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Abstract

A state feedback with finitely many quantization levels yields
only the so called practical stabilization, namely the conver-
gence of any initial state belonging to a bigger bounded re-
gion into another smaller target region of the state space. The
ratio between the measure of the starting region and the tar-
get region is called contraction of the closed loop system. In
the performance analysis of a stabilization strategy based on a
quantized state feedback, two parameters play a central role:
the number of quantization levels used by the feedback and
the convergence time of the closed loop system. In this paper
we propose a general strategy yielding a family of stabilizing
guantized feedbacks from a base one and we analyze the per-
formance of three different applications of this method.

1 Introduction

In recent years aconsiderableinterest has been devoted on con-
trol problems in which communication constraints are taken
into consideration. Systems with communication constraints
can be considered as instances of hybrid systems in which par-
ticular attention is devoted to the data flow. Control problems
in this set up are very difficult to solve and a genera theory
seems till far to be developed. Some important contributions
canbefoundin[3,13,2,4,1,6,9, 10, 12, 11, §].

Discrete time systems with quantized feedback can be seen as
particularly simple cases of dynamical systems in which the
control requires afinite information flow. This class of systems
can be analyzed in more detail even though they are nonlinear
systems with wild behavior. In this set up the information flow
has to be quantified in terms of the number of quantization
levels of the feedback function. The problem in this context
can be formulated as follows:

What is the minimal information flow required for fulfill-
ing a certain control objective?

In control theory stabilization is considered the simplest
control objective. In this case the previous question specializes
asfollows:

What is the minimal information flow required for stabi-
lizing a discrete time unstabl e system?

In this paper we will show that this question makes sense only
if we evaluate also the performance of the closed loop system.
We will show that there are different stabilizing quantized
feedback strategies requiring different information flows,
but providing closed loop systems with different stability
performances. Stability performance can be measured in
different ways. In this contribution we choose to evaluate
stability performance in terms of the convergence time. Other
possible performance measures can be evaluated from the
knowledge of the expected convergence time.

2 Problem statement

Consider the following discrete-time, one-dimensiona linear
model

D
where ¢ € R. Most of the paper is devoted to the stabiliza-

tion problem and so it is assumed that |a| > 1. Some results
however holds true also for stable systems and so for |a| < 1.

Ti41 = ATt + Uy,

Let £ : R — R be a piecewise constant function with only
finitely many discontinuities. If we use k as a static feedback
in the system (1), namely we let v, = k(z;), we obtain the
closed loop system

2

whereI'(z) := az+k(x) isapiecewise affine map with afixed
slopea.

riy1 = D(ze),

Remark: Infact, the definition we gave is not precise if we do
not define what happens at the boundary points of theintervals.
We assume there is afinite family of digoint open intervals I,
such that D := U, I, isdensein R and such that k(z) = up
for every x € Ij,. Inthisway the associated closed loop map is
defined as amap

I':D—-R
©)

INe)=ax+up fxel,.

In order to consider iterations of I" we need to restrict the do-
main by considering

Q=T (D). (%)
n=0



It is clear that T'(Q2) C Q. Noticethat R \ Q is a countable
subset of R and since most of the questions considered in this
paper arerelated to mean properties, it will be sufficient to con-
sider I asamap defined on €2, disregarding al the orbitswhich
will eventually get to a discontinuity point. However, in those
situations in which it is necessary to introduce a more abstract
definition of state evolution (see[7]).

It is obvious that, by using quantized feedback controllers only
a“practical stability” can be obtained as detailed in the foll ow-
ing definitions.

Definition: Invariance and almost invariance. Given a
closed interval 1, we say that [ is I-invariant if every orbit
(z¢) of T with zy € I issuchthat z; € I for every t. Itis
amost I'-invariant if the assertion above is true for aimost ev-
ery initial condition zy with respect to the L ebesgue measure.
When aninterval I isinvariant or amost invariant we will use
inany casethenotationI" : [ — I.

Definition: Stability and almost stability. Given two closed
intervals J C I, wesay that T is (1, J)-stable if I and J are
invariant by I" and if for every orbit (z;) of I" with xy € I,
there exists an integer t > 0 such that z; € J. We say that T’
isalmost (I, J)-stable if I and J are aimost invariant and the
convergence to J as defined above occurs for almost al initial
condition in the orbit o € I, with respect to the Lebesgue
measure. A quantized feedback map £ : R — R issaid to
be (almost) (I, J)-stabilizing if the corresponding closed loop
map I is (almost) (1, J)-stable.

Assume that T" is almost (7, J)-stable. The first entrance time
function
Tir,gy): INQ — NU {400}

is defined by

Typ(@) =inf{n e N|T"z € J} = 1p,("z), (5)

n=1

where 11\ ;(-) denotes the indicator function of the set 1 \ J.
We put T(;,7)(z) := +oc if T'xz ¢ J for al t. Notice that
the map 7\ ;, 5 is aways finite exactly when we have stability,
whileit is almost surely finite when we have aimost stability.

Remark: Notice that, if we want to extend the function 7; )
to the all I, we can not use definition (5). Indeed, there is
a possible ambiguity for orbits touching discontinuity points
since, given z € 1, there can beinfinitely many orbits having x
asinitial condition and therefore I'™x is not uniquely defined.
In this case definition (5) should be replaced asfollows: we say
that T(;, 5y () = n if every orbit (z;) € Xr suchthat zop =
issuch that x; € J for any ¢ > n and if there exists an orbit
(x¢) € Xr suchthat o = z and suchthat z,,_1 & J.

For any choice of aprobability density f in I, denote by P the
probability measureinduced by f and by E ; the expected value

with respect to such a probability. Then, the expected value of
the entrance time is given by

Ey(Ti1,0)) = /IT(I,J)(CE)f(x)dx.

Itisclear that
Ef(T1,n) = /[Z 11\J(Fnl’)f($)] dx =
I n=1
= Zn]Pf[T(LJ) = n] = ZPf[T(LJ) > TL]
n=1 n=0

The most natural density to assume is the uniform density on I
and for this reason probability measure and the expected value
with respect to this density with be simply denoted by the sym-
bolsP and E, respectively.

In the sequel, for any given (almost) (I, J)-stabilizing quan-
tized feedback k yielding an (almost) (7, J)-stable piecewise
affine closed loop map T', we will denote by T(k) or T(T")
the relative expected entrance time. Notice that this quantity
depends only on the restriction of I" to I \ J and so we can
assumethat I" isdefined only on I'\ J. For this reason the right
parameter measuring the information flow will be the number
of quantization intervalsin I'\ J which will be denoted by sym-
bols N (k) or N(T"). Finally the ratio between the length of I
and the length of J will be called contraction rate and will be
denoted by C'(k) or C(T).

The performance analysis of the quantized stabilization con-
sists in determining, for agivenC > 1, N € Nand T' > 0,
whether there exists or not a (almost) stahilizing quantized
feedback & such that C'(k) = C, N(k) = N and T(k) = T,
or, in other words, in estimating the set

A:={(C,N,T) : C(k)=C,N(k) =N, T(k)=T, 3k(-)}

Remark: The analysis proposed in this paper can be extended
to afamily of more general performance measures. Let

V:I—R

besuchthat 0 < V(z) < 1forevery x € I and V(z) = 0 for
every x € J. Another measure of the transient properties of
the closed loop system is the following number

E (f: V(I‘"x)) .
n=0

Itisclear that, if V(x) = 11\ ;(z), then the previous cost coin-
cides with the expected entrancetimein J. If V(x) isagenera
continuous function, then, for any « € [0, 1] we have that

alp j)(z) <V(z) < 1p(2),
where J(a) := {z € I : V(x) < a}. Thisfact impliesthat

aE(Ty(a)) <E <Z V(Fnl’)> < E(T(1,.0)-

n=0



This shows that the dependence of this generalized perfor-
mance index and of the expected entrance time on the parame-
ters C(I") and N(T") will be similar.

3 Nested quantized feedback strategies

Consider thelinear discretetime system (1), where|a| > 1, and
consider two intervals J C 1. We want to stabilize it through
a quantized state feedback, i.e. we want to find a quantized
feedback map & such that the closed loop system (2) drives
(almost) any initia state 2y € I into a state evolution which,
after atransient, entersthe interval J. Several solutions to this
problem can be proposed. In fact we will show that, starting
from a base quantized feedback, it is possible to construct a
family of quantized feedbacks by iterating the base one.

Assume that k(z) is a (dmost) (I, J)-stabilizing quantized
feedback with contraction rate C'(k), N (k) quantization inter-
vals and expected entrance time T(k). Let F(z) be an affine
map such that J = F'(I). Itisclear that the quantized feedback

FokoF™!' : F(I)— F(I)

is (amost) (F (1), F2(I))-stabilizing. Observe that the corre-
sponding closed loop map is F o T' o F~!. The same con-
struction can be iterated, obtaining for every i = 0,1,...,7 —
1 the quantized feedback F* o k o F~* which is (amost)
(Fi(I), F**t1(I))-stabilizing. Consider now the quantized
feedback defined as follows

ED(z):=FlokoF i (x) if ze FI(I)\F*YI).
This quantized feedback is called nested.

It is clear that k(™) will be will be (I, F™(I))-stabilizing if
k(x) is (I, J)-stabilizing. Less obvious is to show that (")
will be aimost (I, F'7(I))-stabilizing if k(x) is amost (1, J)-
stabilizing (see[7]). It isclear moreover that C'(k(7)) = C(k)7
and N(k(7) = 7N(k). Asfar as the expected entrance time
T (k7)) is concerned, it is difficult in general to estimate its
dependence on the number T of nestings.

Consider the map

Uil —1:x— FloTTun@(g), (6)

where T(; 5 (x) is the first entrance time function for k. Itis
clear that, if the uniform density on I isinvariant with respect
to the transformation ¥, then T(k(")) = 7T(k). In this case
fromatriple (C, N, T) € A we can obtain asequenceof triples
(C™,7N,7T)) € A, for al 7 € N. This method will be used
in the following subsections to obtain three specific quantized
feedback strategies.

In general we can not guarantee that ¥ will possess invariant
probability densities. It can be shown that this is the case if
T'(z) isbounded ([7]. In this case we have the following result.

Proposition 1 Assume that T" is (7, J)-stable. There exists a
probability density f and a bounded sequence {a. } such that

T(k') = 7TEF(T) + ar. 7)

This has the following consequence. If thetriple (C, N,T) is
in A and corresponds to a situation in which the entrance time
function is bounded, then we can obtain a sequence of triples
(CT,7N,7T+a,) € A, fordl r € N, whereT isthe expected
entrance time with respect to a suitable probability density and
{a,} isabounded sequence.

4 Three stabilizing quantized feedback strate-
gies

The method presented in the previous section will be used in
the following subsections to obtain three specific quantized
feedback strategies. In the sequel we assume for simplicity
that I = [—1,1] and J = [e, €], with e < 1 and so we have
that C = 1/e. In this section we will simply write C, N, T
dropping the explicit dependence from k.

4.1 Deadbeat quantized feedback strategy

Thefirst strategy, which has been analyzed in acertain detail by
Delchamps in [3], consists in approximating the 1-step dead-
beat controller k(x) := —ax by itsquantized version, i.e., by a
uniform quantized function k(z) such that —azx — e < k(x) <

—ax + €. One possibility isto take
2¢
=

(8)

This controller drives any state belonging to I into J in one
step. In this case we have that

C-1

k(xz):=—(2h+1)e for h% <z <(h+1)
a

N=2 {a| —‘ ~ |a|C.

and that

T:iP[TJZn]:IP’[Tle]:l—}P’[J]:lfl/C.

n=1

Using the nesting strategy presented above we can construct a
T steps deadbeat quantized feedback simply iterating the 1 step
deadbeat quantized feedback. We only need to pay attention to
the fact that the uniform density in I is invariant with respect
to the map ¥ defined in (6). This happensif |a|(C — 1)/2 is
an integer. Assume that thisisthe case and denote it by n. We
obtain atriple contraction rate, quantization interval's, expected
entrance time equal to

2 2
nt ‘a|,2n, i cA.
|al 2n + |al

Using the strategy presented above, we can iterate the construc-
tion 7 times, obtaining in this way a sequence of triples

2 T 2
n+ ld ,2Tn, T n €A, n,7 € N.
|a] 2n + |a|

which provides a family of quantized feedbacks parametrized
by the two integers 7,n. We are mainly interested in under-
standing what asymptotic behavior can be obtained of N and




T as C' — oo. To thisaim observe that

|a

N/|al B 2n+la|\ >
TCUT |al

€ [1/e,1].

Making the change of variable

c:(2n+|a|) , n:M(C%—l)

la]

we obtain

T(C% -1

T1-C™7)

N/la| =
T =

where 7 is any function of C that, by (9), can be chosen ar-
bitrarily subject to the fact that 7(C)/log C' is bounded from
above. If in particular 7 isfixed, we obtain

N/|a] ~ O~
T ~ 7

the symbol ~ meaning that the ratio of the two functions tends
tolasC — oo. If instead we think of + asa possible function
of C, we can distinguish two different behaviors: the case when
7(C)/log C — 0 and the case when 7(C) ~ K logC. Inthe
first case we have that

N/|a| ~ TCVT.

and moreover N/logC — oo, namely we have a super-
logarithmic growth of the number of quantization intervals,
while the expected entrance time have a sublogarithmic growth
T/log C' — 0. In the second situation when 7(C) ~ K log C
we have that both N and T grow logarithmically in C. More
precisely, we have that

N/la| ~ K% —-1)logC
T ~ K(1-eV/%)logC

4.2 Logarithmic quantized feedback strategy

The second strategy is based on the quantized feedback (we
assume a > 0, the case a < 0 being completely anal ogous)

h(z) = —a+1 ife<z<1
T )] 4a—1 if-1<z< —¢
where
_a—l
S a+1

In this way we obtain an amost (7, J)-stabilizing quantized
feedback where I = [—1,1] and J = [—¢, €.

In this case we have a contraction rate 1 /e and 2 quantization
intervals. The expected entrance time can be found by noticing
that

I=(I\J)=[-1,—€,] Ulen, 1],

wheree, =1 —2/(a + 1)a™, which implies that the expected
entrancetimeis

S Pl >0 = SRTINI) =
n=0 n=0
2 = ., 2a
N a+1n§::0a T a?-1

In general, when we do not restrict to positive a, we obtain
a triple contraction rate, quantization intervals, expected en-
trance time equal to

la| -1 2|al
,2, € A
(Ial +17 ol -1

Using the strategy presented above, we can iterate the construc-
tion 7 times. In this case it is less obvious to show that the
L ebesgue measure is invariant with respect to the map ¥ de-
fined from I" asin (6). To show this observe preliminarly that,
if weassumethat I'(z) = « foral « € J, then

lim I (z) = TT0.n @) (),

n—oo

foradmostal z € I

which implies that '™ () converges to T7.»(®)(z) in distri-
bution. Observe moreover that, if the density function f,, of the
random variableI' (z) is of the form

ifaeJ
ifael\J,

Qn

) ={

then aso f,,+1 hasthe same structure with a1 = 28, /]a| +
ap, and 3,11 = Brn/|al. Thisimplies that

ifael

. [ 1/e
lim f,(a) = { 0 ifael)\L

n—oo

from which we can argue that the Lebegues measure is invari-
ant with respect to the map .

These facts allow us to obtain a sequence of triples

la| + 1" 2|l
2 N.
(<a|1 , 27, \a|2—1T c A, TE

Making the change of variable

(|a| + 1)T log C
C= , T =
la] -1 log(lal +1) — log(|a] — 1)
we obtain
2 log C
N/|a] = —
Mol = Lol togal + 1) — log(al = 1)
T — 2|al log C

|a]> =1 log(la| + 1) —log(la] — 1)

These expressions motivate the name logarithmic quantizer
whichiscommonly given to this quantized feedback. The strat-
egy obtained in this way coincides with the one proposed in
[4, 6] which yields a Lyapunov stability.



4.3 Chaotic quantized feedback strategy

In [6] another possible quantized feedback yielding almost sta-
bility has been proposed. This control strategy exploits the
chaotic behavior of the state evolution inside I = [—1, 1] pro-
duced by the feedback map

ko(z) := —(2h+1) for %h <z < %(h +1), (10
when we havethat |a| > 2. Inthisway we have that, for aimost
every initial condition x, the state evolution z; is mantained
insidetheinterval I andisdenseinthisinterval. For thisreason
x¢ Will visit theinterval J = [—¢, €]. Therefore, if we modify
this feedback map in J asfollows

_ | Ko=)
k() = { ki(x)

where k1 (z) is any quantized feedback making J invariant
(take for istance k1 (x) = eko(z/€)) we obtain that the state
will move chaoticaly inside 7 till it will enter the interval J
and there it will be entrapped. In this way we obtain a feed-
back map requiring

ifoel\J

ifoeJ (1D

N = flal]

quantization intervals. In this case the evaluation of the ex-
pected entrance time can be done using Markov chain tech-
niques. Assumethat e = 27". It is clear that, for evaluating
the expected entrance time, we can refere to the system with
feedback ko(x). Definethesets I; := [—i27", —(i — 1)27 "] U
[(i —1)27™,427"], 4 = 1,...,2". In this way we have that
J = I;. Assuming that that initial state ¢ is uniformly dis-
tributed in I, we can argue that

Plo € I;] = 27"

Assuming that the iterated state x; is uniformly distributed in
each quantization interval I;, then the structure of the closed
loop map I'y(x) = az + ko(z) ensures that also the updated
state ;11 = I'o(z¢) will have the same property. Moreover we
have that

]P)[I’H_l € Ij|$t S Iz] == Hij

whereII,; isthe, j-element of the matrix

o 0o o0 o0 - 0011
o 000 -1 1 00
0 0 1 1 0 0 0 O
_lf1 100 000 0 2" x2"
T=3511 1 0 o0 000 ok
0 0 1 1 0 0 0 O
0 0 0 O 1 1 0 O
(00 00 0 1 1]
If we introduce the column vector
Ti=2""[1 1 1 1] eR¥>?

then (see [?, page ??7]) the expected first entrance time in the
state 1 is given by the formula

d

E(T(;,1)) = Ew<z)|z:1 ;
where 1(2)
L s zZ)er
w(z) = eTTl(2)e;

andwherell(z) := > ., 1I"z" ande; :=[10 --
Il = 7, then B

- 0]T. Since

.

1
wll(z) = T

On the other hand it can be seen that
ZTI,

1 —-n
II =1427"—
ei II(z)eq —

obtaining in this way

and
d

T = Ew(z)p:l =2"—n.

In this way we obtained the triple
(2",2,2" —n)c A.

Using the strategy presented above we can iterate this construc-
tion 7 times. It can be shown that also in this case the L ebesgue
measure is invariant with respect to the closed map ¥ defined
from T" asin (6). To show this we use the same kind of rea-
soning used in the previous subsection. Again, by defining T’
in such away that I'(z) = « for al = € J, we have that the
random variable '™ () converges to T'7.»(®) () in distribu-
tion. Observe moreover that, if the density function f,, of the
random variable ' (z) is constant in each quantization interval
1;, then it can be shown that also f,,; has the same property.
Thisimpliesthat aso the limit density will be afunction which
is constant in each set I; and in particular in J. From this we
can argue that the Lebesgue measure is invariant with respect
to the map W. These facts allow us to obtain a sequence of
triples

(27, 72,72" — ) € A, n,7 € N.

The previous reasoning can be extended to any situation in
which |a| isan integer. In this case it can be obtained sequence
of triples

(la]™, 7]a|, T]a|™ — mn) € A, n,7 € N.

which provides a family of quantized feedbacks parametrized
by the two integers 7,n. We are mainly interested in under-
standing what asymptotic behavior can be obtained for N and
T asC — oo. To thisaim observe that

T n 1
~ o= m:1——ne[1
WCN |a|

1].

~ elnlal’



Making the change of variable
1
C=lafm,  n=_8C (12)
7 log |al
we obtain that
N/la] = 7
T = TC%—IOgC
log |al

where 7 is any function of C' that, by (12), can be chosen ar-
bitrarily subject to the fact that 7(C)/log C is bounded from
above. If in particular 7 isfixed, we obtain

N/la| = 7
T ~ 707.

If instead we think of  as a possible function of C, we can
distinguish the case when 7(C') / log C' — 0 and the case when
7(C) ~ K log C'. Inthefirst case we have that
v Now
|al

and moreover N/ log C' — 0, namely a sublogarithmic growth
of the number of quantization intervals, while the expected en-
trance time have a superlogarithmic growth T/ log C' — oo. In
the second situation when 7(C') ~ K log C' we have that both
N and T grow logarithmically in C. More precisely, we have
that

N/la| = KlogC

T = Kel/K—; log C
log |al

Chaotic stabilizers can aso be considered for non integers
slopes a. Some preliminary results on this case have been ob-
tained in [6]. In the forecoming paper [5] it is proved the fol-
lowing more refined result.

Theorem 1 Let a besuchthat |a| > 2, = [-1,1]and J =
[—e€,€]. for 0 < e < 1. Thereexistsan almost (1, J)-stabilizing
quantized feedback & : I — R such that

N =
T <

af] +1
KC,

where K isa positive constant only depending on a.

Remark: Observe that these three stabilization methods sug-
gest that looking for a stabilizing quantized feedback with min-
imal quantization intervalsis rather naive. In fact the last strat-
egy would be clearly the optimal one. This is not true since
the different strategies requires different information flow, but
they provides closed loop systems with different stability per-
formances. The following table summarizes the properties of
the different quantized feedback strategies.
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