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Abstract

Two algorithms for the solution of discrete-time periodic Lya-
punov equations are presented. The first one is a variant of the
squared Smith iteration, which is solely based on matrix mul-
tiplications and thus attractive to parallel computing environ-
ments. The second algorithm is based on Krylov subspaces and
employs a recently developed variant of the block Arnoldi algo-
rithm. It is particularly suited for periodic Lyapunov equations
with large and sparse coefficient matrices. We also demonstrate
how these methods can be applied to balanced truncation model
reduction of periodic discrete-time systems and the solution of
periodic Riccati equations.

1 Introduction

A discrete-time periodicLyapunov equation(or periodicStein
equation) is a system of equations of the form

A(l)T X(l+1)A(l) −X(l) = −W (l) (1)

for l = 1, 2, . . ., where the coefficientsA(l),W (l) and the so-
lutions X(l) are realn × n matrices which are periodic with
periodp, i.e., A(l+p) = A(l), W (l+p) = W (l) andX(l+p) =
X(l). Stacking (1) yields the equivalent lifted representation

ATXA− X = −W, (2)

where

A =


0 A(p)

A(1) ...
...

...
A(p−1) 0

 (3)

andX , W arepn × pn block diagonal matrices with diagonal
entriesX(1), . . . , X(p) andW (1), . . . ,W (p), respectively.

Such equations appear in solving periodic state-feedback prob-
lems and computing gradients for optimal periodic output
feedback problems [21, 24]. Further applications related to
discrete-time periodic systems include the solution of Riccati
equations [4], minimal realisations [22] and model reduction
[15, 23].

It is well known that (2) has a unique solution if and only ifA
has no reciprocal eigenvalues. This equalises the condition that
the productA(k)A(k−1) · · ·A(1) has no reciprocal eigenvalues.
Furthermore, it was shown in [6] that the solutionX of (2)
is block diagonal, this implies that the diagonal blocks ofX
represent the solution of (1).

In this paper, we consider periodic Lyapunov equations with
large and sparse coefficient matricesA(1), . . . , A(p). In this
case, all known solution algorithms [7, 19, 21] fail to solve (1)
due to excessively high memory and computing time require-
ments.

We show two ways to remedy this situation. The first one is
presented in Section 2 and is an extension of the squared Smith
Iteration which has already been successfully applied to the
casep = 1 [3]. Although the whole method is based on matrix-
by-matrix multiplications, and thus very attractive to parallel
computing environments, it does not help very much reduce
memory requirements. Consequently, the problem sizes that
can be tackled by this method are still very limited. In Section 3
we therefore present the second way, a Krylov subspace based
method. If all coefficient matrices are sparse this method has
the potential to reduce memory and time requirements to a tiny
fraction. Again, such a method has already been implemented
for the casep = 1, see e.g. [12]. Sections 4 and 5 demonstrate
how the newly developed methods can be applied to balanced
truncation model reduction and the solution of periodic Riccati
equations.

2 The Squared Smith Iteration

The Lyapunov equation (2) can be formulated in fix point form
X = ATXA+W, from which the fix point iteration

X0 := W, Xk+1 := ATXkA+W, k = 0, 1, . . . ,

can be derived. The convergence of this iteration to
X is guaranteed ifρ(A) < 1, which is equivalent to
ρ(A(p)A(p−1) · · ·A(1)) < 1. The convergence rate is lin-
ear, a quadratically convergent version was suggested in [17].
This so calledsquared Smith iterationis obtained by setting
A0 := A,X0 := W and considering

Xk+1 := AT
kXkAk + Xk, Ak+1 = A2

k, k = 0, 1, . . . . (4)

If we want to boil this equation down to the matrix coefficient
level we need to deal with the seemingly wild reordering of



the coefficientsA(l)
k andX

(l)
k . A helpful tool is provided by

permutation function and matrices.

Definition 1 Let σ : {1, . . . , p} → {1, . . . , p} be a permuta-
tion, thenP(σ) is thepn × pn block permutation matrix with
n× n block entries

Pij(σ) :=
{

In if σ(i) = j,
0 otherwise,

wherei, j = 1, . . . , p andIn is then× n identity matrix.

The few facts we need to know about permutations are sum-
marised in the following lemma, where diag(D(1), . . . , D(p))
denotes thepn × pn block diagonal matrix with diagonal en-
triesD(1), . . . , D(p).

Lemma 2

1. P(σ)T = P(σ−1), P (σ ◦ σ) = P (σ)2.

2. Letσ0(1) := p, σ0(2) = 1, . . . , σ0(p) = p− 1, then

P (σ0)TA = diag(A(1), . . . , A(p)).

3. LetD = diag(D(1), . . . , D(p)), then

P(σ)TDP(σ) = diag(Dσ−1(1), . . . , Dσ−1(p)).

Proof. By direct computation.

Now we can rewrite (4) so that each factor is in block diagonal
form:

Xk+1 := (P (σk)Ak)T (P (σk)TXkP (σk))(P (σk)Ak) + Xk

Ak+1 := A2
k, σk+1 := σk ◦ σk,

whereσ0 is defined as in Lemma 2. This not only proves that
the iteratesXk+1 stay in block diagonal form it also enables us
to rewrite (4) in terms of the coefficient matrices:

X
(l)
0 := W (l),

A
(l)
0 := A(l),

X
(l)
k+1 := A

(l)T
k X

σ−1
k (l)

k A
(l)
k + X

(l)
k ,

A
(l)
k+1 := A

σ−1
k (l)

k A
(l)
k ,

σk+1 := σk ◦ σk, l = 1, . . . , p.

(5)

Let ρ := ρ(A(p)A(p−1) · · ·A(1)) < 1, then the convergence
theory of squared Smith iterations [17] applied to (4) shows
that for anyε > 0 there is a constantCε > 0 so that

‖X(l) −X
(l)
k ‖2 ≤ Cε(ρ− ε)2

k/p · max
l′∈{1,...,p}

‖W (l′)‖2. (6)

If the right-hand side matrixW in (2) is given in factored form,
W = BBT , thenW is symmetric and positive semidefinite.
The same holds for the solution matrixX provided thatρ < 1,
see e.g. [9]. Furthermore, ifB has low rank, thenX stands good

chances that its numerical rank is also comparably low [1]. We
can now use the following modification of the iteration (5) to
reduce its memory requirements and enhance its numerical ac-
curacy. LetB = diag(B(1), . . . , B(p)), whereB(l) is ann×ml

matrix withml = rank(B(l)) ≤ n, then

L
(l)
0 := B(l),

A
(l)
0 := A(l),

L̂
(l)
k+1 :=

[
L

σ−1
k (l)

k , A
(l)T
k L

σ−1
k (l)

k

]
,

A
(l)
k+1 := A

σ−1
k (l)

k A
(l)
k ,

σk+1 := σk ◦ σk, l = 1, . . . , p.

(7)

If we set L(l)
k+1 = L̂

(l)
k+1 in (7) then its number of columns

would double in each iteration. Instead, we propose to compute
a rank-revealingLQ-factorization [10]

L̂
(l)
k+1 =

[
L

(l)
k+1 0

]
Q

(l)
k+1,

where Q
(l)
k+1 is an orthonormal matrix and rank(L̂(l)

k+1) =

rank(L(l)
k+1). As the iteration proceedsL(l)

k L
(l)T
k converges to

X
(l)
k with the rate given by (6). It is pointed out in [3] that this

approach could also be used to compute a low rank approxi-
mation ofX(l)

k , either by increasing the tolerance threshold for

determining the numerical rank of̂L(l)
k+1 or by bounding the

maximal number of columns inL(l)
k+1.

The iteration (5) is solely based on matrix multiplications mak-
ing it attractive to parallel computing environments. Existent
algorithms for solving periodic Lyapunov equations are based
on periodic Schur and Hessenberg decompositions which - as
the standard Schur and Hessenberg decompositions - do not
easily yield parallelisable algorithms for their computation.
Thus, it can be expected that the iterations (5) or (7) greatly
outperform existent algorithms when the solution of the peri-
odic Lyapunov equation (1) is computed on a parallel machine.
This has been confirmed for the casep = 1 [3].

It must be said, however, that the need for saving the coefficient
matrices ofA2k

makes squared Smith iterations impracticable
when the coefficient matrices ofA are large and sparse or only
implicitly, through their action on a vectorx, defined. In the
next section we therefore present an alternative way for com-
puting an approximate solution of (1).

3 A Krylov Subspace Method

In the following we assume that each right hand side of
the periodic Lyapunov equation (1) is factored intoW (l) =
B(l)B(l)T , whereB(l) ∈ Rn×ml has full rank. LetB =
diag(B(1), . . . , B(p)), then

Kk(A,B) = span(B,AB, . . . ,Ak−1B)

is called ablock Krylov subspaceof orderk. Krylov subspace
based methods for the standard Lyapunov equation (2), see



e.g. [12], first compute the solutionY of the reduced Lyapunov
equation

(UT
k AUk)TY(UT

k AUk)− Y = −(UT
k B)(UT

k B)T , (8)

whereUk is an orthonormal basis ofKk(A,B). Then, for suffi-
ciently largek, the matrixUkYUT

k is a good approximation of
X , the solution of the unreduced Lyapunov equation (2). In the
case of periodic Lyapunov equations it is crucial to chooseUk

in block diagonal form so that the structures ofA andB carry
over toUT

k AUk andUT
k B.

A block Arnoldi decompositionof orderk has the form

AUk = Uk+1Ĥk, (9)

where the orthonormal columns of the matrixUk+1 contain
those ofUk. It is well known that under certain conditions on
Ĥk the existence of such a decomposition implies thatUk is the
basis of a block Krylov subspace. We now give a brief outline
of a block Arnoldi-like algorithm that computes a decomposi-
tion of the form (9), whereUk is a block diagonal matrix. A
detailed analysis of this algorithm and its implementation is-
sues are currently under investigation and will be published in
a forthcoming paper.

Algorithm 3
Input: MatricesA(l) ∈ Rn×n , B(l) ∈ Rn×ml ,

l = 1, . . . , p, and an integerk ≤ n.

Output: MatricesU
(l)
[k] , U

(l)
[k+1], Ĥ

(l)
k , l = 1, . . . , p,

so that

Uk = diag(U (1)
[k] , . . . , U

(p)
[k] ),

Uk+1 = diag(U (1)
[k+1], . . . , U

(p)
[k+1]),

Ĥk =


0 Ĥ

(p)
k

Ĥ
(1)
k

...

...
...

Ĥ
(p−1)
k 0


satisfy a block Arnoldi decomposition (9).

FORl = 1, . . . , p

Compute aQR decompositionB(l) = U
(l)
1 R(l).

U
(l)
[1] = U

(l)
1

END FOR

FORk = 1, 2, . . .

FORl = 1, . . . , p

IF l = 1 THEN

l′ = p

ELSE

l′ = l − 1

END IF

F
(l)
k = U

(l)T
[k] A(l′)U

(l′)
k

V = A(l′)U
(l′)
k − U

(l)
[k]F

(l)
k

Compute a rank-revealingQR decomposition:

V P = U
(l)
k+1R.

H
(l)
k+1,k = RPT

Ĥ
(l)
k =

[
Ĥ

(l)
k−1 F

(l)
k

0 H
(l)
k+1,k

]

U
(l)
[k+1] = [U (l)

[k] , U
(l)
k+1]

END FOR

END FOR

It is important to use a rank-revealingQR decomposition [10]
for the computation ofU (l)

k+1; it not only helps reduce memory
requirements it also guarantees that the algorithm returns aUk

which is an orthonormal basis ofKk(A,B). Note that all coef-
ficients necessary to define the reduced Lyapunov equation (8)
are computed by the algorithm. Setting

H
(l)
k =

[
Ĥ

(l)
k−1 F

(l)
k

]
it can be shown that

UT
k AUk =


0 H

(p)
k

H
(1)
k

...

...
...

H
(p−1)
k 0

 =: Hk,

UT
k B = diag(R(1), . . . , R(p)) =: R,

where the upper triangular matricesR(l) are computed in the
first loop of Algorithm 3.

The reduced Lyapunov equation

HT
k YHk − Y = −RRT (10)

has again a block diagonal solutionY = diag(Y (1), . . . , Y (p)).
Furthermore, equation (8) is equivalent to

H
(l)T
k Y (l+1)H

(l)
k − Y (l) = −R(l)R(l)T . (11)

However, there is a fundamental difference between the orig-
inal periodic Lyapunov equation (1) and its reduced counter-
part (11). While all matricesA(l) aren× n the coefficient ma-
trices of (11) may have time-varying dimensions, i.e.,H

(l)
k ∈

Rnl×nl+1 , where1 ≤ nl ≤ n andn1 = np+1. There are some
preprocessing steps necessary so that (11) can be solved with
existent algorithms [22]. Note that even the assumption that
the original coefficient matricesA(l) have constant dimensions
could be omitted.



4 Application to Balanced Truncation

We now show how the solution of periodic Lyapunov equa-
tions can be used to produce reduced order models of thelinear
discrete-time periodic system

xl+1 = A(l)xl + B(l)ul

yl = C(l)xl,
(12)

where the matricesA(l) ∈ Rn×n, B(l) ∈ Rn×m andC(l) ∈
Rn×m are periodic with periodp. Moreover, it is assumed that
the system (12) is asymptotically stable, i.e.,

ρ(A(p)A(p−1) · · ·A(1)) < 1.

Intimately related to the system properties of (12) are the solu-
tions of the two periodic Lyapunov equations

A(l)P (l)A(l)T − P (l+1) = −B(l)B(l)T , (13)

A(l)T Q(l+1)A(l) −Q(l) = −C(l)T C(l). (14)

The matricesP (1), . . . , P (p) and Q(1), . . . , Q(p) form the so
called reachability and observability Gramians, respectively.
Note that (13) is not a periodic Lyapunov equation in the strict
sense of (1). However, the algorithms derived in Sections 2
and 3 can also be applied to (14) by an appropriate index
change.

Now let P (l) = S(l)T S(l) and Q(l) = R(l)T R(l) be the
Cholesky factorisations of the Gramians. In analogy to the case
p = 1 [20] it was shown in [23] how to use ordered singular
value decompositions

R(l)S(l)T =
[
U

(l)
1 , U

(l)
2

] [
Σ(l)

1 0
0 Σ(l)

2

] [
V

(l)
1 , V

(l)
2

]T

,

(15)
l = 1, . . . , p, whereΣ(l)

1 ,Σ(l)
2 are diagonal and the diagonal en-

tries ofΣ(l)
1 are positive, to obtain a balanced truncated model

of (12). From the decompositions above define the truncation
matrices

L(l) =
(
Σ(l)

1

)−1/2

U
(l)T
1 R(l), T (l) = S(l)T V

(l)
1

(
Σ(l)

1

)−1/2

and let

A(l)
r = L(l+1)A(l)T (l), B(l)

r = L(l+1)B(l), C(l)
r = C(l)T (l),

whereL(p+1) = L(1). Then the reduced system is given by

x̃l+1 = A
(l)
r x̃l + B

(l)
r ul

ỹl = C
(l)
r x̃l.

(16)

As in the previous section it is not necessary to insist on time
constant dimensions, neither for the original system nor for the
reduced system.

The truncation error of the reduction can be bounded as fol-
lows.

Theorem 4 [23] Let G andGr be the transfer function matri-
ces associated with (12) and (16), respectively. Then

‖G(z)−Gr(z)‖∞ ≤ 2
p∑

l=1

tr(Σ(l)
2 ),

whereΣ(p)
2 is defined in (15).

It suggests itself to combine the Krylov subspace method de-
rived in Section 3 with balanced truncation model reduction.
This leads to a periodic variant of oblique projection methods
for large scale model reduction [13].

5 Application to Periodic Riccati Equations

Consider thediscrete-time periodic Riccati equation

0 = C(l)T Q(l)C(l) −X(l) + A(l)T X(l+1)A(l)

−A(l)T X(l+1)B(l+1)·
(R(l+1) + B(l+1)T X(l+1)B(l+1))−1·
B(l+1)T X(l+1)A(l),

(17)

where the coefficient matrices areA(l) ∈ Rn×n, B(l) ∈
Rn×m, C(l) ∈ Rn×m and Q(l) ∈ Rm×m, R(l) ∈ Rm×m

with Q(l)T = Q(l) ≥ 0, R(l)T = R(l) > 0. All matrices
are assumed to be periodic with periodp. Under certain as-
sumptions [5], equation (17) has a unique solutionX(l) with
X(l) = X(l)T ≥ 0. The periodic Riccati equation is an impor-
tant tool to analyse and solve stabilization and linear-quadratic
periodic optimal control problems [5, 19, 18].

Similar to the periodic Lyapunov equation, we can embed (17)
in a standard Riccati equation,

0 = CTQC − X +ATXA
−ATXB(R+ BTXB)−1BTXA,

(18)

whereA is defined in (3) andB, C,Q,R are block diago-
nal matrices with diagonal entriesB(l), C(l), Q(l), R(l), l =
1, . . . , p, respectively. If (18) has a unique positive semidefi-
nite solutionX thenX is block diagonal with diagonal entries
X(1), . . . , X(p), which form a solution of (17) [5].

Applying Newton’s method to (18) leads to the following iter-
ation [11, 16].

Algorithm 5

FORk = 0, 1, 2, . . .

Kk = (R+ BTXkB)−1BTXkA

Ak = A− BKk

Rk = CTQC − Xk +ATXkA

−ATXkB(R+ BTXkB)−1BTXkA

Compute the solutionNk of the periodic Lyapunov

equation

AT
kNkAk −Nk = −Rk. (19)



Xk+1 = Xk +Nk

END FOR

It is easy to check that ifX0 is block diagonal then the iter-
atesX1,X2, . . . stay block diagonal. Thus, Algorithm 5 can be
rewritten in terms of the coefficient matrices. The derivation
of the corresponding algorithm is straightforward and there-
fore omitted. The following conditions [11, 16] guarantee that
the iteratesXk converge globally quadratic toX , the solution
of (18):

1. (A,B) is stabilisable,

2. there exists a unique stabilising solutionX so thatR +
BTXB is positive definite,

3. X0 is stabilising.

While 1 and 2 are standard control theoretic assumptions it is
a major flaw of Algorithm 5 that it requires a stabilising ini-
tial guessX0. Also, a poor initial guess may lead to a large
error‖X − X0‖ which may imply that the initial convergence
is very slow. Since the periodic Lyapunov equation (19) must
be solved in each iteration it is important to achieve rapid con-
vergence.

For these and other reasons, Newton’s method should only be
used as a defect correction method or for iterative refinement
of an approximate solution obtained by a different algorithm.
Following [2] we propose to use Algorithm 5 in a hybrid set-
ting. First, a structure-preserving but potentially unstable al-
gorithm [8] is used to compute a stabilising initial guessX0.
Then, Algorithm 5 is used to refine this solution. From the ex-
periences withp = 1 it can be expected that usually no more
than2 Newton iterations are necessary to obtain an approxi-
mate solution of (17) with sufficiently small residual [2].

6 Conclusions

We have presented new variants of the squared Smith iteration
and Krylov subspace based methods for the approximate solu-
tion of discrete-time periodic Lyapunov equations. It must be
mentioned that these methods have not been implemented yet
and numerical results are still to come. However, the known
results for the casep = 1 may indicate that our new algorithms
provide a viable alternative to existing algorithms when the co-
efficients matrices become large and sparse. An implementa-
tion of the oblique projection method outlined at the end of Sec-
tion 3 is currently under progress. At this time, this seems to
be the most promising method for model reduction of discrete-
time periodic systems.
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