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Abstract

This paper focuses on the stability analysis of some nonlinear
delay models of a congestion control scheme. Some uncer-
tainty interpretations of the nonlinear terms are proposed and
a complete Lyapunov-Krasovskii functional is used for deriv-
ing local asymptotic stability conditions in both constant and
time-varying delay cases.

1 Introduction

In the analysis of congestion control mechanisms, one of the
models largely used to describe such a phenomenon, in a fluid
modeling setting, is given by the following differential equation
including delay:

ẋ(t) = k [w − x(t− h)p(x(t− h))] , (1)

where k,w are positive reals and p(·) is a continuous and dif-
ferentiable nondecreasing function. To the best of the authors’
knowledge, such a model was firstly proposed by Kelly in [7]
for describing the dynamics of a collection of flows, all using
a single resource, and sharing the same gain parameter k. The
delay h represents the round-trip time, and is assumed constant.
The function p(·) can be interpreted as the fraction of packets
indicating (potential) congestion (presence) [7],[3]. Further-
more, the assumptions on the function p(·) considered above
are natural in the context of TCP behavior (see, for instance,
[7],[3],[13], and the references therein).

On the other hand, in the context of control theory, the function
p(·) can be selected as a classical proportional or proportional-
integral controller, as discussed by [6].

In this paper, we consider that function p(·) is a linear increas-
ing function of the form p(x) = γx with γ > 0. For example,
a proportional controller with gain γ, see [6]. Thus, the system
(1) can be rewritten as

·
x (t) = α− βx2(t− h), (2)

where α = kw and β = kγ. In order to avoid bad performance
of TCP behavior, it is important to ensure, at least, the local
asymptotic stability of system (2).

It is well known that the delay in the network is time-varying
and it depends on the traffic load, the capacity of the nodes
and the number of effective connections. However, most of the
recent publications consider only the case when the time-delay
is constant, see, e.g. [3] and [6].

The goal of this paper is to analyze the stability of (2), even in
the case when the delay is time-varying, by taking advantage
of the tools and methods developed in the stability and robust
stability analysis of time-delay systems. More explicitly, we
shall use the linearization of system (2) and we will interpret
the nonlinear part as an uncertainty of the corresponding linear
system (see [4] for application of this approach to rational sys-
tems without delay, and [12] for the case of rational systems
with delay), and then we will apply the Lyapunov-Krasovskii
approach in order to obtain local stability conditions for the
nonlinear system.

Note that a Lyapunov-Razumikhin approach was proposed by
Deb and Srikant in [3] for the stability of (1), and the choices
on k and w mentioned above. As seen in [11] (see, e.g., some
discussions in chapter 5) in the linear case, the Razumikhin-
based approach is more conservative than the Krasovskii’s one,
where the Lyapunov-Krasovskii functional is generated from
the Lyapunov-Razumikhin candidate by adding some (rela-
tively simple) double integral terms.

In this paper instead to use a system transformation of the
corresponding linear system, and then propose a particular
Lyapunov-Krasovskii functional for the corresponding trans-
formed system in order to obtain delay-dependent stability con-
ditions (see [5] and [10] for the analysis of the conservatism
introduced by system transformations), we will use the com-
plete functional introduced in [8] that allows to obtain delay-
dependent robust stability conditions depending of a scalar
function which satisfies an ordinary differential equation (with-
out delay). Furthermore, we analyze the asymptotic stability
of system (2) when there is a time-varying perturbation in the
delay value, that is, when there exists a time-varying uncer-
tainty of the round-trip time of the flow. To this aim, we will
apply some basic ideas presented in [9] for the application of
complete functionals to the case of time-varying delay uncer-
tainties. In particular, an upper delay bound guaranteeing the
asymptotic stability is derived.

The paper is organized as follows: Section 2 presents the prob-



lem formulation. In Section 3 an explicit construction of a
Lyapunov-Krasovskii functional for the stability analysis of (1)
is given for constant as well as time-varying delay cases. Nu-
merical examples show the application of the results and some
concluding remarks end the paper.

2 Problem formulation

Consider the following nonlinear time delay system:

·
x (t) = α− βx2(t− h), (3)
x(t) = ϕ(t),∀t ∈ [−h, 0] ,

where α,β, h are positive constants, and ϕ(·) is the initial func-
tion with the following norm

|ϕ| = sup
θ∈[−h,0]

|ϕ(θ)| .

It is clear that the equilibrium points of system (3) are x∗ =
±
q

α
β .

Let y(t) = x(t)− x∗, then system (3) becomes
·
y (t) = −2βx∗y(t− h)− βy2(t− h). (4)

It is well known from the theory of differential-difference equa-
tions, see [1], that if the trivial solution of the system

·
y (t) = −2βx∗y(t− h), (5)

is asymptotically stable, then the trivial solution of (4), and
hence the equilibrium point x∗ of (3) is locally asymptotically
stable.

On the other hand, we know that system (5) is asymptotically
stable if and only if 2βx∗ ∈ ¡0, π

2h

¢
, see [11]. Therefore, the

unique equilibrium point of system (3) which is asymptotically
stable is x∗ =

q
α
β .

Now, it is clear that the equilibrium point x∗ of system (3) is
asymptotically stable when the norm of the initial function |ϕ| ,
belongs to a neigborhood of x∗.

The problem arising here is: how large could be the initial
function domain in order to guarantee that system (4) remains
asymptotically stable for all initial conditions in this domain.

3 Robust stability approach

We will consider a robust stability approach for solving the
problem presented above. The main idea is to interpret the non-
linear part of system (4) as an uncertainty of the linear system
(5). Next, we will apply the Lyapunov-Krasovskii functional
approach in order to derive robust stability conditions that al-
low to obtain upper bounds for the initial conditions of system
(3) such that the stability of the equilibrium point x∗ is guaran-
teed.

Let us to define
δ(t) = βy(t− h), (6)

satisfying the following inequality:

|δ(t)| ≤ ρ,∀t ≥ 0, (7)

where ρ is a positive constant.

Then, the nonlinear system (4) can be rewritten as the following
perturbed delay linear system

·
y (t) = − (a+ δ(t)) y(t− h), (8)

where a = 2βx∗. Now, it is quite clear, from (6), that if we
get an upper bound for ρ then we can give an estimation for the
initial function domain such that the asymptotic stability of x∗
is guaranteed.

3.1 Constant delay case

In this section, we will apply some recent results presented
in [8] (on the construction of complete Lyapunov-Krasovskii
functionals) for the case of system (8). Thus, Kharitonov and
Zhabko [8] have shown that if the nominal system

·
y (t) = −ay(t− h), (9)

is asymptotically stable, there exist a functional

v (yt) = mu(0)y
2(t) (10)

−2amy(t)
Z 0

−h
u(h+ θ)y(t+ θ)dθ

+ma2
Z 0

−h

Z 0

−h
u(θ1 − θ2)y(t+ θ1)y(t+ θ2)dθ1dθ2

+

Z 0

−h
(µ1 + (h+ θ)µ2) y

2(t+ θ)dθ,

which satisfies for some α1 > 0 and α2 > 0 that

α1y(t)
2 ≤ v (yt) ≤ α2 |yt|2 , (11)

and along to the solutions of system (9)

dv(yt)

dt
= −w(yt), (12)

where

w(yt) = µ0y
2(t) + µ1y

2(t− h) + µ2
Z 0

−h
y2(t+ θ)dθ,

for any given µj > 0, j = 0, 1, 2.

In (10), we have that m = µ0 + µ1 + hµ2 and u (·) is a
scalar function which satisfies the following ordinary differen-
tial equation

··
u (t) = −a2u(t), (13)



with the following additional conditions

·
u (t) = −au(t− h),∀t ≥ 0, (14)
u(−t) = u(t),∀t ≥ 0, (15)

u(h) =
1

2a
. (16)

Remark 1 Observe that functional (10) depends only on the
function u (·) satisfying an ordinary differential equation (with-
out delay) with appropriate boundary conditions.

Deriving functional (10) along to the trajectories of the per-
turbed system (8), see [8], we obtain that the perturbed system
(8) remains asymptotically stable, for any perturbation δ(t) sat-
isfying (7), if ρ > 0 is chosen such that µ0 > mρu(0),

µ1 > mρ (u(0) + ahu0) ,
µ2 > mρahu0,

(17)

where u0 = maxt∈[0,h] |u(t)| .
From (6) we can conclude that if the initial function ϕ (·) be-
longs to the domain D =

n
ϕ : |ϕ| < ρ

β

o
, then the derivative

of the functional v(yt), along to the trajectories of (4), is def-
inite negative. The positivity of function v(yt) is guaranteed
from the left hand side inequality of (11).

Since our interest is to obtain an estimate of the region of attrac-
tion we need to determine the set Ul = {ϕ : v(ϕ) < l} ⊂ D.
To this aim we will use the right hand side inequality of (11).
Thus, we need to compute a positive constant α2 > 0 such that
the right hand side inequality of (11) is satisfied.

From (10) direct calculations show that

v (yt) ≤ α2 |yt|2 ,

where

α2 = mu0 (1 + ah) + h (amu0 (1 + ah) + µ1 + hµ2) (18)

Therefore, an appropriate selection for l is

l = α2
ρ2

β2
.

Summarizing we arrive to the following result:

Theorem 2 The trivial solution of the nonlinear system (4) is
locally asymptotically stable if h

√
αβ < π

4 and if the initial
function ϕ belongs to the set

Ul = {ϕ : v(ϕ) < l}

where l = α2
ρ2

β2
with ρ > 0 satisfies the inequalities (17).

3.1.1 Construction of u (·)
In this section, we will show how to construct the scalar func-
tion u (·) which participates in the computation of the lower
bound for ρ.

Every solution of equation (13) can be written as

u(t) = c1 cos(at) + c2 sin(at), (19)

for some constants c1and c2. Using the additional conditions
(14), (15) and (16), it is not difficult to obtain the constants c1
and c2 such that

u(t) =

µ
1 + sin(ah)

2a cos(ah)

¶
cos(at)− 1

2a
sin(at),∀t ∈ [0, h].

(20)
As an example, consider that a = 1 and h = 1. The function
u(t) corresponding to these particular values is plotted in Fig.1
below.

Fig.1 Function u(t)

3.2 Time-Varying Delay Case

In this section, we will consider a more complicated case when
the nonlinear system includes a time-varying delay perturba-
tion, that is, when there exists a time-varying uncertainty of
the round-trip time of the flow. Thus, consider the following
nonlinear system

·
x (t) = α− βx2(t− h+ η(t)), (21)
x(t) = ψ(t),∀t ∈ [−2h, 0] ,

where ψ(·) is the initial function and η(t) is a continuous, and
bounded function satisfying, for all t ≥ 0, the following in-
equalities

|η(t)| ≤ η0 < h and
¯̄̄ ·
η (t)

¯̄̄
≤ η1 < 1. (22)

Considering that y(t) = x(t)− x∗ system (21) becomes
·
y (t) = −2βx∗y(t− h)− βy2(t− h+ η(t)). (23)



Then, we need to ensure the asymptotic stability of the follow-
ing perturbed time-varying delay linear system

·
y (t) = −(a+∆(t))y(t− h+ η(t)), (24)

where a = 2βx∗, and

∆(t) = βy(t− h+ η(t)), (25)

with
|∆(t)| ≤ σ,∀t ≥ 0. (26)

As in the case of constant delay, it is clear from (25) that if
we get an upper bound for σ, η0 and η1, then we can obtain
an estimation for the initial function domain implying the local
asymptotic stability of the nonlinear system (21).

In [9], robust stability conditions are derived, using com-
plete type Lyapunov-Krasovskii functionals, for the case when
there exist only time-varying delay perturbation. To the best
of the authors’ knowledge, the application of complete type
Lyapunov-Krasovskii functional to obtain robust stability con-
ditions in the case of system (24) has not been studied.

Let us to select the following functional

w(yt) = µ0y
2(t) + µ1y

2(t− h) + µ2
Z 0

−h
y2(t+ θ)dθ

+µ3

Z 0

−3h
y2(t+ θ)dθ.

Now, the corresponding functional v (yt) satisfying conditions
(11) and (12) is

v (yt) = mu(0)y
2(t) (27)

−2amy(t)
Z 0

−h
u(h+ θ)y(t+ θ)dθ

+ma2
Z 0

−h

Z 0

−h
u(θ1 − θ2)y(t+ θ1)y(t+ θ2)dθ1dθ2

+

Z 0

−h
(µ1 + (h+ θ)µ2) y

2(t+ θ)dθ

+µ3

Z 0

−h
(3h+ θ) y2(t+ θ)dθ,

where m = µ0 + µ1 + hµ2 + 3hµ3 and u(·) is a scalar func-
tion which satisfies equation (13) with additional conditions
(14),(15) and (16).

Let us rewrite the perturbed system (24) as

·
y (t) = −(a+∆(t))y(t− h+ η(t)) (28)

−(a+∆(t))y(t− h) + (a+∆(t))y(t− h).

The derivative of functional (27), along to the trajectories of
system (28), is

dv(yt)

dt
= −w(yt) + ζ(yt,∆(t), η(t))

where

ζ(yt,∆(t), η(t))

= −2m
µ
u(0)y(t)− a

Z 0

−h
u(h+ θ)y(t+ θ)dθ

¶
×

× (∆(t)y(t− h) + (a+∆(t))×
× [y(t− h+ η(t))− y(t− h)])

Now, we will estimate the terms in the derivative depending
of perturbations. First observe that from the Newton-Leibniz
formula we have

y(t− h+ η(t))− y(t− h) =
Z η(t)

0

·
y (t− h+ θ)dθ

Substituting the derivative under the integral by the right hand
side of equation (24) we get

|y(t− h+ η(t))− y(t− h)|

≤ (a+ σ)

Z η(t)

0

|y(t− 2h+ θ + η(t− h+ θ))| dθ

Then, we have:

|ζ(yt,∆(t), η(t))| (29)
≤ mu(0)

¡
σ + (a+ σ)2η0

¢
y2(t)

+mσ (u(0) + hau0) y
2(t− h)

+mau0
¡
σ + (a+ σ)2η0

¢ Z 0

−h
y2(t+ θ)dθ

+m(a+ σ)2 (u(0) + hau0)×

×
Z η(t)

0

y2(t− 2h+ θ + η(t− h+ θ))dθ

Let ξ = θ + η(t− h+ θ) thenZ η(t)

0

y2(t− 2h+ θ + η(t− h+ θ))dθ

=
1

1+
·
η (t− h+ θ)

×

×
Z η(t)+η(t−h+η(t))

η(t−h)
y2(t− 2h+ ξ)dξ

≤ 1

1− η1

Z 2η0

−η0
y2(t− 2h+ ξ)dξ. (30)

Considering estimation (30) in (29) and after some simple but
tedious algebraic calculations we arrive to the following result:

Theorem 3 Let system (9) exponentially stable. The perturbed
system (24) with perturbations (26), (22) is asymptotically sta-
ble if there exist positive constants µj , j = 1, 2, 3 such that the
following inequalities hold:

µ0 > mu(0)
¡
σ + (a+ σ)2η0

¢
µ1 > mσ (u(0) + hau0)
µ2 > mau0

¡
σ + (a+ σ)2η0

¢
µ3 > m(a+σ)2

1−η1 (u(0) + hau0)

(31)



Again, as in the constant delay case, equality (25) implies
that if the initial function ψ (·) belongs to the domain E =n
ψ : |ψ| < σ

β

o
, then the derivative of the functional v(yt),

along to the trajectories of (23), is definite negative. The left
hand side inequality of (11) implies the positivity of the func-
tional v(yt).

Now we need to determine the setRL = {ψ : v(ψ) < L} ⊂ E
for obtaining an estimate of the region of attraction and the
right hand side inequality of (11) help us to obtain such set.
Thus, direct calculations derived from (10) yield to the follow-
ing estimation

v (yt) ≤ α2 |yt|2 ,
where

α2 = mu0 (1 + ah)+h (amu0 (1 + ah) + µ1 + hµ2 + 3hµ3) .

Therefore an appropriate selection for L is

L = α2
σ2

β2
.

Summarizing we arrive to the following result:

Theorem 4 The trivial solution of the nonlinear system (23)
with time-varying delay perturbation η(t) satisfying (22) is lo-
cally asymptotically stable if h

√
αβ < π

4 and if the initial func-
tion ψ belongs to the set

RL = {ψ : v(ψ) < L} ,

where L = α2
σ2

β2
, and σ, η0 and η1 satisfy inequalities (31).

Remark 5 It is important to mention that the robust condi-
tions (31) remain to be valid even if the perturbation ∆(t) is
a more complicated nonlinear time-varying function depend-
ing on y(t− h+ η(t)). The only condition needed is that∆(t)
satisfies (26).

Remark 6 It is possible to obtain better estimations for the
lower upper bounds ρ, η0 and η1 by means of appropriate se-
lection of parameters µ0, µ1 and µ2 to improve the set of ini-
tial conditions with respect to some criterion to be specified.
Furthermore, the results could be improved by using different
norms, as for example,M2-norms (see, for instance,[2]).

4 Example

Consider the following nonlinear system
·
x (t) = 1− 0.25x2(t− 1) (32)

The unique equilibrium point of system (32) which is asymp-
totically stable is x∗ =

q
α
β = 2. Considering y(t) = x(t) −

x∗, system (32) becomes
·
y (t) = −y(t− h)− 0.25y2(t− h). (33)

Then, the corresponding perturbed linear system is
·
y (t) = − (1 + δ(t)) y(t− 1), (34)

where
δ(t) = 0.25y(t− h).

Function u(t) for the nominal system is given on Fig. 1, and
therefore

u0 = u(0) = 1.7041.

Let µ0 = 0.75, µ1 = 1.5 and µ2 = 0.75, then direct calcula-
tions derived from (17) show that the perturbed linear system
(34) is asymptotically stable if ρ < 0.1467. Then, from formula
(18) we have that α2 = 22.69. Choosing ρ = 0.14 we obtain
that l = 7.18, and then we arrive to the following estimate for
the region of attraction:

Ul = {ϕ : v(ϕ) < 15.99} .

5 Conclusion

In this paper a robust stability approach to study the local
asymptotic stability of some class of first-order nonlinear time-
delay systems is derived. The results are based on the construc-
tion of complete Lyapunov-Krasovskii functionals. The results
are applied to the stability analysis of some fluid-flow models
used for describing congestion control phenomenons.
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