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Abstract

This paper shows the development of a predictive controller.
The proposed sliding mode model predictive control (SMPC)
algorithm blends the design technique of sliding mode control
with model based predictive control. It is demonstrated that an
appropriate choice of the tuning parameters of SMPC avoids
the instability problems of MPC when applied to non mini-
mum phase systems. It is shown that considerable robustness
improvement with respect to MPC can be obtained in the pre-
sence of modelling uncertainty, and disturbances, also SMPC
showed enhanced ability to handle set point changes in a non
linear process. The performance of the controller was judged
using a non linear and non minimum phase isothermal Van de
Vusse reactor process.

1 Introduction

A discrete system is said to be a non-minimum phase process if
at least one of the zeros of the transfer function is located out-
side the unit circle. These kinds of processes are common in in-
dustrial applications and they are characterized by their inverse
response. It is well known that non-minimum phase systems
present difficulty for applying control strategies because they
have an initial inverse response to step input in the opposite di-
rection to the steady state [1]. The presence of unstable zero
in a process transfer function is thus identified as being respon-
sible for its difficult dynamic behavior; it is also the source of
a considerable amount of difficulty in controller design. Ano-
ther aspect of controlling a process with unstable zero is the
instability problem, which arises in order to achieve high per-
formance when the controller contains an inverse of the process
model [2].
Model Based Predictive Control (MPC) has become one of

the most popular control methodologies both in industry and
academia. It has been successfully implemented in many in-
dustrial applications, showing good performance. The basic
idea of MPC is to calculate a sequence of future control signals
in such a way that it minimizes a multistage cost function de-
fined over a prediction horizon. The index to be optimized is
the expectation of a quadratic function measuring the distance
between the predictive system output and some predictive refe-
rence sequence over the horizon plus a quadratic function mea-
suring control effort. In order to implement an MPC, a model
of the plant is used to predict the future plant outputs. This pre-
diction is based on past and current values of the input and the
output of the plant.
The instability problems applying Model Predictive Control to
non minimum phase systems have been reported in literature,
[3] and [4] show that non-minimum phase systems produce in-
stability when �����	��
��� , while [5] and [6] propose that
this can be solved using a control weight parameter. Instability
in MPC is also reported by [7], [8] and [9]. In [10] it is shown
how MPC can be tuned to have stable behaviour with unstable
zeros in the Single Input Single Output (SISO) case. MPC has
instability problems because, for non-minimum phase plants,
the controller achieves the optimal output by cancelling the
plant zeros, including the unstable zeros, which leads to a loss
of internal stability of the feedback system.
Sliding Mode Control (SMC) is a technique derived from Va-
riable Structure Control (VSC) which was studied originally by
Utkin [11]. For a broad class of systems, this kind of control is
particularly appealing due to its ability to deal with nonlineari-
ties, time-variance, as well as uncertainties and disturbances, in
a direct manner in the face of modeling imprecisions. In VSC,
the control can modify its structure. The design problem con-
sists of selecting the parameters of each structure and defining
the traveling logic. The first step in SMC is to define a sli-
ding surface, ������� , along which the process can slide to find
its desired final value. In general, the switching surface repre-
sents the system behavior during the transient period, therefore,



it must be designed to represent a desired system dynamics.
The structure of the control system is intentionally altered as
its state crosses the sliding surface in the phase plane in accor-
dance with a prescribed control law. Thus, the second step is to
design the control law in such a way that any state outside the
sliding surface is driven to reach the surface in finite time and
stay here.
This article shows how a combination of MPC and SMC re-
sults in a control structure that has the main advantages of both
SMC and MPC. An algorithm based on variable structure con-
trol and generalized predictive control was proposed in [12].
The sliding surface prediction is made only with past values of
input and not considering the future control values, furthermore
the way in which the sliding surface is computed results in an
unstable polynomial. This paper proposes a controller based on
the idea of a combination of MPC and SMC that also has the fu-
ture control movements for predicting the sliding surface, this
results in more precise predictions and allows the process to be
controlled with dead time; the discontinuous part of the control
law is also simple and with fewer parameters and they have a
clear meaning for tuning. A dual mode control scheme com-
bining non linear MPC and SMC is presented in [13]. MPC
is used to force the state into a terminal region within a finite
horizon while it is outside the terminal region and a sliding
mode variable structure controller is used while the state is in-
side the terminal region. The controller proposed is a single
mode controller, the main idea is to introduced the prediction
of the sliding surface into the control objective.
This article is organized as follows: Section 2 presents the
development of SMPC. Section 3 shows the procedure used
to obtain SMPC closed loop relationships. Section 4 shows
the application of this controller for an isothermal Van de
Vusse reaction in a continuously stirred tank reactor with non-
minimum phase behaviour. Finally, the conclusions are pre-
sented.

2 Sliding mode model based predictive control

Most SISO plants when considering operation around a parti-
cular set-point and after linearization can be described by:

� ������� ��� ����� �	����
� ������� ��� �����  ����� ������� � � ������ (1)

Where: � ����� is the output signal process, � ����� is the input signal
process,

�
: ���� ��� , � : is the delay,

� ����� is the zero mean white
noise,

� ��� ��� � and � ��� ��� � are monic polynomials and � ��� ��� �
is a polynomial that has the zeros of the model. This model
is known as the CARIMA Model (Controller Auto-Regressive
Integrated Moving-Average). It has been argued that for many
industrial applications in which disturbances are non-stationary
an integrated CARIMA model is more appropriate [3]. The
most usual case C ��� ��� � �  has been used because the co-
louring polynomial are very difficult to estimate with sufficient
accuracy in practice [14].
The following new predictive sliding surface is proposed to de-

velop the controller:

��������� � �! �" ��� ��� � ��� ���#�%$'& �����)(����#�%$ ���#�* " ��� ��� � � � ���#�%$+� ,�-� � (2)

where the  �" ��� ��� � and
* " ��� ��� � are polynomials of degree .0/

and .�1 respectively, given by,

 �" ��� ��� � �2/�"435�6/�" � � ��� �87 7 79�6/�"�:�;<� � :�; (3)* " ��� ��� � �=1�"435�>1�" � � ��� �87 7 79�>1�"�:<?� � :<? (4)

A predictive sliding surface is also presented in [12], however,
it does not use the future control signals

� � ���@� A�B$ � to predict
the future sliding surface values ��������� � , as is done here. Notice
that using the future control moves allows for better predictions
of the future values of the sliding surface, especially for con-
trol process with dead time. The general aim is that the future
predictive surface (2) on the considered horizon should be zero
and at the same time, the control effort

� � necessary for doing
so should be penalized. The expression for the objective func-
tion is given by (5).

C �
DFEG
�IH DKJL�M� ���#�%$'& ���4N


 �
DFOG
�IH �

P � $ � L
� � ���#�%$Q�  �4N 
 (5)

Where M�������)$%& ��� is an optimum $ -step prediction the of sli-
ding surface on data up to time � , � � and ��
 are the minimum
and maximum predictive horizons, � � is the control horizon,
and

P � $ � are weighting sequences. The objective of the con-
troller is to compute the future control sequence in such way
that the future surface �������R$ � is driven close to zero. The mi-
nimization of the objective function

C � � �@S ��
 S ��� � produces� � ����� S � � ���A�� � SUTUTUTUS � � ���A� ��� � , but only
� � ����� is actually

applied. At time �F�  a new minimization problem is solved.
This implementation is called the Receding Horizon controller.
The final objective of control is to ensure that the controlled
variable is close to its reference value (����,�V$ � at all times,
meaning that W ����� must be zero. The problem of tracking a re-
ference value can be reduced to keeping ������� at zero. Once the
sliding surface has been selected, attention must be turned to
designing the control law that satisfies ������� �YX . The control
law,

� � ����� , consists of two additive parts, a continuous part,� ��Z ����� , and a discontinuous part,
� ��[ ����� . That is,

� � ����� � � ��Z �����#� � ��[ ����� (6)

The continuous part is given by a Model Based Predictive Con-
trol algorithm using (5). The discontinuous part, ��[ ����� , incor-
porates a nonlinear predictive element that includes the swit-
ching element of the control law. This part of the controller is
discontinuous across the sliding surface.

��[ ���#�%$ � �	\][ �������%$�& ���& �������%$�& ���^&<��_ (7)



Where \][ is a gain which is the tuning parameter responsible
for the reaching mode, and _ is a tuning parameter used to re-
duce the chattering problem [15]. In order to minimize (5), the$ -step ahead output prediction M�����F�-$�& ��� for $ � � �@SUTUTUTUS ��

has been computed based on the information known at time �
and the future values of the control increments. The following
Diophantine equation is considered,

 � � � ��� ��� � �� ��� ��� ���>� � ��� � ��� ��� � (8)

The polynomial
� � ��� ��� � and

� � ��� ��� � are uniquely defined
with degrees $ �  and .�� respectively,

�� ��� ��� � � ��� ��� ��� � .
Combining the plant model (1), and Diophantine equation (8),
the follow prediction output equation can be obtained,

M� ���#�%$ � � � � ������� � � ������� � � ��Z �����%$+�  �
� � � ��� ��� ��� ����� (9)

In this expression M� ���<��$ � is a function of a known signal value
at time t and also of future control inputs which have not yet
been computed . Using a second Diophantine equation (10) to
distinguish past and future control values,� � ��� ��� � � ��� ��� � ��� � ��� ��� �#�>� � �	� � ��� ��� � (10)

The polynomial � � contains the first $ step response parame-
ters of the plant model. The following expression of the pre-
diction is obtained,

M� ���#�%$ � �
� � ������� � � ��Z �����%$+�  ��� M� �����%$�& ��� (11)

Where M� ���5�V$�& ��� is the free response prediction of M� ���5� $ �assuming that future control increments after time ���� will be
zero,

M� ���#�%$�& ��� �
� � ��� ��� � � ��Z �����  ��� � � ��� ��� ��� ����� (12)

Substituting
� � ��� ��� � of (8) into (10) , this yields

� ��� ��� � �!� � � �� ��� ��� � � � �>� � �	� � ��� ��� � � ��� ��� �
� �� ��� ��� ��� � ��� ��� � (13)

Define the vector � ����� , composed of the free response predic-
tions, � ����� � L M� ���#� A& ��� SUTUTUTUS M� ���#� ��
 & ���4N� (14)

the vector of future control increments,� ��Z ����� � L
� ��Z ����� SUTUTUTUS � ��Z����#� ���+�  �4N� (15)

From prediction (11) the predicted input-output relationship of
the plant can be written as,

M� ����� ��� � ��Z������#��� ����� (16)

Where matrix G is composed of ��� step response parameters
of the SISO plant model.

G �

����� � 3 X TUTUT X� � � 3 TUTUT X
...

...
. . .

...� DFE ��� � DFE ��� TUTUT � DFE � DFO
� ���� (17)

The prediction of the sliding surface is obtained substituting
(16) into (2),

M������� � �������Y� �!� � � ��Z �����#�"��� �#� " �������-(�������� (18)

Where the free response of the sliding surface � " is given by,� " ����� �%$ ��� ��� ��� �����#� � ��� ��� � � ��Z ���F�  �I���� ��� ��� � W �����#�"��� ��� �!� � � ��Z ���F�  � (19)

with the matrices defined as,

����� ����� /�"43 X TUTUT X/�" � /�"43 TUTUT X
...

...
. . .

...X /�"'&)( TUTUT /�"43

� ���� (20)

� �� �
����� /�" � TUTUT /�"'&)(+* J /�"'&)(/�" 
 TUTUT /�"'&)( X

...
...

...
. . .X X TUTUT X

� ���� (21)

�!� � ����� 1�"43 X TUTUT X1�" � 1�"43 TUTUT X
...

...
. . .

...X 1�"'&�, TUTUT 1�"43

� ���� (22)

� �� �
����� 1�" � TUTUT 1�"'&�,'* J 1�"'&�,1�" 
 TUTUT 1�"'&�, X

...
...

...
. . .X X TUTUT X

� ���� (23)

The objective function (5) can be rewritten as,

C �
DFEG
�IH DKJ L �����'��Z �"��� �#� �"� �� � � �� ��Z ���-��� ( � �!� ��ZFN 

�
DFOG
�IH �

P � $ � L
� ��Z ���#�%$Q�  �4N 
 (24)

The quadratic minimization of (24) becomes a direct problem
of linear algebra, assuming there are no constraints on the con-
trol signal, which leads to,

� ��Z ����� �!\/.�021�Z ��(������K�3� " �������
\/.�021�Z � L �������Y� �!� �� �������Y� �!� �#� P54 N ����������Y� �!� ��6��� (25)

and 798;:=<?>�@BADC�E :GFH <?>�@I FH <?>�@ IKJMLON)PQPQP E
:/FH <?> JSRUTUVXW @I FH <?> JSRUT9VSW @ IKJMLBY (26)

finally, the control signal is given by,� � ����� �	\/.�021�Z ��(������K�3� " �������#� � ��[ ����� (27)

To summarize, the SMPC has two parts. A discontinuous part,
responsible for guiding the system to the sliding surface, and



a continuous part developed like an MPC, which is responsi-
ble for keeping the controlled variable on the reference value.
Note that choosing  K" ��� ��� � �  , * " ��� ��� � � X , the objective
function is reduced

C �
DFEG
�IH DKJ L M� ���#�%$'& �����)(����#�%$ �4N


 �
DFOG
�IH �

P � $ � L
� ��Z ���#�%$Q�  �4N 
 (28)

and the \ matrix gain is the usual linear MBPC,

\/021�Z � � G  G � P54 � ��� G  (29)

3 Closed loop relationship

Closed loop relationship has been obtained for the SMPC and
MPC in order to compare how the tuning parameters � �@S ��
 S
and

P
might affect the stability of the controlled plant. SMPC

like other MPC use a Receding Horizon concept so, therefore,
only the elements ��� of the first row of the matrix \G.�021�Z is
considered. Equation (25) can be rewritten as,

� � ����� �
DFEG � H � ��� L �U$ ��� ��� ��� ������� � ��� ��� � � � ���F�  ��U��� ��� ��� � W �������-��� ��� �!� � � � �����  ��� (������4N (30)

Substituting CARIMA model(1) into (30), the closed loop re-
lationship is obtained,

L
�� � DFEG � H � ��� � ��� � �� � � � ��

* " � �"43 �>� � � �-�  �" � �"43 �4N � �����
�	�

DFEG � H � ��� � � DFE � � �  �  �" � �"43 ��(����F� ��
5�  �
����� �>�

DFEG � H � ��� � ��� � � � � ��
* " � �"43 � � ����� (31)

Where, the characteristic polynomial
� Z61����
	�� can be de-

fined as,�� � DFEG � H � ��� � ���
 �� � � �>� � � � �� * " � �"43 �-�  �" � �"43���� � DFEG � H � ��� � ���


��� � �� � � � � � � �� * " � �"43 �-�  �" � �"43�� (32)

The polynomial elements of the surface give an extra degree of
freedom to assign the closed loop dynamic systems. When the
control weight is zero (

P �	X ), (25) can be written as,

\/.�021�Z � L ��� �	�Y� �!� �  ��� �	�Y� �!� �4N ������ �	�Y� �!� ���� �
� ��� �	�Y� �!� � ����� �� � �!\/.�021�Z ��(������K�3� ������� (33)

Furthermore, if the prediction horizon and the control horizon
have the same value ����� ��
B� � � �  , the first . -rows of\/.�021�Z are given by,C

/ .<3/ .<3B� 3 �>1�.<3 S X S X SUTUTUT S X Y (34)

Consequently, using (32) and (34) the characteristic polyno-
mial is obtained as,� Z61 � �� � / .<3/ .<3B� 3 �>1�.<3�� � � �� � 3�� �

� / .<3/ .<3 � 35�>1�.<3  � ��� �� 1�" �/�"43 �-� ��� � /�" �/�"43 � � (35)

The MPC (  �" ��� ��� � �  , * " ��� ��� � �8X ) under the same condi-
tions has the closed loop polynomial characteristic given by� Z61��
	�� ��� ��� � � �����3 � ��� ��� � (36)

Consequently, the poles of the
� Z61��
	�� contains the RHP zero

of the plant model (1). MPC controller is internally unstable
due to the cancellation of unstable zeros of the process with
unstable poles of the controller. Note that for the same con-
ditions the SMPC avoids the internal instability problems, be-
cause the unstable zeros are not cancelled.

4 Simulation example

The isothermal Van de Vussen reaction systems involve series
and parallel reactions. The equations that govern the systems
are:

���� � � ��� � ��� ������� 
� � � ��� � : � ��� � ���� � � �!� � ��� ��� 
@�� K� �� �� (37)

The desired output is the concentration of B, �" L #�$&%�'&% N , ���and ��� � : are the concentrations of A L #�$&%�'&% N in the reactor and
in the feed respectively, the manipulate input,

�
is the dilution

rate L %�'(#*) .�N , � is the volume L % N , and the rate constants are
given by � � �,+ '&-6L #*) . ��� N , � 
 �,+ '&.6L #*) . ��� N , ��� �  '&-L #�$&%�' � %/) � W�0 #*) . �4N [16]. Above no linear, non minimum phase
process has been used to show the controller performance.
After linearizing model (37) about the operating point the phy-
sical model gives the following transfer function (38). The dis-
cretization has been made with a sampling rate 1F" �	X�7 2 .

� ����� � �^X�7 X�3 . 3,�>X�7 &4(5�+ � ���,� <7 2�+�4 . � ��� �>X�7 . 3�+ �� � 
 � � ���F�  � (38)

Figure 1, shows SMPC and MPC when references changes
have been applied. MPC has been tuned to avoid the instability
problem shown in (36), it is produced by the cancellation of an
unstable zero with an unstable pole. MPC uses the following
tuning parameters � � �  , ��
 �65 X , ����� �X , and

P �  .
In order to compare both controllers, SMPC has been tuned to
have the same closed loop dynamics as MPC. It has the follo-
wing tuning parameters, � � �  , ��
 � . X , ��� � (2 P � <7 + ,
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Figure 1: Set point changes

 �" � +�8X�7 5 � ��� , * " � X�7  � Q�8X�7 - � ��� � , \][ � X�7  , and_ �  . The first set point change is achieved by MPC and
SMPC, but in the second one, when the operation point has
been considerably changed the MPC has an unstable behaviour
owing to no linearities of the process.Figure 2 illustrates the
convergence of the sliding surface ������� to zero, also it can be
seen that when ��������� X the tracking error is zero too. SMPC
has better robustness than MPC in the presence of non linea-
rities of the process. In order to show the controller robust-
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Figure 2: Sliding surface with set point changes

ness, parameter variations with respect to the nominal value
are applied to the input concentration of A �"� � : and the rate
constants � � , � 
 ��� . Figure 3 illustrates parameter variations of
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Figure 3: Changes in the model

+ � and 2�+ � . The controllers use the initial tuning parameters.
The parameter variation of + � has been handled by MPC and
SMPC, but in � ���<X #*) . when a parameter variation of 2�+ �
was applied MPC has an unstable behaviour, on the other hand
SMPC manages the parameter variation with a soft behaviour
without oscillations. Figure 4 illustrates the sliding surface, it
reaches ������� � X with soft movements. Figure 5 illustrates
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Figure 4: Sliding surface with changes in the model

the SMPC and MPC performance when disturbances in a con-
centration of component A in the input feed have been applied.
It has been increased a + � in � � �X #*) . , both SMPC and
MPC achieve to control the disturbance. In � ���<X #*) . the
value of disturbance is increased by 2�+ � , SMPC can keep the
controlled variable at its set point without oscillations. MPC
cannot reject the disturbance and shows unstable behaviour.
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Figure 5: Disturbances in the process

Figure 6 illustrated the sliding surface when disturbances have
been applied, the surface is reached with soft movements with-
out oscillations.

5 Conclusions

The proposed SMPC algorithm combines the design technique
of SMC and MPC. It has been demonstrated that an appropriate
choice of the tuning parameters of SMPC avoids the instability
problems of MPC when it is applied to non minimum phase
systems. The performance of the controller was judged using
a non linear, non minimum phase isothermal Van de Vusse
reactor process. It has been shown that considerable improve-
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Figure 6: Sliding surface with disturbances in the process

ment in robustness with respect to MPC can be obtained in the
presence of modelling uncertainty, and disturbances, enhanced
ability is also shown for handling set point changes in a non
linear process. The SMPC has the strong points of the two
control methods, the robustness features of sliding mode con-
trol and the good performance of MPC. The SMPC improves
the closed loop behaviour of MPC avoiding the strong control
movements of SMC, also the tuning parameters of SMPC has
a clear significance. The computational requirements of SMPC
are similar to those needed for MPC. It does not require more
powerful hardware to be applied in whatever process where
MPC is being applied.

References

[1] B.A. Ogunnaike and W.H. Ray, Process Dynamics, Mo-
deling, and Control, Oxford University Press, Oxford,
1994.

[2] B. R. Holt and M. Morari, “Design of resilient processing
plants-vi. the effect of right half plane zeros on dynamic
resilience,” Chemical Engineering Science, vol. 40, no.
1, pp. 59–74, 1985.

[3] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized
Predictive Control: Part i: The basic algorithm,” Auto-
matica, vol. 23, no. 2, pp. 137–148, 1987.

[4] J.M. Maciejowski, Predictive Control with Constraints,
Prentice Hall, Harlow, 2001.

[5] D. W. Clarke, C. Mohtadi, and P.S. Tuffs, “Generalized
Predictive Control: Part ii: Extensions and interpreta-
tions,” Automatica, vol. 23, no. 2, pp. 149–160, 1987.

[6] R.R. Bitmead, M. Gevers, and V. Wertz, Adaptative Op-
timal Control: The Thinking man’s GPC, Prentice Hall,
Brunswick, 1990.

[7] R. Soeterboek, Predictive Control: A Unified Approach,
Prentice Hall, New York, 1991.

[8] M.J. Grimble, “Generalized predictive optimal control:
an introduction to the advantages and limitations,” Inter-

national Journal of Systems Science, vol. 23, no. 1, pp.
85–98, 1992.

[9] W.S. (Ed) Levine, The Control Handbook, IEEE Press,
Boca de Ratón, 1996.

[10] W. Garcı́a-Gabı́n, E.F. Camacho, and D. Zambrano, “Im-
proving GPC tuning for non-minimum phase systems,”
in 5 � �

Portuguese Conference on Automatic Control,
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