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Abstract

Recent methods for gain scheduling controller design based on
linear parameter-varying (LPV) systems offer a systematic way
to obtain a nonlinear controller that covers different operating
conditions. However, despite that the LPV synthesis part of
the process of obtaining a gain scheduled controller is theoreti-
cally straight forward, the nonlinear closed loop system may be
unstable for some operating conditions. This property is illus-
trated by a simple second order autonomous nonlinear system,
the well known Van der Pol equation. Furthermore, a region of
attraction estimate based on the LPV analysis for the nonlinear
system is given.

1 Introduction

One of the most popular controller design methods in practi-
cal problems is gain scheduling. This method uses a quasi-
stationary heuristic approach to the design of nonlinear con-
trollers. The nonlinear control law is formed by a divide and
conquer strategy, leading to a synthesis problem for different
operating settings together with a mapping of these to cover a
wide range of settings. Due to the heuristics, the method has
until the last decade or so received little attention in the aca-
demic world, see [9, 7].

One decade ago, linear parameter-varying (LPV) systems, [10]
were introduced in the context of gain scheduling. Such
systems enable a systematic way of obtaining the controller.
The synthesis can incorporate the operating conditions in the
scheduling parameter of the system resulting in a controller
that is directly parameter dependent, eliminating the explicit
mapping of linear controllers.

In parallel to the above mentioned development of LPV system
theory, the use of linear matrix inequalities (LMI) in control
theory has been developed, see e.g. [3] and references therein.
In particular robust H2, H∞ and µ methods fit into this frame-
work of LMI constraints, see e.g. [4]. The Riccati equation
for H∞ has a corresponding LMI formulation. In the case of
full order or state feedback controller synthesis, the problem

is convex, and can be solved readily with available numerical
LMI software. The combination of the LMI based synthesis
methods and the use of LPV systems led to a systematic way
of obtaining a gain scheduled controller in a numerically ap-
pealing way.

Using LPV synthesis methods means that a nonlinear system
has to be formulated as an LPV system. The LPV system de-
scription is conservative in the sense that the nonlinearities of
the system are captured by the (scheduling) parameter vector,
which usually is allowed to take values within a bounded box,
and sometimes there are also constraints on the rate of change
of the parameter vector. This means that the LPV system not
only describes the original nonlinear system, but also all non-
linear systems obtained when changing the parameter vector
arbitrarily, as long as its value stays in the bounding box. The
goal of the synthesis is to maintain stability and performance
for all parameter values in the bounding box, and hence the
obtained LPV controller is valid also for the nonlinear system.

The controller synthesis of LPV systems has drawn much at-
tention in the literature. Given an LPV system, the method of
obtaining a controller is fairly straight forward. However, the
problem of how to end up in an LPV description of the non-
linear system is far from straight forward. A standard anzats
to this problem is an approximation of the nonlinear system
by mapping Taylor linearizations for different operating condi-
tions. It is clear that such LPV models can deviate much from
the nonlinear model, and the LPV design may perform badly
or even result in an unstable closed loop system of the orig-
inal nonlinear system, at least for some operating conditions.
This procedure is however motivated under the assumption of
a slowly varying parameters. In this paper, only nonlinear sys-
tems that can be exactly included by LPV systems will be con-
sidered.

The properties of the nonlinear system will be studied in this
paper. In particular, asymptotic stability properties of the non-
linear system, in the context of LPV stability analysis, is in-
vestigated. Many of the LPV controller synthesis methods
compute a Lyapunov function for the closed loop LPV system,
which sometimes is quadratic, see e.g. [2] or non-quadratic (pa-
rameter dependent), see e.g. [12]. The focus in this paper is on
stability of autonomous nonlinear systems, but this problem is
closely related to the synthesis problem via the Lyapunov func-



tion.

The notation in the paper is standard. We make difference be-
tween stability of the nonlinear system and LPV stability. In the
later, stability is only considered for parameter trajectories that
stay inside the bounding box and without the connection to the
(possible) underlying nonlinear system. This means that there
is no distinction of whether that parameter is time-varying, re-
sulting in a linear time-varying system, or depend on the state
vector, implying a nonlinear system. This is the common ap-
proach to LPV gain scheduling in the literature.

This paper is organized as follows. In the following section,
a motivating example is given to show that stability in the
LPV sense does not imply stability in terms of region of at-
traction for the underlying nonlinear system. This is the case
even though the LPV description is an exactly mapping of the
nonlinear system. The succeeding section gives a region of at-
traction estimate, based on the LPV analysis, for both purely
quadratic Lyapunov functions and for non-quadratic (parame-
ter dependent) Lyapunov functions. This is illustrated by use of
the example in the preceding section. This example also shows
the importance of the choice of scheduling parameters in the
context of solvability for the LPV system, and obtaining large
estimates of the region of attraction for the nonlinear system.
Finally, some concluding remarks are given.

2 Motivating Example

It is easy to believe that a closed loop LPV system that satisfies
stability (or some other goal) for all parameters varying in the
bounding box implies that stability is satisfied for the underly-
ing nonlinear system. In this section, a simple example is given
illustrating that this is, in general, not true.

Consider the well known Van der Pol equation (with reversed
vector field),

ẋ1 = −x2

ẋ2 = x1 − 0.3(1 − x2

1
)x2.

(1)

This equation (1) is a special case of Liénard’s equation,
see [5], and it is well known that a limit cycle exists for such
systems. This reversed vector field version has the property
that all trajectories starting outside this limit cycle diverges and
all trajectories starting inside converges to zero, see figure 1.

One obvious LPV parameterization of (1) is
[

ẋ1

ẋ2

]

=

[

0 −1
1 −0.3ρ

] [

x1

x2

]

, (2)

where
ρ = 1 − x2

1
. (3)

The only nonlinear term of the right hand side of (1) is hidden
in the parameter ρ. Observe that (2) is an exact inclusion of (1)
in this sense.

Let ρ ∈ Ω, where Ω = {ρ ∈ R|0.1 ≤ ρ ≤ 1} is the parameter
box where ρ takes its values. Now, we want to check stability
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Figure 1: Phase-portrait of the Van der Pol equation with re-
versed vector field.

of the LPV system defined by (2) for all ρ ∈ Ω. The exact
relationship between the scheduling parameter ρ and the states
of the system (3) is then neglected. The stability test of (2) can
be formulated as a parameterized LMI. If there exist a positive
definite symmetric matrix P such that

AT (ρ)P + PA(ρ) < 0, ∀ρ ∈ Ω ⊂ R
p, (4)

then the system ẋ = A(ρ)x is stable in the LPV sense. This is
often referred to as quadratic stability to emphasize the use of
a quadratic Lyapunov function.

Satisfying condition (4) means that the system ẋ = A(ρ)x is
stable regardless of whether ρ is a function of time or of state.
The parameter ρ may even change arbitrary fast leading to dis-
continuities in ρ. In this light, the condition (4) is conservative
since it guarantees stability for all ρ ∈ Ω, not only for the pos-
sibly underlying nonlinear system. This conservatism might
result in that there are no solution P satisfying (4).

For the system (2) where ρ ∈ Ω and Ω is according to the set
above, it is not hard to find a P such that (4) is satisfied. For
example,

P =

[

33.3483 −0.5
−0.5 33.33

]

, (5)

which corresponds to setting the left hand side of (4) to −I

when ρ = 0.1. The parameterized LMI (4) is satisfied for all
ρ ∈ Ω if it is satisfied in the vertexes of Ω, due to convexity
of the affine parameter dependence in (4). In this example, the
parameterized LMI corresponds to a monotonous function in ρ

and the vertex ρ = 0.1 is the worst case.

One may believe that the nonlinear system (1) is stable, mean-
ing that its trajectories converge to zero for all initial values of
the state vector that correspond to the set Ω and the parameter
to state relationship (3), that is,

−
√

1 − 0.1 ≤ x1 ≤
√

1 − 0.1. (6)



This is not the case, as can be observed in figure 1. All tra-
jectories starting outside the limit cycle diverges, even for x

satisfying (6). However, the LPV analysis of the nonlinear sys-
tem does guarantee local asymptotical stability. As we will see
in the next section, the LPV stability analysis can be used to
estimate the region of attraction for the underlying nonlinear
system.

3 Region of attraction

As the example in the foregoing section illustrates, the stability
region (or region of attraction) does not coincide with the part
of the state space implicitly defined by the bounding set Ω of
the parameter. However, as long as ρ(x) ∈ Ω for the stationary
point of the nonlinear system it is possible to find an estimate of
the region of attraction based on the LPV analysis (synthesis).

In this section the estimate of the region of attraction based on
the LPV analysis is given. Recall the definition of the region of
attraction.

Definition 3.1 For a nonlinear system,

ẋ = f(x), x ∈ D

with the origin as an equilibrium point, let φ(t;x) denote the
solution that starts at initial state x at time t = 0. The re-
gion of attraction (or region of asymptotic stability or domain
of attraction) is defined as the set,

RA = {x ∈ D| lim
t→∞

φ(t;x) = 0}

Finding the exact region of attraction analytically might be dif-
ficult or even impossible, see [5]. However it is well known
that Lyapunov functions can be used to estimate the region of
attraction. It is also well known that the region of attraction,
for an asymptotically stable system with respect to the origin,
is an open connected set where the origin is an interior point,
invariant with respect to the system and that the boundary of
RA is defined by trajectories of the system.

The following theorem gives an estimate of the region of at-
traction based on the LPV stability analysis. First, the simpler
case of quadratic Lyapunov function (parameter independent)
is given.

Theorem 3.2 Consider the nonlinear system,

ẋ = f(x) (7)

with the exact LPV description,

ẋ = A(ρ)x, ρ = ρ(x). (8)

Assume that (8) is LPV stable for ρ ∈ Ω, with a Lyapunov
function V (x) = xT Px. Define the following sets,

X = {x ∈ D|ρ(x) ∈ Ω} (9)

Γβ = {x ∈ D|V (x) ≤ β}. (10)

If Γβ ⊆ X then Γβ ⊆ RA.
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Figure 2: Region of attraction estimate (shaded area) in the re-
gion |x1| ≤

√
1 − 0.1 (solid lines) based on the LPV analysis,

using a quadratic Lyapunov function.

Proof. From the assumption of the LPV stability of (8) we have
that,

AT (ρ)P + PA(ρ) < 0, ∀ρ ∈ Ω, P > 0

It is clear that V is also an Lyapunov function for (7) since,

V̇ (x) = xT (AT (ρ(x))P + PA(ρ(x)))x < 0, ∀x ∈ X \ {0}

Since Γβ is bounded and V̇ (x) < 0 for all x ∈ X \ {0}, any
trajectories starting in Γβ at t = 0 stays in Γβ for all t ≥ 0, and
converges to zero as t → ∞ c.f. [5]. Hence, Γβ is an estimate
of the region of attraction.

Since V (x) is continuous and positive definite, the set Γβ 6= ∅
and the origin is an interior point of Γβ , see [5]. Furthermore,
the best estimate of RA is obtained when Γβ is as large as pos-
sible, and from (10) it can be seen that Γβ becomes larger with
increasing β.

The consequence of the theorem is that a region of attraction
estimate for the Van der Pol example in previous section is that
the ellipsoid associated with the positive definite matrix in (5)
is enclosed in the region defined by the inequality (6), see fig-
ure 2. This is quite a conservative estimate of RA. It is not pos-
sible to obtain a much larger invariant set that is enclosed in the
set (6). A way to reduce this conservatism is to change schedul-
ing variables and to use a more complex Lyapunov function, as
described next.

To extend the estimate of RA, consider a different exact LPV
characterization of the Van der Pol equation (1),

[

ẋ1

ẋ2

]

=

[

0 −1
1 + 0.3ρ −0.3

] [

x1

x2

]

(11)

with
ρ = x1x2. (12)
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Figure 3: Region of attraction estimate (shaded area) in the
region |x1x2| ≤ 0.95 (solid lines) based on the LPV analysis
using a quadratic Lyapunov function.

In the following, it will be shown that this choice of the pa-
rameter ρ will make it possible to extend the estimate of RA.
This illustrates the importance of the choice of scheduling vari-
ables, as both (2) and (11) include the same nonlinear system.
An intuitive guideline in this choice is to “hide” as little of the
nonlinearities as possible in the parameter and letting the pa-
rameter components be as independent as possible.

For |ρ| ≤ ρ0, there exists a quadratic Lyapunov function
V (x) = xT Px for the LPV system (11) when ρ0 = 1, esti-
mating the region of attraction RA according to figure 3.

If ρ0 increases to ρ0 > 1.53 there cannot exist a quadratic Lya-
punov function for the LPV system (11), since ρ might vary in
a way such that the solution to (11) diverges to infinity. It can
be shown that varying ρ according to ρ = ρ0sign(x1x2) means
that the solution to (11) is the worst possible, i.e. the solution
that converges slowest (ρ < 1.53) to the origin or diverges
fastest (ρ0 > 1.53) to infinity, c.f. figure 4.

Setting ρ = ρ0sign(x1x2) implies that ρ is discontinuous and
varies infinitely fast for x1 = 0 or x2 = 0, which is possible
since there is no bound on the rate of changes of ρ. The result is
a switching of ρ between its extreme values. Such systems are
commonly referred to as switched or hybrid systems, c.f. [8].

By letting the Lyapunov matrix P depend on ρ, the time deriva-
tive of ρ enters the stability conditions,

AT (ρ)P (ρ) + PA(ρ) + d
dt

P (ρ) < 0,

P (ρ) > 0, ∀ρ ∈ Ω, ∀ρ̇ ∈ Ω̃
(13)

by noticing that d
dt

P (ρ) = ∂
∂ρ

P ρ̇. Restricting ρ̇ ∈ Ω̃ reduces
the possibility of infinitely fast changes of ρ. Hence, by a pa-
rameterized quadratic Lyapunov function it is possible to en-
large the estimate of the region of attraction.
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Figure 4: Solution of (11) for ρ = 1.53 and ρ = −1.53 respec-
tively in a, ρ = 1.53sign(x1x2) in b, ρ = 2sign(x1x2) in c and
ρ = sign(x1x2) in d.

Since ρ is a function of x, it means that ρ̇ is a function of ẋ =
f(x) according to ρ̇ = ∂ρ

∂x
f(x). Hence, ρ̇ ∈ Ω̃ adds additional

bounds on the state variables x. These bounds must as well be
considered in theorem 3.2, resulting in the following theorem,

Theorem 3.3 Consider the nonlinear system (7), with the ex-
act LPV description (8). Assume that the system (8) is LPV sta-
ble with the Lyapunov function V (x, ρ) = xT P (ρ)x for ρ ∈ Ω
and ρ̇ ∈ Ω̃. Define the set,

X̃ = {x ∈ D|ρ̇(x) =
∂ρ

∂x
f(x) ∈ Ω̃}

Let X and Γβ be defined according to (9) and (10) respectively.
If Γβ ⊆ (X ∩ X̃ ) then Γβ ⊆ RA.

It should be pointed out that if X̃ = D, theorem 3.2 coincide
with theorem 3.3. However, we think it is more pedagogical,
and since it is common in the LPV synthesis literature, to sep-
arate the cases when P is and is not parameterized in ρ.

Defining a set for which the parameter ρ in the system (11) is
allowed to evolve in,

Ω = {ρ ∈ R| − 1.5625 ≤ ρ ≤ 1.5625}. (14)

and restrict the parameters rate of change ρ̇ according to the
set,

Ω̃ = {ρ̇ ∈ R| − 2.63 ≤ ρ̇ ≤ 2.63}, (15)

enable an LPV stability analysis test for (11), using a param-
eter dependent Lyapunov function (13). To perform this anal-
ysis as a parameterized LMI, one must first choose a structure
of the parameter ρ dependence in P (ρ). One common way
is to mimic the parameter dependence of the system, in this
case affine parameter dependence, in the A(ρ) matrix. When



such a structure is selected, the LPV stability analysis condition
becomes a parameterized LMI. To obtain a finite dimensional
LMI problem one can use relaxing strategies such as multi-
convexity, see [1]. These types of relaxation methods introduce
conservatism. A brute force gridding of the parameter space,
and an evaluation of the parameterized version offer the least
conservatism, but is computationally demanding. Using such
a gridding technique on the set (14), an equidistant grid of 26
points, and optimizing over a P (ρ) matrix with quadratic pa-
rameter dependence under the Self-Dual-Minimization pack-
age SeDuMi, [11], together with the SeDuMi interface, [6] re-
sulted in the following,

P =

[

0.4882 −0.0836
−0.0836 0.5118

]

+

+

[

0.0629 −0.0167
−0.0167 −0.0381

]

ρ+

+

[

0.0163 −0.0020
−0.0020 0.0108

]

ρ2.

(16)

Since the brute force griding technique does not guarantee that
the parameterized LMI is satisfied for all parameters in the set,
a post analysis of the result on a denser grid has been per-
formed.

To analyze what estimate of region of attraction the Lyapunov
function V = xT P (ρ(x, y))x, with P (ρ) in (16), results in
for the nonlinear system (1), the validity region of V must be
checked. The validity region of the Lyapunov function is given
by (X ∩ X̃ ). The set (14) together with (12) defines the un-
bounded set X in the x1x2-plane

|x1x2| ≤ 1.5625.

The set (15) defines, according to (12), the set X̃ ,

|ρ̇| = | − x2

2
+ x1(x1 − 0.3(1 − x2

1
)x2)| ≤ 2.63.

The largest level set of V in the intersection of X and X̃ is
the best estimate of RA for (1) according to theorem 3.3. This
estimate, see figure 5, is larger than in the case of a quadratic
Lyapunov function, c.f. figure 3, despite that no optimality is
sought between the range of ρ and the range of ρ̇ in the LMI
problem.

It is easy to increase this estimate even further, using for exam-
ple a cubic parameter dependence in P (ρ),

P =

[

0.4860 −0.0799
−0.0799 0.5140

]

+

+

[

0.0467 0.0074
0.0074 −0.0481

]

ρ+

+

[

0.0001 0.0016
0.0016 0.0025

]

ρ2+

+

[

−0.0049 −0.0010
−0.0010 0.0033

]

ρ3

(17)
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Figure 5: Region of attraction estimate (shaded area) in the re-
gion of |ρ| ≤ 1.5625 (solid lines) and |ρ̇| ≤ 2.63 (dashed line)
based on the parameter dependent Lyapunov LPV analysis.

which adds degrees of freedom to the parameterized LMI prob-
lem (13). This freedom can be used to increase the set for
which we allow the parameter to vary in,

|ρ| = |x1x2| ≤ 1.69.

and its rate of change,

|ρ̇| = | − x2

2
+ x1(x1 − 0.3(1 − x2

1
)x2)| ≤ 3.

The resulting estimate of the region of attraction, see figure 6,
is closer to the trajectories that describes the true region of at-
traction, and the level curve of the Lyapunov function is close
to the shape of the boundary trajectory of the region of attrac-
tion.

It should be noted that both stability conditions (parameter in-
dependent and parameter dependent LPV stability) do guar-
antee local stability near the stationary point of the original
nonlinear system. In the parameter independent case, closed
level curves Γβ can always be found due to positiveness of the
quadratic Lyapunov function, as long as the set X contains the
origin, which is natural since the origin is the stationary point of
the nonlinear system. In the parameter dependent case, closed
level curves can always be found if the origin is included in the
set X ∩ X̃ . Since stationarity of the origin implies that ρ̇ = 0
according to

ρ̇ =
∂ρ

∂x
f(0) = 0,

it is also natural to say that the origin is included in X̃ . Hence,
there will alway exist a non-empty estimate Γβ of the region of
attraction for the nonlinear system, based on the LPV analysis,
for reasonable X and X̃ .
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Figure 6: Region of attraction estimate (shaded area) based
on the parameter dependent (cubic) Lyapunov LPV analysis.
Dashed lines describe the area for which |ρ̇| ≤ 3 and thick
lines for which |ρ| ≤ 1.69

4 Conclusions

In LPV based gain scheduling controller synthesis, it is easy to
believe that stability for the closed loop LPV system implies
stability in the sense of region of attraction for the underlying
nonlinear system. This is in general not true. However, an
estimate of the region of attraction for the nonlinear system
can be computed, based on the Lyapunov function obtained for
the LPV system. These results are formalized in this paper by
two theorems.

As this paper illustrates, nonlinear systems can be exactly in-
cluded by many different LPV systems, by different choices of
the (scheduling) parameter. It is also illustrated that this partic-
ular choice of parameter plays an important roll when estimat-
ing the region of attraction based on the LPV stability condi-
tion. This choice also affects the solvability of the LPV stability
problem.

In many applications of nonlinear systems, there are also mea-
surable input signals that can not be manipulated. Here, only
autonomous nonlinear systems are considered. However, in
such case of a measurable input signal, the parameter vector
would incorporate this signal. The result of this paper would
still hold in such a case, and the estimate of the region of at-
traction is not affected by the exogenous signal.

Ongoing work is to extend this result to input-output properties,
such as induced L2-norm, of an LPV system and its relation to
the underlying nonlinear system.
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