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Abstract

Balancing is one of the most efficient and most commonly used
methods for model reduction. In this note, we present a survey
of several balancing related model reduction schemes. Also we
introduce a multiplicative error bound and propose a new re-
duction method with an absolute error bound for positive real
balancing. In addition, a frequency weighted balancing tech-
nique with guaranteed stability and a simple bound on the H∞
norm of the error system, is presented.

1 Introduction
In this note we consider the linear time invariant dynamical
systems in state space form:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t) ⇔ G(s) :=

[
A B
C D

]
(1)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m.
The transfer function of the system (1) is given by G(s) :=
C(sI − A)−1B + D. The problem, we are interested in, is

to find a reduced order system Gr(s) :=
[
Ar Br

Cr Dr

]
where

Ar ∈ R
r×r, Br ∈ R

r×m, Cr ∈ R
p×r, Dr ∈ R

p×m, with
r << n such that (1) The approximation error is small, and
there exists a global error bound, (2) System properties, like
stability, passivity, boundedness are preserved and (3) The pro-
cedure is computationally stable and efficient.

One of the most efficient and most commonly used reduction
techniques is the so-called Lyapunov Balanced Model Reduc-
tion first introduced by Mullis and Roberts [14] and later in
the systems and control literature by Moore [13]. Balancing
is achieved by transforming the system into a basis where the
states which are difficult to reach are simultaneously difficult
to observe. Then, the reduced model is obtained by truncating
the states which have this property. Besides the Lyapunov bal-
ancing method, other types of balancing exist, namely stochas-
tic balancing, first proposed by Desai and Pal [4] for balanc-
ing stochastic systems and later generalized by Green [8, 9];
bounded real balancing [16], applied to the bounded-real sys-
tems; positive real balancing [4], applied for model reduction
of positive real (passive) systems; and frequency weighted bal-
ancing [5, 12, 18, 20, 6] applied to minimize the weighted error
over a selected frequency region.

In this note, we present a survey of the balancing related model

reduction methods with the corresponding error bounds when-
ever such a bound exists. In addition, for positive real bal-
ancing we introduce a multiplicative error bound and propose
a new modified passive reduction technique with an absolute
error bound. Also, based on Gawronski and Juang’ method
[6], a new frequency-weighted balanced reduction method with
guaranteed stability and a simple bound on the H∞ norm of er-
ror system is introduced. A similar work is Ober’s paper [15].
However, [15] lacks the error norms and the weighted balanc-
ing methods.

The reduced order models via any type of balanced reduction
is obtained by truncation of the corresponding balanced basis.
Hence we will use the following notation:

G(s) =


 A11 A12

A21 A22

B1

B2

C1 C2 D


 , Gr(s) =

[
A11 B1

C1 D

]

(2)
where G(s) is partitioned in the balanced basis and Gr(s) is
the truncated reduced order model with order r ≤ n.

2 Lyapunov Balancing Method
Let G(s) be the to-be-reduced model as defined in (1). Closely
related to this system are two continuous time Lyapunov equa-
tionsAP+PAT

+BB
T

= 0 andA
T Q+QA+CT

C = 0.Un-
der the assumptions that A is asymptotically stable and G(s) is
minimal, P,Q ∈ R

n×n, called the controllability and observ-
ability gramians respectively, are unique and symmetric posi-
tive definite. The square roots of the eigenvalues of the product
PQ are the so-called Hankel singular values σi(G(s)) of the
system G(s): σi(Σ) =

√
λi(PQ).

The asymptotically stable and minimal system G(s) is
called Lyapunov balanced if P = Q = Σ =
diag(σ1Im1 , · · · , σqImq

), where σ1 > σ2 > · · · > σq > 0,
mi, i = 1, · · · , q are the multiplicities of σi, and m1 + · · · +
mq = n. In this basis, states, which are difficult to reach, are
simultaneously difficult to observe and a reduced model is ob-
tained by truncating the states corresponding to small Hankel
singular values σi.

Theorem 2.1 Let the asymptotically stable and mini-
mal system G(s) has the Lyapunov balanced real-
ization as in (2) with P = Q = diag(Σ1,Σ2)
where Σ1 = diag(σ1Im1 , · · · , σkImk

) and Σ2 =
diag(σk+1Imk+1 , · · · , σqImq

). Then the reduced order
model Gr(s) in (2) is asymptotically stable, minimal and
satisfies

‖G(s)−Gr(s)‖H∞ ≤ 2 (σk+1 + · · ·+ σq). (3)



3 Stochastic Balancing Method
Let G(s) in (1) be asymptotically stable and minimal with
(i) m = p, i.e., G(s) is square, and (ii) det(D) �= 0. Let
W (s) be a minimal phase left spectral factor of G(s)G∼(s),
i.e., W∼(s)W (s) = G(s)G∼(s) where G∼(s) := GT (−s).
A realization of W (s) can be computed as W (s) =[

A BW

CW DT

]
with BW := PCT + BDT , and CW :=

D−1(C − BT
WX ) where P is the controllability gramian of

G(s), and X is the solution to the Riccati equation XA +
ATX + XBW (DDT )−1BT

WX + CT (DDT )−1C = 0.

The asymptotically stable, minimal, square and non-singular
system G(s) is called stochastically balanced if P = X =
diag(µ1It1 , · · · , µqItq

). where µ1 > µ2 > · · · > µq > 0, ti,
i = 1, · · · , q are the multiplicities of µi, and t1 + · · ·+ tq = n.
µi’s are indeed the ith Hankel singular value of the stable part
of the so-called phase matrix (W∼(s))−1G(s).

Theorem 3.1 Let the asymptotically stable, minimal,
square and non-singular system G(s) be stochastically
balanced and partitioned as in (2) with Ps = Xs =
diag(Γ1,Γ2) where Γ1 = diag(µ1It1 , · · · , µkItk

) and
Γ2 = diag(µk+1Itk+1 , · · · , µqItq

). Then the reduced order
model Gr(s) obtained by the stochastic balanced truncation is
asymptotically stable, minimal and satisfies∥∥G−1(G−Gr)

∥∥
H∞

≤ ∏q
i=k+1

1+µi

1−µi
− 1,∥∥G−1

r (G−Gr)
∥∥
H∞

≤ ∏q
i=k+1

1+µi

1−µi
− 1

In addition, if G(s) is minimum phase, Gr(s) is minimum
phase as well.

4 Bounded Real Balancing Method
An important class of the dynamical systems is the so-called
bounded real systems whose transfer function is bounded by
one on the imaginary axis. This class of systems is used
in parameterizing all stabilizing controllers of a system such
that the closed-loop system satisfies an H∞ constraint [15, 7].
G(s) in (1) is called bounded real if I − DTD > 0 and
I −G∼(jw)G(jw) > 0, for ∀w ∈ R.

It can be shown that G(s) is bounded real if and only if there
exist a Y = YT > 0 such that

ATY + YA+ CTC+
(YB + CTD)R−1

C (YB + CTD)T = 0,
(4)

where RC = I − DTD. Any solution Y of (4) lies between
two extremal solutions, i.e. 0 < Ymin ≤ Y ≤ Ymax. Ymin is
the unique solution to (4) such that A+BR−1

C (BTY +DTC)
is asymptotically stable. Define RB := I−DDT . Then a dual
Riccati equation

AZ + ZAT +BBT+
(ZCT +BDT )R−1

B (ZCT +BDT )T = 0.
(5)

is obtained where Z = ZT > 0. As in the case for (4),
any solution Z of (5) lies between two extremal solutions,
i.e. 0 < Zmin ≤ Z ≤ Zmax. (4) and (5) are called the

bounded real Riccati equations of G(s). It is easy to show
that if Y = YT > 0 is a solution to (4), then Z = Y−1 is
a solution to (5). Hence Zmin = Y−1

max and Zmax = Y−1
min.

Then a bounded real balancing transformation is obtained by
balancing Ymin with Y−1

max, which is equivalent to balancing
Ymin with Zmin.

G(s) is called bounded real balanced if
Ymin=Zmin=Y−1

max=Z−1
max=diag(ξ1Il1 , · · · , ξqIlq ) where

1 ≥ ξ1 > ξ2 > · · · > ξq > 0, li, i = 1, · · · , q are the
multiplicities of ξi, and l1 + · · · + lq = n. ξi’s are called the
bounded real singular values of G(s).

Theorem 4.1 Let the asymptotically stable, minimal, bounded
real system G(s) be bounded real balanced and partitioned
as in (2) with Ymin = Zmin = diag(Ξ1,Ξ2) where Ξ1 =
diag(ξ1Il1 , · · · , ξqIlk) and Ξ2 = diag(ξk+1Ilk+1 , · · · , ξqIlq ).
Let the reduced order model Gr(s) be obtained by trunca-
tion as in (2). Then Gr(s) is asymptotically stable, minimal,
bounded real balanced and satisfies

‖G(s)−Gr(s)‖H∞ ≤ 2
q∑

i=k+1

ξi. (6)

5 Positive Real Balancing Method
Another important class of dynamical systems is the so-called
positive real (passive) systems. In a physical sense, the pos-
itive realness means that the energy produced by the system
can never exceed the energy received by it. The asymptoti-
cally stable system G(s) in (1) is called positive real if m = p,
DT + D > 0 and G∼(jw) + G(jw) > 0, for ∀w ∈ R

where G(s) = C(sI − A)−1B +D. Define DP := D +DT .
Similarly to the bounded real case, G(s) is positive real if and
only if there exist a K = KT > 0 such that

ATK +KA+ (KB − CT )D−1
P (KB − CT )T = 0. (7)

A dual Riccati equation

AL+ LAT + (LCT −B)D−1
P (LCT −B)T = 0. (8)

is also obtained where L = LT > 0. (7) and (8) are the so-
called positive real Riccati equations of G(s). Any solutions
K and L of, respectively, (7) and (8) lie between two extremal
solutions, i.e. 0 < Kmin ≤ K ≤ Kmax and 0 < Lmin ≤ L ≤
Lmax. If K = KT > 0 is a solutions to (7), then L = K−1 is a
solution to (8). Hence Kmin = L−1

max and Kmax = L−1
min. Then

analogously to the bounded real balancing case, a positive real
balancing transformation is obtained by balancing the minimal
solutions Kmin and Lmin to (7) and (8), respectively.

G(s) is called positive real balanced if Kmin = Lmin =
K−1

max = L−1
max = diag(π1Is1 , · · · , πqIsq

) where 1 ≥ π1 >
π2 > · · · > πq > 0, si, i = 1, · · · , q are the multiplicities
of πi, and s1 + · · · + sq = n. πi are called the positive real
singular values of G(s).

Denote by M, the Moebius transformation, defined as

Ψ(s) M�−→ G(s) = (I − Ψ)−1(I + Ψ). It is well known that
applying a Moebius transformation on a square bounded real



Ψ(s) yields a positive real system. M is a bijection with in-

verse G(s)
M−1

�−→ Ψ = (G(s)− I)−1(G(s) + I)−1, i.e., given
a positive real system G(s), Ψ =M−1(G(s)) is bounded real.
Then one can show that Ψ(s) is bounded real balanced with
bounded real gramians Ξ if and only if G(s) =M(Ψ) is posi-
tive real balanced with positive real gramians Π = Ξ.

Theorem 5.1 Let the asymptotically stable, minimal, positive
real system G(s) be positive real balanced and parti-
tioned as in (2) with Kmin = Lmin = diag(Π1,Π2)
where Π1 = diag(π1Is1 , · · · , πkIsk

) and Π2 =
diag(πk+1Isk+1 , · · · , πqIsq

). Then Gr(s) obtained by
the positive real balanced truncation is asymptotically stable,
minimal and positive real balanced.

Note that there exists no results on the norm of the error
G(s)−Gr(s). It is clear that the error results of the stochastic
balancing can be employed for positive-real balancing as well.
However, in that case the bounds will be in terms of the spec-
tral factors of G(s), not in terms of G(s); that is, we will have
bounds on the error ‖V −1(V −Vr)‖∞ where G+G∼ = V ∼V
and Gr + G∼

r = V ∼
r Vr. Towards this goal, we state the main

result of this section which gives an absolute error bound for
(DT + G(s))−1 − (DT + Gr(s))−1 and a multiplicative-like
error bound directly in terms of G(s) and Gr(s).

Theorem 5.2 Given the asymptotically stable positive real
system G(s), let Gr(s) be obtained by the positive real bal-
anced truncation as above. Define R2 := (D + DT )−1,
α1 := 2 ‖R‖2

∑q
i=k+1 πi and α2 := ‖DT +G(s)‖H∞ . Then,

‖(DT +G(s))−1 − (DT +Gr(s))−1‖H∞ ≤ α1 (9)

‖ (
DT +Gr(s)

)−1
(G(s)−Gr(s)) ‖H∞ ≤ α1 α2 (10)

We state (10) as a multiplicative-like error bound rather than an
exact multiplicative error bound because of the term Gr(s) +
DT . However, one can easily see that it is a multiplicative
error in terms of G(s) +DT and Gr(s) +DT . One can view
(10) also as a weighted error bound where only input weighting
exists and is given by (DT +Gr(s))−1.

5.1 A modified positive real balancing method with an ab-
solute error bound

In this section, we will introduce a modified positive real bal-
ancing method for a certain subclass of positive real systems.
Then based on Theorem 5.2, we will derive an absolute error
bound for the proposed method.

Given a positive real system G(s), define FG(s) as FG(s) +
R2 = (G(s) +DT )−1. It is clear that FG(s) + R2 is positive
real. To apply the modified algorithm, we will assume that
FG(s) +R2/2 is positive real as well. Therefore, the modified
algorithm discussed below will be applicable to the family

D :=
{
G(s) : G(s) and FG(s) +R2/2 is positive real

}
Through out this section, by positive real systems we mean
the positive real systems that belong to the family D. The

modified positive real truncation is obtained as follows: Given
G(s) ∈ D, define H(s) with the corresponding D-term DH

as DT
H + H(s) = (DT + G(s))−1. Since G ∈ D, H(s)

is positive real. Let π̄i denote the positive real singular val-
ues of H(s). Then apply the positive real balanced truncation
to H(s) to obtain Hr(s) by keeping largest k modified pos-
itive real singular values π̄i of H(s). The final reduced or-
der model Ḡr(s) is constructed from Hr(s) using the equality
D̄r + Ḡr(s) = (DT

H + Hr(s))−1. By construction D̄r = D.
It follows from the definition of D that since Hr(s) ∈ D,
Ḡr(s) is positive real as well . Notice that the state-space
representations of H(s), Hr(s) and Ḡr(s) are easily obtained
through the formulae DT

H + H(s) = (DT + G(s))−1 and
D̄r + Ḡr(s) = (DT

H +Hr(s))−1.

Theorem 5.3 Given the positive real system G(s) ∈ D, let
Ḡr(s) be obtained by the modified positive real balancing
method introduced above. Then Ḡr(s) is asymptotically sta-
ble, positive real and satisfies

‖G(s)− Ḡr(s) ‖H∞ ≤ 2 ‖R−1‖2 (π̄k+1 + · · · π̄q). (11)

By Theorem 5.3, we approximate a positive real system G(s)
by a reduced order positive real system with an absolute error
bound on the H∞ norm of the error if G(s) ∈ D. This er-
ror result is analogous to the error result (3) of the Lyapunov
balancing and (6) of the bounded real balancing. As Example
7 illustrates if G(s) ∈ D, the proposed method is a promis-
ing alternative to the positive real balancing. The condition
G(s) ∈ D is still under examination, but we believe, from the
experience we gained through a vast amount of numerical ex-
amples that, it is not a restrictive condition.

6 Frequency Weighted Balancing Method
All the balancing methods introduced above try to approxi-
mate the full order model G(s) over all frequencies. How-
ever, in many applications one is only interested in a certain
frequency range. This problem leads to the so-called the fre-
quency weighted balancing method. Enns’ [5], Lin and Chiu’s
[12], Wang’s et al. [18] and Zhou’s [20] frequency weighted
balanced reduction methods are the most common approaches
to attack this problem. These methods construct some input
weighting Wi(s) and output weighting Wo(s) and try to min-
imize the weighted error ‖Wo(s)(G(s)−Gr(s))Wi(s) ‖H∞ .
We want to mention that Wi(s) and Wo(s) are some fictitious
quantities unless they are specified by the user. In most cases,
the original problem is to approximate G(s) over a frequency
interval [ w1, w2 ] and no input and output weighting is given.
Towards this goal, Gawronski and Juang [6] introduced another
type of weighted balanced reduction method where for a given
frequency band [ w1, w2 ], the construction of the weights are
avoided simply by using the frequency domain representation
of the gramians. We will propose a frequency weighted balanc-
ing method as a modification to [6] which guarantees asymp-
totic stability and provides a simple error bound.



6.1 Gawronski and Juang’s frequency weighted balanced
reduction method [6]

In the frequency domain, the controllability gramian P is given
by P = 1

2π

∫ +∞
−∞ H(w)BBTH∗(w)dw where Hw := (jwI −

A)−1. For a given frequency band Ω = [w1, w2 ] of inter-
est, Gawronski and Juang suggested to choose the frequency
weighted controllability gramian as

PΩ := P(w2)− P(w1) where (12)

P(w) = 1
2π

∫ +w

−w

H(w)BBTH∗(w)dw. (13)

Some tedious manipulations yield that, see [6] for details,
P(w) is the solution to the Lyapunov equation AP(w) +
P(w)AT + Wc(w) = 0, where Wc(w) := S(w)BBT +
BBTS∗(w) and S(w) := j

2π ln((jwI + A)(−jwI + A)−1).
Therefore, the weighted gramian PΩ in (12) is obtained by
solving the Lyapunov equation APΩ + PΩA

T +Wc(Ω) = 0
where Wc(Ω) :=Wc(w2)−Wc(w1). Define QΩ, the weighted
observability gramian, analogous to (12) and (13). The sim-
ilar argument yields ATQΩ + QΩA

T + Wo(Ω) = 0, where
Wo(Ω) := Wo(w2)−Wo(w1), and Wo(w) := S∗(w)CTC +
CTCS(w). Hence the computations of PΩ and QΩ require
evaluating the logarithm in S(w) in addition to solving two
Lyapunov equations. For small-to-medium scale problems for
which an exact balancing can be computed, S(w) can be effi-
ciently computed as well.

Gawronski and Juang’s frequency weighting method is ob-
tained by balancing PΩ against QΩ, i.e. PΩ = QΩ =
diag(σn1In1 , · · · , σnq

Inq
) where ni are the multiplicities of

each singular value σi and n1 + · · · + nq = n. Then the re-
duced order model is obtained by truncation of the balanced
basis. However, since Wc(Ω) and Wo(Ω) are not guaranteed
to be positive definite, stability of the reduced model is never
guaranteed.

As seen from the above discussion, the constructions of input
and output weightings Wi(s) and Wo(s) are avoided by defin-
ing the gramians over the specified frequency range. Indeed
one can show that this method is equivalent to Enns’s method
where Wi(s) and Wo(s) are chosen as the perfect band-pass
filters ( i.e. an infinite dimensional realization of Wi(s) and
Wo(s)) over the frequency band [ w1, w2 ].

6.2 The modified frequency weighted balanced truncation
method

In this section, we will introduce a modification to Gawronski
and Juang’s and obtain a frequency balancing method which
guarantees stability and provides a simple error result.

Let Wc(Ω) := MΛMT = Mdiag(λ1, · · · , λn)MT and
Wo(Ω) := N∆NT = Ndiag(δ1, · · · , δn)NT be the EVD
where MMT = NNT = In with |λ1| ≥ · · · |λn| ≥ 0
and |δ1| ≥ · · · |δn| ≥ 0. Let ρ := rank(Wc(Ω)) and
, = rank(Wo(Ω)). Inspired by Wang’s et al. [18] approach,
define B̂ := Mdiag(|λ1|1/2, · · · , |λρ|1/2, · · · , 0, · · · , 0) and
Ĉ := diag(|δ1|1/2, · · · , |δ�|1/2, · · · , 0, · · · , 0)NT . Then our

modified frequency weighted gramians P̄Ω and Q̄Ω are ob-
tained as the solutions to AP̄Ω + P̄ΩA

T + B̂B̂T = 0 and
Q̄ΩA + AT Q̄Ω + ĈT Ĉ = 0; consequently the modified fre-
quency weighted balancing is obtained by diagonalizing P̄Ω

and Q̄Ω, i.e. P̄Ω = Q̄Ω = diag(σ̄τ1Iτ1 , · · · , σ̄τq
Iτq
) where σ̄i

are the modified singular values, τi are the multiplicities of σ̄i

and τ1 + · · ·+ τq = n.

Theorem 6.1 Let the asymptotically stable system G(s) be
in the modified frequency balanced basis as discussed above,
and also let Gr be obtained by the truncation of this bal-
anced basis. Assume that rank([ B B̂ ]) = rank(B̂) and
rank([ CT ĈT ]) = rank(ĈT ) . Then Gr(s) is asymptotically
stable, minimal and satisfies

‖ G(s)−Gr(s) ‖H∞ ≤ 2‖JB‖‖JC‖(σ̄k+1 + · · ·+ σ̄q)

where JB := diag(|λ1|−1/2, · · · , |λρ|−1/2, 0, · · · , 0)MTB
and JC := CNdiag(|δ1|−1/2, · · · , |δ�|−1/2, 0, · · · , 0).

Note that the assumption rank([ B B̂ ]) = rank(B̂) is also
made in Wang’s et al. [18] approach. Define G(Z) := BZ +
ZTBT . Let G(Z) = MΛMT be the EVD of G(Z). Denote
B̂ = M | Λ |1/2. It was shown in [18] that for almost all
Z ∈ C

r1×n, rank([ B B̂ ]) = rank(B̂). Notice that we have
the exact setup with Z = BT (S(w2) − S(w1))∗. Hence we
expect that our approach will apply in most cases. Indeed, for
a vast amount of simulations, the assumption has always been
satisfied and it does not seem to be a difficulty in practice..

7 An example on positive-real balancing

Consider a circuit, G(s) consisting of 50 sections intercon-
nected in cascade; each section is as shown in Figure 1-a. The
input is the voltage V and the output is the current I , of the
first section. The order of G(s) is then n = 100. We apply 3
methods, namely (i) Positive real balanced reduction (PRBR)
(ii) Modified positive real balanced reduction (MPRBR) and
(iii) Lyapunov balanced reduction (LBR); and reduce the order
to r = 10. We note that G(s) ∈ D, hence allowing the usage
of MPRBR. The largest 40 of the normalized Hankel singular
values σi, the positive real singular values πi and the modified
positive real singular values π̄i of G(s) are shown in Figure
1-b. As the figure illustrates, they all show a very similar de-
cay behavior. This means that for positive real systems, πi and
π̄i play the role of the Hankel singular values. Hence each of
these 3 sets of singular values reveal that the decay rate is fast,
consequently G(s) is easy to approximate.

The sigma plots of the reduced and error systems are depicted
in Figure 1-c and 2-a respectively. Let Gb(s), Gp(s) and
Gm(s) denote the reduced models obtained by, respectively,
LBR, PRBR and MPRBR. Gm(s) and Gb(s) are very close
and slightly better than Gp(s). All the error norms and corre-
sponding upper bounds are tabulated in Table 1. The proposed
multiplicative error bound (10) for Gp(s) + D and the abso-
lute error bound (11) for Gm(s) are tight like the upper bound
(3) for Gb(s). These results indicate that when G(s) ∈ D,
MPRBR is a promising alternative to both PRBR and LBR.
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Figure 1: Circuit Example: (a) One section of the circuit (b) σi, πi

and π̄i (c) σmax plot of the FOM and ROM

8 An example on frequency weighted balancing
The 120th order SISO full order model (FOM) describes the
dynamics of a portable CD player. The sigma plot of the FOM
is shown in Figure 2-b. To match the maximum peak of the
sigma plot, first we choose w1 = 10 and w2 = 1× 103. We re-
duce the order to r = 15 by applying (i) Gawronski and Juang’s
method (GFBT), (ii) our modified frequency balancing method
(MGFBT) and (iii) (unweighted) Lyapunov balanced trunca-
tion (LBT); and, respectively, obtain the reduced models (i)
Gf (s), (ii) Gmf (s) and (iii) Gb(s). The sigma plots of the re-
duced and error systems are depicted in Figure 2-b and Figure
2-c respectively. As Figure 2-c shows Gf (s) and Gmf (s) out-
perform Gb(s) in the chosen frequency interval. Furthermore,
Gmf (s) and G(s) behaves very similarly. Hence, for this ex-
ample, our modification to GFBT did not have a negative im-
pact on the quality of approximant in the specified region, on
the contrary it added the asymptotic stability and an absolute
error bound. The H∞ errors and corresponding error norms
are tabulated in Table 2-a. Now we choose w1 = 5 × 103 and
w2 = 1 × 105 to match the ripple in this interval. The sigma

Exact error Upper bound
‖G − Gb||H∞ 2.7 × 10−5 2.9 × 10−5

‖G − Gm||H∞ 3 × 10−5 3.5 × 10−5

‖G − Gp||H∞ 7.4 × 10−5

‖GpD(G − Gp)‖H∞ 5.9 × 10−6 1.4 × 10−5

‖GD − GpD‖H∞ 4.6. × 10−7 7.2 × 10−7

Table 1: Error norms and bounds for the Circuit Example where
GD(s) = (DT + G(s))−1 and GpD(s) = (DT + Gp(s))

−1

plots are shown in Figures 3-a and 3-b. As expected, Gf (s)
and Gmf (s) match G(s) and outperforms Gb(s) in the speci-
fied interval . On the other hand, in the interval [w1, w2 ], even
though Gmf (s) matches G(s) quite well, Gf (s) behaves bet-
ter than Gmf (s). This is because of the fact that the modified
gramians are no longer the exact frequency-limited gramians,
but are close to them. Hence Gmf (s) performs slightly worse
than Gf (s) over [ w1, w2 ]. However the over all response is
much better. Notice that while Gmf (s)matches the peak of the
sigma plot over [ 10, 103 ] rad/sec, Gf (s) is far from G(s) over
this range. The conclusion is that there is a trade-off between
the guaranteed stability and the performance in the specified
frequency interval. This is also valid for Wang’s et al. modi-
fication to Enns’ methods to guarantee stability [18]. The H∞
norms and the upper bounds are presented in Table 2-b. The up-
per bound for ‖G(s) − Gmf (s)||H∞ is pessimistic because of
the fact although MFBT is a frequency weighted method, the
upper bound is an H∞ bound for the whole frequency range.

(a)

Exact error Upper bound
‖G(s) − Gb(s)||H∞ 4.23 × 10−2 2.36 × 10−1

‖G(s) − Gmf (s)||H∞ 3.84 × 10−2 3.40 × 10−1

‖G(s) − Gf (s)||H∞ 3.85 × 10−2

(b)

Exact error Upper bound
‖G(s) − Gb(s)||H∞ 4.23 × 10−2 2.36 × 10−1

‖G(s) − Gmf (s)||H∞ 1.45 × 100 1.70 × 101

‖G(s) − Gf (s)||H∞ 6.83 × 101

Table 2: Error norms for the CD Player Example for (a) w1 = 10

and w2 = 1 × 103 and (b) w1 = 5 × 103 and w2 = 1 × 105

9 Conclusions
We have presented a survey of balancing related model reduc-
tion schemes and their corresponding error norms. Two new
methods are proposed for positive real and frequency weighted
balancing. Moreover, a multiplicative error bound has been in-
troduced for positive real balancing. Two numerical examples
have been illustrated to verify the efficiency of the proposed
algorithms.
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