreover,
XTATY + Y'AX = ZIDZ @) The results of Lemma 2.3 may be used to verify the necessary
- conditions forX to be positive real required by the Positive
CX+B'Y = -DZ (5) Real Lemma [2] (Theorem (13.25)in [12]).



Lemma?24 If J = —Iin Lemma (2.3), thef is positive real In the algorithm shown in Figure 1, it is assumed tHaand&

and the reduced order systeﬁmis stable and passive. represent the blocked matrices defined in Section 2. Ford smal
to medium scale dense problems, these matrices might actu-
ally be formed and then the desired partial Schur decongosti

Passivity of the reduced system is established then by dem@Ruld be extracted from the full eigensystem. For largespar
strating thatl = —I follows from the passivity of the original Problems, this would be impractical and inefficient. Theoalg

systemX. To do this, it is sufficient to show th&7Y is neg- Tithm as posed is appropriate for real matrices and allmetic
ative definite. stays real throughout. A real partial Schur decomposis@pr

proproate since it will automatically keep complex congega
P ] _ pairs of spectral zeros together. The parametiat specifies
Lemma25 The _m_atnxXTY in Lemma (2.3) is symmetriCihe order of the reduced model will perhaps need to be adjuste
and negative definite. by 1 to accomodate this. Modification of these algorithms to
accomodate complex matrices is relatively straightfodwvar

For large scale problems, an implicitly restarted Arnol&i4)
g]ethod would be quite suitable. It naturally produces a par-
tial real Schur form corresponding to a desired set of eigen-
values (spectral zeros here). One could eigssin Matlab or
ARPACK in Fortran to find such an invariant subspace. One
choice for selecting the spectral zeros might be to comhate t

g‘c eigenvalues of largest real part. However, there is another

symmetric and negative semi-definite by showing it is simil hoice that - ite natural and which works well with an
to the solution@ of a certain Lyapunov equation of the fomfRX ?r?eth?)dsee S quite natural a ch works we a

ATQ+ QA = CTC,. SinceXTY is a leading principle sub-
matrix of XT'Y, it must also be negative semi-definite. MoreA convenient spectral transformation is obtained with thg-C
over, sinceQ,S2JQL = XTY = XTVIWY = X?Y, it ley transformation

follows that the diagonal elements®tJ are non-positive. For

every positive diagonal element$f the corresponding diago- Cu = (u€ — A~ (1€ + A),

nal element o must be negative, and sinBavas assumed to
be nonsingular, it follows thal = —I. A continuity argument
is used to establish the result for positive real systems.

This result is obtained for strictly positive real systenysels-
tending the partial Schur decomposition to one that incgud
all n of the spectral zeros af in the open right half-plane.
This gives extended matricés := [X,X] in place ofX,
Y = [Y,Y,]in place ofY, Z := [Z, Z,] in place ofZ. Then
Lemma 2.2 is applied to this system to conclude KAtY is

wherey > 0 is a real shift. With a proper choice pfthis will
provide for rapid convergence to an invariant subspaceseorr
sponding tak transformed eigenvalues of largest magnitude:

3 Algorithms for Passivity Preserving Reduced (u€ — A7 (€ + A)Q = QR
Models so that
The results of the previous section establish the passivi®y AQ = £QR, where R:= p(R—D)(R+1)~L.

and, in addition, they establish th§g, C Sg corresponding
to the spectral zeros appearing as eigenvalugsiof(3). This This gives the partial Schur decomposition as required by th

leads to the following algorithm. algorithm in Figure 1.
The implementation will require two sparse direct factariz
o tions of
function[A, B, C] = PosrealA, B, C, D, k); A —uI and A + ul.

The Cayley transformatiofi, may then be applied to an arbi-
trary vector using a blocked matrix-vector product follawy
a blocked Gaussian elimination.

Compute &-th order partial
real Schur decomposition

AQ = £QR;
Interestingly enough, computing ttieeigenvalues of largest
X=Q1:m,:); Y=Q(n+1:2n,:); magnitude for this Cayley transformation is related to catp
[Q.,S,Q,] = Svd(xTy); S « S1/2: ing k eigenvalues of largest real part for the original gadr £)
V=XQ,5 !, W=YQ,S™!; in a very special way. A circle of radiys > 1 centered at the
origin is the image of a circl®,, of radiusp—i’{”—1 centered at
A=W'AV; B=W'B; C=CV; uzzﬂ. If p is the radius of the circle centered at the origin

drawn through the selected eigenvalue(s) of smallest magni
tude, then thé& selected eigenvalues are images of the spectral
zeros interior to the circl®, (shown in Figure 2) and this
gives the interpolation points. As— 1 the interior circleD,
Figure 1: Positive Real Model Reduction tends to include all of the right half-plane.
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Figure 3: RLC ladder circuit of order 5

For generah The matrixA is simply extended with value 1
on the super diagonal, the value -1 on the subdiagonal ahd wit
the values -2, and -5 in the (1,1) and (n,n) positions. The vec
torsB, C are extended in the obvious way by introducing zero
entries in the firsk — 1 positions.

The method was applied to an RLC ladder system of order
n = 201 using an IRA method with the Cayley transformation
(shift . = .1). A reduced model of order 20 was constructed.

051

O HHHHHAT+HH 44 14+ QGBS BB DG S @ GG+ -+ i

71‘45 ,]‘. 70‘,5 0‘,5 ‘1 1?5 ‘2 24‘5 é
Figure 2: The Cayley transformed spectral zeros (+) and-inte
polation points selected (o) (reduced order spectral eros

Example. The following graphs show the result of applying
this scheme to an RLC circuit of order 201. The circuit is an
RLC ladder network. The state variables are as follows:
the voltage acrosS; z», the current througlh,; x3, the volt-
age acros§’s; x4, the current throughi.,; andzs, the voltage
acrossCs, etc. In generalp is odd andes; 1 is the voltage
across capacitaf; fori = 1,2,... ”T“, while z5; is the cur-
rent through inductoL; fori = 1,2,... "T—l There are two
resistorsR,, R» placed at either end of the “ladder” as shown
in Figure 3 for an orden = 5 example.

The input is the voltages and the output is the curreptas
shown in Figure 3. It is assumed that all the capacitors and
inductors have unit value, whilg; = % Ry = % A minimal
realization for the orden = 5 example is:

-2 1 0 0 0 0
-1 0 1 0 0 0

A=| 0 -1 0o 1 of|,B=|o0],
0 0 -1 0 1 0
0 0 0 -1 -5 2

The graphs in Figure 4 and Figure 5 illustrate the effectagsn
of the procedure. The distribution of the spectral zerosemne

1 ilar to those shown in Figure 2 for a smaller problem. That
figure shows the effect of the transformation and the interpo
tion points.
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Figure 4: Plot ofGT (—iw) + G(iw) > 0 for w € R (left) and
plot of G(s) real positives (right) .

C=[0000-2,D=1 These results are encouraging, but limited. The particesar
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Figure 5: Comparison of absolute value of transfer funation
on jw axis (left) and sigma plot of the error (right). [71
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ample given here is quite difficult to approximate with a low
order reduced model. Additional research and experimientat 9]
is needed to better understand this approach. The foIIowin&
guestions remain: 1) What is the best choice of interpafatio
points? 2) Is it possible to derive a bound on the approxionati
error? 3) What is the best choice farin the Cayley transfor-
mation? Future work will include a study of these questians 4§10]
well as a far more exhaustive set of test examples.
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