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Abstract

Multi -Input-Multi-Output (MIMO) tradking problem under
uncertainty conditions is considered. The proposed vedor 2-
diding control design preserves the main Single-Input-
Single-Output 2-dliding control fedures: the wntrol is finite-
time mnvergent and chattering-freg the tradking is exad.
With discrete sampling it provides for the tradking acaracy
propational to the sampling step squared. The design
procedure requires non-singularity of the control matrix.

1 Introduction

Control under heary uncertainty conditions remains one of
the main research fields of the modern control theory. One of
the most simple and effedive ways to withstand the
uncertainty is based on the sliding-mode technique [18, 19].
Sliding modes ke equality of some output variable o to
zero. With o being the deviation of some red-time given
signal from the output, the standard dliding mode provides
adually for full output control in the case when the relative
degreeis 1 (i.e. the mntrol appeas explicitly alrealy in the
first total derivative of 0). Theideaisto read¢ immediately to
any deviation of o from zero, making it move to O by a
sufficiently-energetic control effort. Such dliding modes
fedure finitetime nvergence high acaragy and
robustness with resped to a large dass of disturbances.
Unfortunately, the standard dliding mode fedures also high-
frequency control switching which may cause possbly
dangerous g/stem vibrations (the so-cdled chattering effed
[18, 8]).

A number of methods were propcsed to overcome these
difficulties. In particular, high-gain control with saturation
approximates the sign-function and dminishes the dattering,
while on-line estimation of the so-cdled equivalent control
[18] is used to reduce the discontinuous-control component
[17], the diding-sedor method [9] is aiitable to control
disturbed linea time-invariant systems. Yet, the diding-
mode order approach [10, 4, 11, 1, 3, 14] seansto be more
comprehensive, for it allows to remove dl the &ove
restrictions, whil e preserving the main diding-mode feaures
and improving its acaracy. Independently developed

dynamicd [16] and terminal [15] sliding modes are dosely
related to this approach.

Let first o be ascdar output. Suppcse that o = 0 is kept by a
discontinuous dynamic system. While successvely
differentiating o along trgjedories, a discontinuity will be
encountered sooner or later in the general case. Thus, dliding
modes 0 = 0 may be dassfied by the number r of the first

successve total derivative o) which is not a ntinuous
function of the state spacevariables or does not exist due to
some reason like trgjedory nonurigqueness That number is
cdled didingorder [11, 3, 14]. The standard dliding mode on
which most variable structure systems (VS are based is of
the first order (6 is discontinuous). Let now ¢ be avedor.
Then ead scdar component of o may have its own diding
order. As a result a vector sliding order is achieved.

While the standard sliding mode predsion is propartional to
the sampling time interval or to the switching delay, r-dliding
mode redi zaion provides for up to the rth order of sliding
predsion with resped to the measurement interval [11].
Properly used, higher-order sliding modes (HOSM) totally
remove the dattering effed and feaure finite-time
convergence.

Scdar HOSM are dready well studied, and a number of
applicaions were reported [7, 13]. In particular, arbitrary-
order sliding mode ntrollers [14] provide for full output
control of any uncertain smocth Single-Input-Single-Output
(SISO) minimum-phase dynamic system with known relative
degreer. The auxiliary-constraint construction is avoided,
the cnvergence time is finite and may be made abitrarily
small, while only one scdar parameter needs to be aljusted.
The mntrol can be made abitrarily-smoath in time, totaly
removing the dattering effed and providing for ultimate
acaragy in redizaion. An output-feedbadk version of the
same controller is also available.

At the same time Multi-Input-Multi-Output (MIMO)
applicaions of HOSM are adualy still “terraincognita”. The
only known result in this field was obtained by Bartolini et al.
[2]. The dasscd chattering-removing MIMO VSSproblem is
considered there: a vedor output of an urcertain system has
well defined relative degree (1, ..., 1), and the problem is to
make it vanish in finite time by means of continuous control. It
is own in [2] that hierarchicd 2-diding control is possble if
the control matrix has a dominant diagonal, or the matrix is



positive-definite. In the latter case only asymptotic
convergence is attained, and the aove-mentioned second-
order sliding accuracy is lost.

The gproach of the present paper generaizes the dasscd
hierarchicd MIMO dliding-mode design [18] to the 2-dliding
case. The main SISO 2-dliding control feaures are preserved:
the cntrol is finite-time wnvergent and chattering-freg the
tradking is exad. With discrete sampling the dliding acarracy
is propational to the sampling step sguared. The design
procedure requires non-singuarity of the control matrix and is
simple and straight-forward. The gproac is demonstrated by
computer simulation.

2 Préiminaries: SISO 2-diding control

Only the chattering removal problem is considered here. The
standard VSS fealbadk contains a relay with output taking
on values U,,, -U,,. That feedbadk provides for keegping some
constraint ¢ = 0 in a 1-sliding mode. Let relay output be a
control variable u. Theideaisto install continuous output of
some dynamic subsystem instead of relay output. Let for
simplicity the dynamic system be given by an equation
linearly dependent om:

X =altx) +b(tx)u.

(1)
where xO Rn, u, o OR, tistime, a, b are aCl-functions. Let

o(t,x) be aCz-function. Any solution of (1) is assumed to be
infinitely extendible in t, provided u(t) is continuous and
lu(t)] < U,, for eath t. The goad is to force the nstraint

function o to vanish in finite time by means of a @ntrol
continuously dependent on time.

Let ug(tX)= 0'a/ ayb (the equivalent control [18]), Ky,
Knm - Cg be positive constantk, < Ky, and assume that

| Ugg(tX)] < Uy <Uyy, 0 <Ky < 0y b <Ky,

| o' (a+bu)+op (atrbu)|<C.

The latter inequality means that Ug, is bounded. That makes

it possble to approximate u,, by a Lipschitzian control. A
more general statement of the problem without linea
dependence on contrelcan be found in [11].

The controllers considered in the paper have the form

.0 -—uwithlupUy,,
"B oo with|uku,,. @)

The function & may depend here on the histories ()] and
o(y of & and o measurements. The solutions are understood
in the Filippov sense [6]. Only few traditiona 2-diding

controllers are mnsidered here, thoughall the results are valid
for any 2-diding controller from [3]. The so-cdled twisting

controller [3, 10, 11] and the mnvergence @nditions are
given by
¢ =- (r, signo +r,signad), r, >r, >0,
(r+ 1)Ky -C> (I -r)Ky +C, (ry-r)K,>C.

3
A particular case of the ntroller with prescribed
convergence law [5, 11] is given by

= -a sign(@ +Ala[" signo),
a,A>0, oK, -C>A72.

(4)

Controller (4) is close to termina diding mode cntrollers
[15]. The so-cdled sub-optimal controller [1, 2, 3] is given
by
¢ =-r, sign O - 0*/2) +r,signo*, r;>r,>0,
2[(r+ 1)Ky -C] > (r- r)Ky +C, (r- 1)K, >C,

®)

where o* isthe aurrent value of o deteded at the dosest time
when ¢ was 0. The initial value of o* is 0. Any computer
implementation of this controller requires siccessve
measurements of ¢ or o with some time step. Usually the
detedion of the moments when & changes its sgn is
performed. The cntrol value u depends here adually on the
history of & ando measurements, i.e. a[)] ando (0L

Theorem 1 [11, 1]. 2-diding controllers (3), (4) and (5)
provide for finite-time convergence of any trajectory of (1),
(2) to 2-diding mode o = 0. The convergence time is a
locally bounded function of the initial conditions.

Let the measurements be caried out at times t; with constant
sep 1 > 0, 0, = o(t, x(t)), AC, = O, - Oy, t O [, G-
Substituting o, for o, sign Ao, for sign ¢, and sign(Ag, -
Atlo ’sign ) for sign(& - Alo]”“sign o) achieve discrete-
sampling versions of the controllers.

Theorem 2 [11, 1]. Discrete-sampling versions of controllers
(3), (4), (5) provide for the establishment of the inequalities

lo] < uOTZ, |G| <p,T for some positive Ly, L.

The following theorem establishes robustness of the
controllers with respect to small model imperfections.

Theorem 3. Let under the conditions of Theorem 1 system (1)
be disturbed by a small function w so that

X = a(t,x) + (t,x,u) + b(t,x) u,
where |0y w/ 0y b| <€, uy + € < Uy,. Then the convergence

is provided to the set defined by the inequalities |o| < posz, |G
< we for some positive p, ;. The same is true with
sufficiently small sampling step.

Theorem 3 was proved in [4] for the twisting controller. The
controllers (4) and (5) are similarly considered. The main idea



is to consider the motion in the cordinates 0 and & = U - U,
6= 0o,b(§ + o, w/ (0}b)).

Remark. With negative oyb, 0 < Kj;; < -0yb < Ky, the
function¢ has to be replaced in (2) bj.-

The listed controllers depend on few constant parameters.
These parameters are to be tuned in order to control the whole
class of proceses and constraint functions defined by the
concrete values of Uy, K,,, K., C. Incressing the mnstants
Uw Ky Ky C, we enlarge the mntrolled class too. Such
algorithms are obvioudy insensitive to any model
perturbations and external disturbances which do not stir the
dynamic system from the given class.

3 MIMO control design

Let the system to control be given by (1) but now with u, o
oR"™. Suppose that the relative degreeis (4, ..., 1), in other
words, that the matrix Oy b is nonsinguar. Consider an
auxiliary formal system of linear equations

Gu=F, G= ayh = (g;(t X)),

where F is any vedor. Suppose that 9i,j, % 0, then uj, may

be excluded from the other equations subtrading eguation i,
with the appropriate coefficient:

9 =% 9%,/ 9. | Zis

Take now any equation number i, Z i, and take awy j, # j,;
such that the dement of the modified matrix g;, ;, # 0 and

similarly exclude u i from the rest equations (i.e. from the

equations with numbers i # i, i,). That is the well-known
Gaussprocedure of variable exclusion. It can be successully
caried aut till the end for any nonsingdar G. After the
procedure finish and the @rresponding enumeration of the
controls the obtained matrix gets the upper-triangular form.

Definition. The crrespondence Ejl
1

well-defined output-input assgnment, if the corresponding
Gauss procedure can be performed for any t, x, and the
corresponding elements (ji(j)’j of the resulting modified

'm E is cdled a

Im

matrix G are uniformly separated from zero. Thus, eadh
control component u; is asciated with the rresponding

component g, of a. The number ¢ ; = sign gim,j is cdled
the influence sign.

Asame that the matrix 0 b is nonsinguar and baunded, the
equivalent control ug(t,x) = - (0 + 0y a)( Ty b)'1 is bounded

i
together with its total derivative, and E,l

Eisa
Ja

well-defined output-input assignment. Then the controller is

Im

Im

u; = . . ,
P05 01) (B 6y (0) withuy U

j=1,..m (6)
with ¢; chosen in one of forms (3) - (5). The form of ¢; can
be chosen independently for each

Theorem 4. Let the parameters of ¢Jk and U j, bechosen

sufficiently large in the reverse order k = m, ..., 1. Then
controller (6) provides for the finite-time convergence to the
vector 2-sliding mode o = 0.

Proof. Let for simplicity j, = m- k + 1. Apply the induction
with resped to m. The cae m = 1 was considered in the
previous fdion. Let now reduce the cae mto m- 1. As
follows from (1)

6 =0 (t,x) + o) (tX¥atx) + G(t,x) u.

(@)

Denoteu = ({0, u,)’, where ( = (uj, ..., U,,,) ", and §= (g,
..»01 my)- Themth equation takes on the form

Om=0, +0png@+ § 0 + Gy Uy, ®
Taking 6 ,, = 0 (to be still provided), obtain the function
umeq: - (OJmt+0mea+@ l:I)/ G- (9)

Substituting Uy, ¢ for up, in the m-1 first equations of the
vedor equation (7) obtain a new system with (m-1)-
dimensional vedor control ( and output G. Its control
meatrix coincides with the first m-1 columns and lines of the
matrix G after the first step of the éove Gauss procedure.
This g/stem satisfies all conditions of the Theorem. Hence,
2-sliding control design is available for it.

Apply the resulting controls (6) for j = 1, ..., m - 1, and
consider dynamic system (1) as a SISO system with control
U, and output o, Due to the boundednessof U and U, it
satisfies the onditions of Theorem 1. Therefore, taking
appropriate (sufficiently large) parameters of ¢, and U,
finite-time @nvergence to the 2-sliding mode o,, = 0 is
provided. Thus, after finite time & ,, = 0, which means that
aso the identity Uy, = Uy, o, is kept. Now the rest of controls
provide for the finite-time vanishing of the whate®

Let the measurements be caried out at times t; with constant
step T > 0, 0y = o(t, X(t), AGy = Oy - Ojper t U [t ten)-
Substituting o; for o, sign Ac;, for sign ¢,, and sign(Ac;, -
Ao,/ Zsign o) for sign(, - Ao/ ’sign o,) adieve
discrete-sampling versions of controller (6).



Theorem 5. Discrete-sampling versions of controllers (6)
provide for the establishment of the inequalities |jo]| < HOTZ,
[|6 ] <yt for some positive pg, M.

Theorem 6. Let under the conditions of Theorem 4 system (1)
be disturbed by a small vector function w so that

X = a(t,x) + (t,x,u) +b(t,x) u,

where ||oyw/ (O} b)'1|| < €. Then with control parameters
chosen as in Theorem 4, the convergence is provided to the
set defined by the inequalities |o]| < posz, [16]]< p,& for some
positive [, M, The same is true with sufficiently small
sampling step.

Proof of Theorems 5, 6. Similarly to the proof of Theorem 4
the proof is caried out acoording to the induction principle.
Theorems 5, 6 are true with m = 1 (Theorems 2, 3). Consider
now anym > 1. Themth equation is

- [——— r a0
Om—0; +0mxa+(*)m+ g U + Gy Uy

Let the sub-controllers with j = 1, ..., m be chosen as in the
proof of Theorem 4. Then, due to Theorem 3, |o,,| ~ 82, |6,
~ &, which means that also | Uy, - Uy, | ~ €. Thus, the problem
is reduced to the (m - 1)-dimensional case, which proves

Theorem 6 both for the continuous and discrete sampling.

Let now w = 0O, the sampling step be 1, The same
considerations show that the relations |o,] ~ TOZ, |6~ 1,
U - Uy ol ~ To are established in finite time. Thus, the
deviation of uy, from u,, o, is felt by the (m - 1)-dimensional
system as a small disturbance of the order of 1, Hence, due
to the discrete-sampling wersion of Theorem 6 for the
(m - 1)-dimensional case, relations |jo]| < 82, 6] < € are
establi shed for some small € (Theorem 6 cannot provide here
for the full proof of Theorem 5, for 1, is required to be small
with respect to the disturbance).

It is essy to ched that differentiating (7) achieve with
discrete sampling in the dove small vicinity of the 2-diding
mode that

6 LB+ d(o(t)A0), B =), T =) ®=d) (10)
where &, (0;(t),.Acy) is the discrete verson of the
corresponding controller (3) - (7), t O [ty, t4q). B isa
column andr is a diagonal matrix with elements
Bi=[-B.Bl] B >0¥ = Vm: Yim ] Y > ¥m > O;

the set operations are understood in the natural way. The
corresponding constants 3, vy, ¥, are eaily found from the
Theorem conditions. It is easy to see that the set of
trajedories of (10) is invariant with resped to the combined
time-coordinate-parameter transformation

H: o 6,7 = (kt, K20', K3, KT).

Hence with k = t/t, adieve that with any arbitrary
aufficiently-small sampling step t the trgjedories are
concentrated after finite time in the set [jo]| < (/1) T, || ]|
(Ehyt.m

Output-feedback control. As follows from (7) & isuniformly
bounded, which alows siccessul feedbad application of m
robust exad differentiators [12] without disturbing the
statements of the Theorems. Thus, the usage of finite
differences can be avoided.

The listed controllers depend on constant parameters. These
parameters determine a ¢ass of processes and constraint
functions which may be successully controlled by the
designed controller. The parameters being increased, the
controlled class is also enlarged. Such agorithms are
obviously insensitive to any model perturbations and external
disturbances which do not stir the dynamic system from the
given class.

4. Numeric example

A problem of the rigid body anguar orientation and tradking
is considered. The body is moved by means of 3 jet pairs.
The following systemis a disturbed model from [7] (also the
control matrix was changed):

X1= -XXg + wy(t) +p,(tu) + u; + 1.2, + 1.54,
Xo= XXz + wt) +py(tu) + LG+ uy+ 1.2,
X3= - 2X% +yt) +pg(tu) + 1.2 + 1AL+ U

(11)

Here x, u are the aiguar velocities and jet torques
respectively, the “uncertain” disturbances are as follows:

wy(t) = cost (1 + 0.05 sin4t + 0.1 cos t),
w,(t) = sint cost (1 + 0.05 sin4t + 0.1 cos t),
wy(t) = sint (1 +0.05 sin4t + 0.1 cos t);

p,(t, u) = 0.01 sin(+ 2.1) @, -0.5y),
p,(t, u) = 0.01 cog ( -0.8, + 0.8u,),
p4(t, u) = 0.01 cod(+ 1.3) (-0.2u, -u, +0.7uy).

Thetask isto track a given in the red time vedor-function of
time by x. The right-hand side of (11) is not bounded with u
= 0. Thus, the mnditions of Theorems 4-6 are satisfied only
in some vicinity of x = 0, and the designed controller will be
also only locdly valid. For the simulation the signal x. to be
tracked was taken

X,=1+sin 0.5,
X, = 0.5 cos 0.6 cost,
X3 = 0.5 cos 0.6sint .

Denote by 0 = x - X, the vedor output to be nullified. Apply
the Gauss procedure to the nominal control matrix in (11).



Excluding u, from the first 2 equations and u, from the first
one, achieve the matrix
088 O OE

0006 -0.8 Or.
Hi2 15 1f

The mrresponding influence signs are (-1, -1, 1). It is easily
seen that the disturbance p does not interfere with this

21
procedure. Thus, the assgnment g 9 1E is well defined

and the 2-dliding controller is chosen based on the twisting
controller (3) as follows:

0 = O-u with |u; > 3,
e %signcl(tk) + 3signAacy;, with|u; €3

0 = O-u, with |u, [> 10,
2" %Osignoz(tk) +15signAc,, with|u, 10
O-ug with|ug > 80,

U, =
3~ H-100signos (t, ) - 60signAcy,  with|us [ 80.
The initial control values were taken u, = u, = u; = 0. The

integration was carried out by the Euler method, which is the
only reliable method for the sliding-mode simulation.

The trajedory on the plane o;, 65 is presented in Fig. 1.

That is the most fast and daminating process therefore the
obtained convergence arve is the standard for the SISO
twisting controller. It is sen from Fig. 2 that the
convergence to the seoond 2-diding mode 0, = 6, = 0 starts

only after o; = 0 is obtained. Convergenceto o, = 6;=0
requires a; = 0 and g, = 0 (Fig. 3). The trading results are
demonstrated in Fig. 4. The @ntrols are shown in Fig. 5. It is
sea that after finishing the wnvergenceto o; = d5;= 0 the

control component u, succesfully compensates for the
transients oti, andu,.

O;

‘006 1048 04 >

O

Fig. 1: The trajectory on the plagg &,

Fig. 2: The trajectory on the plaog, &,
cTl
15
Gl
12
Fig. 3: The trajectory on the plagg d;
X, X.
0.8
0 ——— S——
0.8
238

Fig. 4: Tracking results
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Fig. 5: 2-sliding controls

The resulting acarades were ||o|| < 3.510" and [|6]|<0.23
after the transient time t = 5 with the sampling step t = 10",
After the sampling step was changed to T = 10'5, the
acarades changed to |jo]| < 4.710° and [|6 ||< 0.024, which
generally corresponds to Theorem 5.

5. Conclusions

A simple procedure of 2-diding MIMO control design is
proposed which requires only nonsinguarity of the control
matrix. The procedure is effedive with relative degree 1
which means that the 2-dliding mode can be used instead of
the standard MIMO 1-diding mode totaly removing the
chattering, preserving the finite-time-convergence ad
improving the sliding accuracy.

A number of problems gill remain. Though in pradice the
proposed approach is aufficient, global convergence with
known functional bounds of o) a and o b is gill needed to

be aaured. While output-feedbac control can be designed
here, using robust exad first-order diding differentiators
with finite-time cnvergence [12, 14], the differentiation is
better to be avoided. In other words a MIMO super-twisting
controller [11, 3] is to be developed.
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