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Keywords: Periodic discrete-time systems, Lyapunov equé#t-is well known that (2) has a unique solution if and only4f

tions, model reduction, Riccati equations has no reciprocal eigenvalues. This equalises the condition that
the productd® A1) ... A(1) has no reciprocal eigenvalues.
Abstract Furthermore, it was shown in [6] that the solutiah of (2)

is block diagonal, this implies that the diagonal blockstof
Two algorithms for the solution of discrete-time periodic Lyarepresent the solution of (1).
punov equations are presented. The first one is a variant of &his paper, we consider periodic Lyapunov equations with
squared Smith iteration, which is solely based on matrix my rge and sp,arse coefficient matrica&l) A® . In this

tiplications and thus attractive to parallel computing enviror&-ase, all known solution algorithms [7, 19, 21] fail to solve (1)
ments. The second algorithm is based on Krylov subspaces

GUQ to excessively high memory and computing time require-
employs a recently developed variant of the bIockArnoIdiaIggﬁents yhig y puting a

rithm. It is particularly suited for periodic Lyapunov equations

with large and sparse coefficient matrices. We also demonstrdte show two ways to remedy this situation. The first one is
how these methods can be applied to balanced truncation mdiesented in Section 2 and is an extension of the squared Smith
reduction of periodic discrete-time systems and the solutionltgration which has already been successfully applied to the
periodic Riccati equations. casep = 1 [3]. Although the whole method is based on matrix-
by-matrix multiplications, and thus very attractive to parallel
computing environments, it does not help very much reduce
memory requirements. Consequently, the problem sizes that

A discrete-time periodityapunov equatio(nr periodicstein can be tackled by this method are still very limited. In Section 3

1 Introduction

equation) is a system of equations of the form we therefore present the second way, a Krylov subspace based
method. If all coefficient matrices are sparse this method has
AT x D AD _ xO — _p® (1) the potential to reduce memory and time requirements to a tiny

fraction. Again, such a method has already been implemented
for i = 1,2,..., where the coefficientd®, W and the so- for the case = 1, see e.g. [12]. Sections 4 and 5 demonstrate
lutions X () are realn x n matrices which are periodic with how the newly developed methods can be applied to balanced
periodp, i.e., AP = AO WP = WO and X(4+P) = truncation model reduction and the solution of periodic Riccati
XM, stacking (1) yields the equivalent lifted representation equations.

ATXA - X =W, 2 , :
@ 2 The Squared Smith Iteration
where 0 A®) The Lyapunov equation (2) can be formulated in fix point form
X = ATX A+ W, from which the fix point iteration
A .
A= _ _ ®) Xo=W, X :=ATXA+W, k=0,1,...,
. A(pil) 0 can be derived. The convergence of this iteration to

) . o X is guaranteed ifp(A) < 1, which is equivalent to
andX’, )V arepn x pn block diagonal matrices with diagonal , 4(» A(»-1 ... A)) < 1. The convergence rate is lin-

entriesX V), ..., X® andw ™), ... W), respectively. ear, a quadratically convergent version was suggested in [17].

Such equations appear in solving periodic state-feedback préfis so calledsquared Smith iteratioirs obtained by setting
lems and computing gradients for optimal periodic outpefo := A, Xo := W and considering
feedback problems [21, 24]. Further applications related t — ATx A _ 42 _

i . o . . ) = Ay + X, Ak =A%, k=0,1,.... (4
discrete-time periodic systems include the solution of Rlccat?vk+1 TR Fo SR k @
equations [4], minimal realisations [22] and model reductidfiwe want to boil this equation down to the matrix coefficient
[15, 23]. level we need to deal with the seemingly wild reordering of



the coeﬁicientsAg) and X,il). A helpful tool is provided by chances that its numerical rank is also comparably low [1]. We

permutation function and matrices. can now use the following modification of the iteration (5) to
reduce its memory requirements and enhance its numerical ac-
Definition 1 Leto : {1,...,p} — {1,...,p} be a permuta- curacy. Let3 = diag(B("), ..., B)), whereB" is ann x m,

tion, thenP () is thepn x pn block permutation matrix with matrix withm; = rank B%Y) < n, then
n x n block entries

L(l) = B(l)
7)(0.) — I, if U(Z) =7, A?l) — A(l)7
ij\0) 0 otherwise A(l()J ' Gll(l) 0T 7o 1)
| L L, = [ a0 (7)
wherei, j = 1,...,pand][, is then x n identity matrix. O e W) 40
A = A Ay
The few facts we need to know about permutations are sum- Oks1 = OpO0Ok I=1....p.
marised in the following lemma, where di@"), ..., D®)) .
i ix with di If we setL"). = LY "in (7) then its number of columns
denotes then x pn block diagonal matrix with diagonal en- k+1 k+1 M
triesDM,.... D@, would double in each iteration. Instead, we propose to compute
a rank-revealind.Q-factorization [10]
Lemma 2

U l

iw, = { L9, o }Q,ﬁil,

1. P(o)T =P(oc71), P(coo) = P(0). A

where Qg)ﬂ is an orthonormal matrix and rahk,(f}rl) =

2. Letog(1) :==p,00(2) =1,...,0 =p—1,then ) )
ol) = p,00(2) o) =» ranl(L,(ClJ)rl). As the iteration proceedsff)Lff)T converges to

P(og)" A =diag AW, ..., AW)). XD with the rate given by (6). Itis pointed out in [3] that this
. ) approach could also be used to compute a low rank approxi-
3. LetD = diag D", ..., D)), then mation of X", either by increasing the tolerance threshold for

determining the numerical rank df,(f}rl or by bounding the
maximal number of columns iﬂ,(f}rl.

Proof. By direct computation. The iteration (5) is solely based on matrix multiplications mak-
Now we can rewrite (4) so that each factor is in block diagonﬁlg it attractive to parallel computing environments. Existent
form: algorithms for solving periodic Lyapunov equations are based
on periodic Schur and Hessenberg decompositions which - as
Xyy1 := (P(op)Ap) T (P(op)T Xp P(oy)) (P(ok)Ar) + &, the standard Schur and Hessenberg decompositions - do not
easily yield parallelisable algorithms for their computation.
A1 = A}, orp1i=op ooy, Thus, it can be expected that the iterations (5) or (7) greatly

whereo, is defined as in Lemma 2. This not only proves th&uj{perform existent r_;llgorith'ms when the solution of the pgri-
the iteratesY;,; stay in block diagonal form it also enables ugdic Lyapunov equation (1) is computed on a parallel machine.
to rewrite (4) in terms of the coefficient matrices: This has been confirmed for the case- 1 [3].

It must be said, however, that the need for saving the coefficient

P(o)'DP(0) = diaQD"fl(l)7 s Dafl(p)).

X = wo . : A _
W W ’ matrices ofA*" makes squared Smith iterations impracticable
Ay’ =AY, . when the coefficient matrices gf are large and sparse or only
XIE:I;&)-l = ASC”TXZk (Z)Aff) + X,gl), (5) implicitly, through their action on a vectar, defined. In the
AD 40 D40 next section we therefore present an alternative way for com-
M y R puting an approximate solution of (1).
Ok+1 = Opoog, l=1,...,p.

Let p := p(AP AP=D ... A1) < 1, then the convergence3 A Krylov Subspace Method
theory of squared Smith iterations [17] applied to (4) shows
that for anye > 0 there is a constarg, > 0 so that In the following we assume that each right hand side of

the periodic Lyapunov equation (1) is factored iffo() =
XD = XDy <C(p—e)>/7 max W, 6) BYBOT, where B e R*™ has full rank. LetB =
Vel p} diag BW, ..., B®), then

If the right-hand side matrixV in (2) is given in factored form, Ki(A,B) = spaiB, AB, ..., A*"1B)

W = BBT, thenW is symmetric and positive semidefinite.

The same holds for the solution matix provided thap < 1, is called ablock Krylov subspacef orderk. Krylov subspace

see e.g. [9]. Furthermore,ffhas low rank, thei’ stands good based methods for the standard Lyapunov equation (2), see



e.g. [12], first compute the solution of the reduced Lyapunov
equation

(U A" YU AUy) =Y = —(U BYUB)T,  (8)

wherel/,, is an orthonormal basis & (A, B). Then, for suffi-
ciently largek, the matrixt/, YU is a good approximation of
X, the solution of the unreduced Lyapunov equation (2). In the
case of periodic Lyapunov equations it is crucial to chddse

in block diagonal form so that the structures4fand 3 carry
over told;" AUy, andif" B.

A block Arnoldi decompositioof orderk has the form
Aty = Uy 11 H, ©

where the orthonormal columns of the mattik; contain
those oflf;,. It is well known that under certain conditions on
H,, the existence of such a decomposition implies thais the
basis of a block Krylov subspace. We now give a brief outline
of a block Arnoldi-like algorithm that computes a decomposi-

V=1-1
END IF

l nTr / U
R =ul" a0yl

Compute a rank-revealing R decomposition:

l
vP=U" R
), = RPT
220 l
70 _ ', FY
k o HY
k+1.k
O 0 o
Urr) = U Upda]
END FOR
END FOR

tion of the form (9), where/,, is a block diagonal matrix. A 1t 5 important to use a rank-reveali@R decomposition [10]

detailed analysis of this algorithm and its implementation i
sues are currently under investigation and will be published In

Tor the computation oU,ElJ)rl; it not only helps reduce memory
requirements it also guarantees that the algorithm retuéns a

a forthcoming paper.

Algorithm 3
Input:  Matrices A®) € R**™ B ¢ Rm*m,
l=1,...,p,and an integek < n.
Output: Matricest/\), U A 1 =1,... p,

which is an orthonormal basis #f;, (A, B). Note that all coef-
ficients necessary to define the reduced Lyapunov equation (8)
are computed by the algorithm. Setting
l A
- A2, &

—1

so that e it can be shown that
(p)
— i (1) (p) 0 H;
U = dlag(U[k],...7U[k] ), Lo -
f 1 T . )
Uy = diagUS) - UL, Ul A, = o o
0 _g@) ;1
(1) ' w0
He = | urs = diagR"Y,... R®) =R,
R (p;1) where the upper triangular matric&" are computed in the
Hy, 0 first loop of Algorithm 3.

satisfy a block Arnoldi decomposition (9).

FORI =1,...,p

Compute a@ R decompositioB®) = U RO

v = v
END FOR
FORk = 1,2, ...
FORI =1,...,p
IF [ =1THEN
I'=p

ELSE

The reduced Lyapunov equation
HEYH — Y = —RRT (10)

has again a block diagonal solutigh= diagY ("), ...,V ®)),
Furthermore, equation (8) is equivalent to

gy gy — O ROT, (11)

However, there is a fundamental difference between the orig-
inal periodic Lyapunov equation (1) and its reduced counter-
part (11). While all matricesi(!) aren x n the coefficient ma-
trices of (11) may have time-varying dimensions, iB!) e

R >*™m+r wherel < ny < nandn; = npy;. There are some
preprocessing steps necessary so that (11) can be solved with
existent algorithms [22]. Note that even the assumption that
the original coefficient matriced) have constant dimensions
could be omitted.



4 Application to Balanced Truncation Theorem 4 [23] Let G andG,. be the transfer function matri-

) o ces associated with (12) and (16), respectively. Then
We now show how the solution of periodic Lyapunov equa-

tions can be used to produce reduced order models ¢ifiesr P )
discrete-time periodic system IG(2) = Gr(2)llow <23 tr(S3)),
=1
zip1 = AWz 4+ BOy,

oW (12) wheres?) is defined in (15).
Y = y,

i 0 nxn ) e 0 It suggests itself to combine the Krylov subspace method de-
where the matricesl'” < R B e R andCt ¢ rived in Section 3 with balanced truncation model reduction.

R are periodic with periog. Moreover, it is assumed thatyyiq jeads to a periodic variant of oblique projection methods
the system (12) is asymptotically stable, i.e., for large scale model reduction [13].

p(A(p)A(p—l) . ..A(l)) < 1.
5 Application to Periodic Riccati Equations

Intimately related to the system properties of (12) are the solu- | ) ) S ) )
tions of the two periodic Lyapunov equations Consider thaliscrete-time periodic Riccati equation

AOPOAOT _pasy _ _popgor  qg 0 = §§52g3;§$+mm“ﬂﬂmm
ADTQUAD AW _ ) = _cOTo®), (14) (RUFD 4 BUHDT X (41) pU+1)) -1, 17
The matricesP™) ..., P® andQ®, ..., Q) form the so BUTX (D40,
called reachability and observability Gramiansrespectively. where the coefficient matrices aw) e Rnxn B0 ¢
Note that (13) is not a periodic Lyapunov equation in the strigtrxm () ¢ Rrnxm gnd QW) ¢ Rm*xm RO ¢ Rmxm
sense of (1). However, the algorithms derived in Sectionspgth QW7 = QO > o, RWT = RW > 0. All matrices
and 3 can also be applied to (14) by an appropriate indge assumed to be periodic with peripd Under certain as-
change. sumptions [5], equation (17) has a unique solutioft) with
Now let PO = SOTSW and QO = ROTRW pe the X® = x0T > 0, The periodic Riccati equation is an impor--
Cholesky factorisations of the Gramians. In analogy to the c4&8t tool to analyse and solve stabilization and linear-quadratic
p = 1[20] it was shown in [23] how to use ordered singulaP€riodic optimal control problems [5, 19, 18].

value decompositions Similar to the periodic Lyapunov equation, we can embed (17)
in a standard Riccati equation,
) «)T w o1 =P o W 01" T T
S A O AN 0 = CTQC— X+ ATXA (18
2 (15) ~ATXB(R+BTXB)"'BTX A,

l=1,...,p, whereZil),Eg” are diagonal and the diagonal enwhere A is defined in (3) and3,C, Q, R are block diago-

tries of 2{") are positive, to obtain a balanced truncated mod@d! matrices with diagonal entrie8, ¢, Q®, RV, 1 =
of (12). From the decompositions above define the truncatibn - - - p» respectively. If (18) has a unique positive semidefi-

matrices nite solutionX’ thenX is block diagonal with diagonal entries
) ) XM .. X® which form a solution of (17) [5].
—1/2 —1/2
LY = (Egl)) Ul(l)TR(l)a T = S(Z)TV1(I) (Egl)) Applying Newton’s method to (18) leads to the following iter-
ation [11, 16].
and let
AD = L 4O7O g0 = LG+ BB o) = cOTO), Algorithm 5
FOREL =0,1,2,...
(p+1) _ 7(1) o i
whereL'PTY = LY Then the reduced system is given by Kp = (R + BT XuB) BT X, A
i‘l-‘rl = Ag)i‘[ —+ By(al)Ul (16) Ak = A - BICk
~ 1) ~
o= Pz, Ry =CTQC — X + AT X, A
As in the previous section it is not necessary to insist on time ~ATX.B(R + BT X, B) "1 BT X, A

constant dimensions, neither for the original system nor for the

Compute the solutiop;, of the periodic Lyapunov
reduced system. P F P yap

. ) equation
The truncation error of the reduction can be bounded as fol-

lows. AZNkAk — N, = —Ras. (29)



X1 = X + Ny,
END FOR

It is easy to check that ift;) is block diagonal then the iter-
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