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Abstract

The paper addresses tracking of a piecewise constant
reference for a nonlinear system subject to control
and/or state constraints. The proposed controller, called
dual-mode, extends to the nonlinear case an approach
formerly introduced for linear systems. The dual-mode
controller is based on the knowledge of the set of fea-
sible state-setpoint pairs and operates in two different
modes: as a regulator if the current state is feasible for
the desired set-point, or attempts to recover feasibility
as quickly as possible whenever feasibility is lost due
to a set-point change. The difficulty of constructing the
feasibility set in the state-setpoint space for a nonlinear
system is overcome by embedding the original system
into a family of uncertain (polytopic) linear systems.

1 Introduction

The tracking of a piecewise constant reference in pres-
ence of input and/or state constraints is a challenging
control problem. Classical control design techniques,
both linear and nonlinear, usually ignore constraints in
the design stage and attempt to account for them in
the implementation (e.g., anti-windup schemes). Re-
cently there have been a number of successful contri-
butions following the so called reference governor ap-
proach both for linear [5, 9] and nonlinear [1, 2, 8, 13]
systems. The reference governor is essentially a device
which manipulates on line, in a state dependent way, a
command input to the suitably pre-compensated system
so as to satisfy constraints. In [6], an alternative ap-
proach called dual-mode tracking has been proposed for
constrained linear systems. The dual-mode controller
operates as a regulator in a suitable neighborhood of
the desired equilibrium wherein constraints are feasi-
ble, while aims at recovering feasibility as quickly as
possible whenever this is lost due to a set-point change.
In particular, in the feasibility recovery mode, the con-
troller directly synthesizes the plant control input and
hence has more freedom than the reference governor
which can only synthesize a command input to a pre-
compensated control loop.
In fact, simulation results in [6] demonstrated, for linear

systems, the superior tracking speed of the dual-mode
controller over the reference governor. The aim of this
paper is to extend the dual-mode tracking approach to
nonlinear systems. This extension is by no means triv-
ial. In fact the dual-mode strategy requires the off-line
construction of a suitable constraint admissible set [6]
in the (state, set-point) space and such a construction is
not viable for a nonlinear system. To circumvent the
above difficulty, we pursued a previous idea, success-
fully adopted in [7] in the context of predictive regu-
lation of constrained nonlinear systems. The idea is to
embed the original nonlinear system into an uncertain
LPV model [14, 15, 16] and thus construct the desired
admissible set for such a model. The paper is organized
as follows. Section 2 formulates the tracking problem of
interest. Section 3 describes LPV embedding. Section 4
deals with constraint admissible invariant sets and their
construction. Section 5 presents a dual-mode tracking
controller for nonlinear systems and discusses its prop-
erties. Simulation experiments on a strongly nonlinear
system, comparing the proposed controller with refer-
ence governors, are reported and discussed in section 6.
Finally section 7 draws concluding remarks.

2 Control problem formulation

Consider a discrete-time nonlinear system

���� �� � ������� �����
���� � �������

(1)

where ���� � ���, ���� � ���, ���� � ���. The control
objective is that

1. the output ���� track a piecewise constant reference
����, i.e. a signal switching among different con-
stant set-points;

2. the state ���� and input ���� satisfy the linear in-
equality constraints

	���� �
���� � � (2)

It is assumed that to each constant set-point � there
is associated an unique (state,input) equilibrium pair
��� � ��� such that

�� � ����� ���� � � ����� (3)



Clearly the constraints (2) restrict the statically admissi-
ble set-points � to those which satisfy 	�� �
�� � �.
In order to ensure viability in finite time from one set-
point to another [1, 8], the reference ���� is further re-
stricted to belong to the set

� � �� � 	�� �
�� � �� Æ ��

where � is a vector of ones and Æ 
 	 is arbitrarily
small.

3 LPV embedding approach

The approach pursued in this paper will make use of
constraint-admissible invariant sets [10, 11]. In this re-
spect, note that nonlinearity of (1) makes difficult the
construction of such sets. Hence, the constrained non-
linear system (1)-(2) is embedded into an LPV model��
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(4)

subject to linear constraints of the form

	����
���� �
����
���� ������� � ����� (5)

where: 
����
�
� ���� � ��; 
����

�
� ���� � ��;

���� � �
�
� ��� �� � � � � ��; ���� 	 ��������� is a

polytope of matrices; ���� is a subset of �. Moreover
we shall assume that each index � is reachable from any
index � by iterating the dynamics �. Some remarks on
the structure of the model (4)-(5) and its connections
with the original system (1)-(2) are in order.

Remarks


 The model (4) consists of a family of � polytopic
submodels ���� parametrized by the index � � �,
along with a set-valued model ��� � �� � �������
of the index time-evolution.


 The model (4) can be used to safely predict the be-
haviour of the original system (1) in the sense that
trajectories of (1) are also trajectories of (4) (the
vice-versa is not true, which makes the embedding
conservative to some extent). More precisely, each
polytopic submodel ���� is used to predict the fu-
ture state ��� � �� whenever the current state ����
belongs to a suitable region �� 	 ���. Since the
regions �� need not be disjoint, i.e. are possi-

bly overlapping, let �������
�
� �� � ���� � ���.

Clearly all polytopic models ����, � � �������,
are valid for a given state ����.


 The embedded model (4) is conveniently expressed
in terms of the shifted variables 
���� and 
����, in-
stead of ���� and ����, consistently with the fact

that, irrespectively of �, 
���� and 
���� must be
steered to zero.


 The system (1) can be embedded into (4) in
many different ways and the embedding procedure,
which is the core of gain-scheduling control de-
sign, will not be discussed here. The reader is re-
ferred to [7, 14, 16] for details. It is important to
stress that the choice of the number � of polytopic
submodels���� as well as of the size of their valid-
ity regions �� must tradeoff conservatism versus
complexity of the model (4).


 Even if �� and �� may depend non linearly on �,
the form of the constraints (5) is kept linear for the
sake of simplicity, at the price of possible conser-
vatism, by suitable linear approximation or embed-
ding of the mappings �� and ��.


 The constraint matrices in (5) may depend on the
index � to take into account rate constraints on the
state of the form �� ����� ��� ����� �� � Æ�,
for a suitable matrix � that selects the variables
to which impose rate constraints. Such constraints
are typically imposed in gain-scheduling control
design [7, 14] so as to guarantee that the state move
sufficiently slowly across the regions ��, i.e. that
the dynamics of ���� is not too fast.

4 Admissible sets under gain-scheduling
control

Let us consider a gain-scheduling feedback control law


���� � ����� 
���� (6)

where each gain ��, � � �, has been designed so as
to stabilize the �-th polytopic submodel 
��� � �� �
���� �
������ 
�����


�. It is important to establish whether
the control law (6) stabilizes the LPV system (4) and
satisfies the constraints (5) as in such a case the same
properties are also guaranteed for the original nonlinear
system (1). Hence, consider the closed-loop system��
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Definition - Given �, 	 � � � �, a set � �
� � ���� ��� is said �-contractive under the closed-
loop dynamics (9) if
�
� ����
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If in addition all elements ���� 
��� ��
� � � satisfy the
constraints

�	� �
���� 
����� � ��� � � � (9)



then � is said constraint-admissible.

The existence of a constraint-admissible �-contractive
set for (7) implies therefore that the gain-scheduling
feedback (6) ensures exponential stability with rate of
decay � � � and constraint satisfaction. Thus, to
check whether (6) solves (locally) our constrained reg-
ulation problem and to find the domain of initial state
perturbations 
� � � � �� and set-points � for which
constrained regulation is achieved, one can construct,
for some � � �, the largest constraint-admissible �-
contractive set ��. For convenience let us represent
the set �� 	 � � ����� as a collection of � sets
��
���

�
�� � � � ��

�
� 	 ����� and let �� denote the poly-

tope of vectors �
��� ��
� that satisfy (9). Then, �� is con-
structed via the following set recursion:
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(10)
For � � �, ��

� converge to ��
�; moreover the sys-

tem (7) is exponentially stable with rate of convergence
less or equal to � if and only if �� has non-empty in-
terior [3, 15]. Finally, under weak conditions [7], � �

is finitely determined i.e. there exists �� � � such
that ��

�� � ��
���� � ��

�. For the subsequent develop-
ments, it will be assumed that the maximal constraint-
admissible �-contractive set for (7), ��, has been con-
structed and that �� has non empty interior and is
finitely determined. Please note that, since �� and ����
are polytopic, also ��

� are polytopic and the recursion
(10) is easily implemented by stacking linear inequality
constraints and possibly removing redundant inequali-
ties by standard linear programming tools.

5 Dual Mode Set-point Tracking

The main difficulty of tracking a piecewise constant
reference in presence of constraints is that a large and
abrupt set-point change may easily imply large con-
straint violations. Clearly, the set �� discussed in the
previous section provides valuable information for the
design of an effective control law which, on one hand,
avoids constraint violations and, on the other hand,
yields as fast as possible tracking. In fact, given �� it is
easy to check whether a state � is feasible for a set-point
�, or equivalently a set-point � is admissible for a state
�; this just requires to check the membership condition

�
�� ��
�

�
� �

	���
� � �

	���
�

�
�

�
��	���

��
�

A simple tracking strategy can be obtained by adapting
the reference governor policy to the present setup. This
yields the following algorithm.

Reference Governor Gain-Scheduling Track-
ing (RGGST) algorithm - At time �, given the
state ���� and the desired reference ���� � �, let

����
�
� ������� � �� � ���� � ��� and assume that a

set-point ���� admissible for ���� is given. Then solve
the optimization problem
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���� � �������������
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�
� ���

(11)

Set ���� �� � � � ���� ������ �

Set ���� � ������� � ������� � �������


The rationale of the above algorithm is, provided that
���� is feasible for ����, to investigate if ���� is feasible
for a reference ��� � �� which is closer to the desired
set-point �. Notice that the optimization (11) amounts
to linear programming problems, one for each value of
� � ����, in the single scalar variable �.

An effective tracking strategy, consisting of two differ-
ent modes of operation, could be the following.


 Regulation Mode - If the current state is feasible
for the desired set-point, use the gain-scheduling
feedback control law (6).


 Feasibility Recovery Mode - If conversely the
current state is infeasible for the desired set-point,
choose an input that will make the future state fea-
sible for a set-point as close as possible to the de-
sired one.

This Dual Mode Tracking strategy is formalized by the
following algorithm.

Dual Mode Gain-Scheduling Tracking (DMGST)
algorithm - At time �, given the state ����, let

����
�
� ������� � �� � ���� � ��� and assume that

a set-point ���� admissible for ���� is given. Then the
DMGST algorithm operates in dual-mode as follows.
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 Feasibility Recovery Mode
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Set ���� �� � ��� � �� � ���������� ���� ���

Remarks


 The above DMGST algorithm is a non trivial ex-
tension to nonlinear systems of the strategy pro-
posed in [6] for linear systems.


 The DMGST approach requires the determination
of �� which certainly is a computationally expen-
sive task but, luckily, can be carried out off-line.
As far as on-line computation is concerned, the
most expensive part is the solution of the optimiza-
tion problem (12). Note that, if � denotes the cardi-
nality of the set ����, (12) amounts to � nonlinear
optimization problems, one for each value of �, in
� � � scalar variables � � �	� �
 and � � ���.
Also note that if �� is linear in � and the nonlinear
dynamics ���� �� is replaced by the LPV dynamics

�� �����

�
�� ��
�� ��

�

such problems reduce to linear programming ones.


 The Dual-Mode approach of this paper differs from
the Reference Governor (RG) approach [1]. In
fact, to recover feasibility the DMGST algorithm
fully exploits the plant control input � as degree of
freedom, while the RG uses a command input �.

The proposed DMGST algorithm enjoys the following
property.

Theorem - If ��	� is feasible for some ��	� � �
and ���� � � � � for all � � 	, the DMGST algo-
rithm guarantees a finite recovery time (FRT) i.e. the
existence of � � � such that ���� is feasible for the
desired set-point �. Further, under the same conditions,
the constraints (2) are satisfied for all � � 	 and the
system asymptotically reaches the desired equilibrium
i.e. ����
� ���� � ��, ����
� ���� � �� and
����
� ���� � �.
Proof - The proof of the finite recovery time property
follows similar lines as in [6] and is omitted here due

to space considerations. The convergence to the equi-
librium follows directly from the FRT property. In fact,
since ���� is feasible for �, the gain-scheduling control
law (6) will be activated at � providing constraint
satisfaction for all � � � and convergence of ���� � ��
to zero, i.e. of ���� to ��.

6 Simulation example

In this section, we consider the application of our ap-
proach to the strongly nonlinear model of a continuous
stirred tank reactor (CSTR) [12]. Assuming constant
liquid volume, the CSTR for an exothermic, irreversible
reaction, � �� �, is described by the following
model

�� � �
�
��� � � ��

��
���
���

���
��

��� � ��
� ���

��� � � �

��� � �
�
���� � ���� ���

���
��

���
(13)

where �� is the concentration of � in the reactor, T is
the reactor temperature and �� is the temperature of the
coolant stream. The objective is to regulate � � �� � �
and �� � �� by manipulating � � ��. The constraints
are ��	Æ � � � �		Æ and ��	Æ � �� � ��	Æ .
In this example the adopted parameter values are those
reported in [12]. It is possible to describe a parametrized
family of equilibrium points for (13) through the choice
of �� � � as scheduling variable.
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Then defining the new state and control variables [14]
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we obtain the quasi-linear description
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In the new coordinates, the input and state constraints
become

��	 � 
�� ���� ���� � ��	� ��	 � 
�� � � � �		
(17)

Notice that the first constraint exhibit a nonlinear depen-
dence on ��. From (17) the set of admissible set-points



�� � ���� ���, � � �������, Æ � �����, � � ��
���� � �	
���� �� ��� ��	�
��� �� ��� with Æ	 � ����,
overlapping ��, # of vertices of ���� �� � �, � �


�

�������� �������, �������� �������, �������� �������,
�������� �������, �������� �������, �������� �������,
�������� �������, �������� �������, �������� �������,
�������� �������, �������� �������, �������� �������,
�������� �������, �������� �������, �������� �������,
�������� �������, �������� �������

Table 1: Control parameters

� turns out to be:

� � ���	 � Æ� �		� Æ
� Æ � 	�		�� (18)

We selected 17 regions &� as indicated in Table 1.
For each �, a polytopic embedding of ������� �����

with a minimum number of vertices ('� � �) has
been found. Next, for each polytope ���� we de-
signed a stabilizing gain �� with contraction factor ( �
	��� using LMI techniques [4]; the parameter dynamic
���� � ������� � � ��� ������� � �� )�� was con-
sidered. The successful calculation of a non-empty �
proves that the corresponding GS controller (6) is stabi-
lizing under the imposed constraints. In this example,
the number of constraints '� defining the sets ��, for a
given �, ranges between 8 and 14. Figs 1 and 2 compare
the behaviours obtained with DMGST and RGGST; it
can be seen that the additional degree of freedom 
� of
DMGST allows to achieve a faster tracking after a set-
point change.
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Figure 1: Desired set-point (solid), temperature re-
sponses for DMGST (dashed) and RGGST (dash-
dotted) algorithms
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Figure 2: �� for DMGST (dashed) and for RGGST
(dash-dotted) algorithms

7 Conclusions

We proposed a novel control algorithm for making the
output of a nonlinear system track a piecewise constant
reference in presence of input and/or state constraints.
The control algorithm is based on a gain-scheduling pol-
icy and makes use of the knowledge of a constraint ad-
missible set in the state-reference space, which has been
computed off-line for the nonlinear system in closed-
loop with the gain-scheduling controller by means of
LPV embedding techniques. Exploiting the valuable
information of this constraint-admissible set, the con-
troller can effectively command the transition between
two set-points (and the relative gain-scheduled linear
controllers) so as to avoid constraint violations and pos-
sibly optimize tracking speed.
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