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Abstract

State observation of distributed parameter systems pose the
problem of coping with the infinite state dimension of the pro-
cess models. In addition to this difficulty, the dynamics of
Simulated Moving Bed (SMB) processes is described by par-
tial differential equations which are governed by switching ini-
tial conditions or switching boundary conditions, respectively.
Furthermore, due to the setup of SMB plants only limited mea-
surement information of the process behaviour is available.
To overcome these difficulties, a model of the wave fronts of
the SMB concentration profiles is derived which comprises a
linear time–variant discrete–time state–space model describ-
ing the form, position and propagation of the wave fronts. A
new approach to the solution of the state observation problem
is proposed which is based on this model. Simulations of a
closed–loop controlled SMB process are presented to show the
applicability of the developed observer in the surrounding of
the stationary operating point.

1 Introduction

The Simulated Moving Bed (SMB) technique is a continu-
ous chromatographic separation principle for binary mixtures
based on the counterflow between the solvent and adsorbent.
The counterflow is simulated by stepwise moving the inlet and
outlet ports on a circle of separation columns in the direction
of the solvent flow. The states of SMB units are the distributed
time-varying concentrations �������
	��� and �������
	��� of the mix-
ture components � and � . The distributed states have the form
of bell curves which move in a certain distance relative to each
other through the circle of separation columns. Because both
purely discrete and purely continuous signals occur on an SMB
process, the system has hybrid dynamical behaviour [3].

In the recent years, closed-loop control of SMB processes has
received considerable attention [1], [4], [6]. The control prob-
lem is difficult to solve because of the complexity of the process
and the limited measurement information. In SMB units, a con-
centration measurement is only possible between the separa-
tion columns. Furthermore, measurement units providing pre-
cise values of the single concentrations are very expensive. A
possible solution is to apply single column analytic chromatog-
raphy. However, due to the batch nature of the technique, only

discrete–time measurements are possible. The problem posed
by this restriction with respect to process modelling and state
observation is addressed in this paper: An SMB process is con-
sidered in the stationary state. It is assumed that the dynamical
behaviour of � � ���
	��� and � � ���
	��� can be described by means
of the convection–diffusion equation. Only selected measure-
ments � � ������	����� and � � ������	����� at discrete times ��� and po-
sitions ��� are available. The task is to determine the shape, the
position and the propagation velocity of � � ���
	��� and � � ���
	��� .
This task is considered as an observation problem. Note, that
only the wave fronts of the concentration curves �������
	��� and�������
	��� are of interest for SMB control purposes. Approximat-
ing �������
	��� and �������
	��� with the solutions of the true counter-
flow (True Moving Bed, TMB) process model based on the
convection–diffusion equation shows, that the wave fronts of� � ���
	��� and � � ���
	��� belong to a certain class of curves. The
shape, position and spatial shift of this class is described by
three parameters.

Interpreting these parameters as state variables, a simple lin-
ear discrete–time state–space model of the wave front dynam-
ics can be derived. From the model output the measurements� � ������	����� and � � ������	����� can be determined. It turns out
that a measurement time which is varying with respect to the
port switching time has to be applied to achieve observability
of the model. A new approach to the derivation of an observer
based on the model of the wave fronts is presented.

This paper is structured as follows. Section 2 gives a brief de-
scription of the TMB and the SMB principle. The state ob-
servation problem is formulated in Section 3. In Section 4 an
approach to TMB and SMB modelling is proposed. Section 5
addresses wave front modelling. In Section 6 the new observer
for the wave fronts is derived. Section 7 presents simulation
results.

2 Simulated Moving Bed principle

2.1 True Moving Bed process

Continuous chromatographic separation requires a counterflow
between the adsorbent and the solvent. The True Moving Bed
(TMB) principle realises a true counterflow in one separation
column (Fig. 1). A two component mixture is fed continuously
to the middle of the column. Because of the stronger adsorption
tendency the component � is carried in the direction of the
adsorbent. The component � which has the lower adsorption



tendency, is carried in the direction of the solvent. Therefore,
solvent streams with high purity of the single components can
be recovered in an adequate distance from the feed inlet port.
The four spatial intervals between the inlet and outlet ports are
called the sections of the TMB process. In the stationary state,
the concentrations �������� and �������� in the solvent are time-
invariant.

   O u t l e t :  
C o m p o n e n t  A

I n l e t :  F e e d  A + B
z

c A ( z ) c B ( z )c

A d s o r b e n t
S o l v e n t

 O u t l e t :  
C o m p o n e n t  B

S o l v e n t
A d s o r b e n t

S e c t i o n  I S e c t i o n  I I S e c t i o n  I I I S e c t i o n  V I

Fig. 1: True Moving Bed principle

2.2 Simulated Moving Bed process

On a technical scale, the transport of the adsorbent cannot be
realised. Therefore, the counterflow is simulated by keeping
the adsorbent in a fixed bed and moving the inlet and outlet
ports instead (Fig. 2 a)). To realise the movement of the ports
the separation column is connected to a circle and is divided
into at least four interconnected columns. The inlet and outlet
ports are located between the columns and switched to the next
position at discrete times ���������	� , where � is the switch-
ing period and �
�	� is the switching time interval (Fig. 2 b)).
The solvent inlet is called the desorbent, the circulating solvent
flow is called the recycling stream. The spatial ranges between
the inlet and outlet ports are called the sections of the SMB
process. Obviously, the SMB process has hybrid dynamical
behaviour.

The process behaviour is represented by the concentration pro-
files � � ���
	��� and � � ���
	��� (Fig. 3). In the stationary state the
profiles propagate periodically through the separation columns.
The form of the profiles of an SMB process has similarities
with those of a TMB process [4], [5]. Each of the concentra-
tion profiles have two wave fronts. Therefore, in a binary mix-
ture separation of an SMB process, four wave fronts ��� ���
	��� ,�� ���
	��� , ��� ���
	��� and �������
	��� are considered (cf. Fig. 3).

For closed-loop SMB control a model of the four wave fronts
is necessary. SMB control then means to adjust the opera-
tion parameters such that the wave fronts take the desired form
and movement. The operation parameters are the solvent mass
flows ���� in the SMB sections � ��� 	���� 	������ 	���� , and the
switching time interval ���	� . Reliable on–line concentration
measurements on SMB plants are obtained applying analytic
chromatography. A solvent probe is withdrawn at � � ��� at
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Fig. 2: Simulated Moving Bed principle

a given measurement position � � (Fig. 3). The analysis pro-
vides an accurate value of ������� � 	�� �  and ������� � 	�� �  . The
frequency of measurement repetition depends on the setup of
the analysis unit. In the following, it is assumed that during
one switching period one measurement is available per SMB
section.
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Fig. 3: Concentration profile and wave front
propagation in SMB plants

3 SMB state observation problem

Given is an SMB process with synchronously switched
ports in the stationary state, a physical model based on the
convection-diffusion equation for the description of � � ���
	���



and � � ���
	��� , and a measurement setup, which provides one
discrete-time measurement of the concentrations per SMB
section and per period � .
Problem 3.1 Determine the form, position and movement of
the wave fronts � � ���
	��� , �� ���
	��� , ��� ���
	��� and ��� ���
	��� .
The solution to Problem 3.1 is to derive a dynamical model of
the wave fronts which allows to apply an observer of the model
states based on the discrete–time concentration measurements.

4 SMB process modelling

4.1 Phenomenological view

In the general case, the concentration profiles in an SMB pro-
cess are described by the functions��� � �������
	���

��� � �������
	��� � (1)

Suppose that the origin of the spatial coordinate � is tied
to ����� � ��� such that with each switching of the desor-
bent/recycling port the coordinate system is also switched (cf.
Fig. 3). Then, the global time � can be replaced by the local
time counter �
	�� � 	��
�	�� , ������ ��� , which is reinitialised to �
at each port switching instant. Applied to Eq. (1) one obtains

� � � � � � � 	�� 	�� � � � � � � � 	�� 	 �  �
In the stationary state, the periodic behaviour of the SMB pro-
cess results in a time–invariant form of the profiles at selected
times ����	�� � 	 � �	�  for all � :����� ��� 	�� 	��  � � �� ��������� ��� 	�� 	��  � � �� ���� � (2)

With the assumption that the shape of the concentration profiles� � � � 	�� 	 �  and � � � � 	�� 	��  for all ��	�� � 	 �
� �� can be approx-
imated by one concentration profile � �� ���� or � �� � �� , respec-
tively, the application of a continuous spatial shift to Eq. (2)
leads to an approximate description of the complete concentra-
tion profiles in the stationary state, where � is the propagation
velocity of the profiles:��� � � 	�� 	�� �� � �� � ��� �! "� ����� � 	�� 	�� �� � �� ����� �# $�  � (3)

4.2 TMB modelling

TMB modelling leads to the following form of the convection–
diffusion equation:%'&)(�* +% � � , ��.- � � �0/ � %'&)(�* +%�13254 %$67&)(�* +%$1 6�8%�&)9 * +% � � , ��:- � � �;/ � %'&)9 * +%�1 2
4 %�67&)9 * +%�1 6 8 � (4)

For linear adsorption the factors , �� and , �� are constant, which
is assumed for further model derivation. The TMB sections are
specified by � � � 	���� 	������ 	���� . � �0/ � and � �;/ � are the relative
solvent flow velocities� �0/ � � < �=��,�> �!< �� ��/ � � < �=��,�> �?< � 	 (5)

with the solvent and the adsorbent flow velocity < � and < � . > �
and > � are the Henry–constants and , is the phase relation of
the fixed bed adsorbent. < �A@��< � ���� is assumed to be constant
in each TMB section.

The initial condition for Eq. (4) is given by �"B$/ ������ � ��� �C� 	���
and �DB$/ ��� �� � �����C� 	��� . In the stationary state

%'& (�* +% � �E� and%'& 9 * +% � �F� holds and Eq. (4) is an ordinary differential equation
with respect to � . The solution is

���0/ � � �� � G��0/ �IH'J (�* + 1 2
K �0/ �
���;/ � � �� � G���/ �LH J 9 * + 1 2
K �;/ � 	 (6)

with the parameters GNM , O M and K M (P is a placeholder for the
component index � or � and the TMB section � , respectively).
Considering physical boundary conditions, G�M , O M and K M can
be estimated for each section and component [2]. Fig. 4 shows
an example of a solution (6). The four wave fronts are visible.
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Fig. 4: Steady state TMB model solution

4.3 SMB modelling

For modelling of a two component SMB separation with� � ���
	��� and � � ���
	��� the convection–diffusion equation is
given in the following form for each SMB section � �
� 	���� 	������ 	���� :%'& (�* +% � � , ��Q- �R< � %'& (�* +%$1 2
4 %�6�& (�* +%�1 6 8%'& 9 * +% � � , ��:- �R< � %'& 9 * +%�1S2
4 %�6�& 9 * +%�1 6 8 � (7)

Due to the hybrid character of the SMB process, the stationary
solution of Eq. (7) is periodic in time and space. The deriva-
tion of an analytical solution is very complex. Because the
SMB process is a discretised implementation of the TMB pro-
cess, the SMB model solution is approximated using Eq. (6).
Applying the spatial shift � � & � one obtains

� �0/ � � � 	�� 	��  � G �0/ � H�J (�* +UTV1$WYX7Z ��[ 25K �0/ �
� �;/ � � � 	�� 	 �  � G �;/ � H J 9 * + TV1$WYX Z ��[ 2
K ��/ � 	 (8)

with �\	�� � 	 � �	�  and the switching coordinate system � . In the
stationary operation of the SMB process the parameters G M , O M ,K M and � & are constant for all � and the propagation velocity � &
of both profiles is � & �]< � � ^_a`cb , where d is the normalised
length of one column.



5 Wave front modelling

For the control of SMB units only the wave fronts of the
concentration profiles are of interest. A mathematical model,
which provides the description of ����� � 	�� 	��  with respect to the
form, position and movement is called the wave model of the
wave front

�
.

5.1 Wave model derivation

Eq. (8) can be applied to obtain an approximate model of the
wave fronts:

� � � � 	�� 	��  � G��0/ ��H'J (�* � TV1$WYX Z ��[ 2 K �0/ �
�� � � 	�� 	��  � G ��/ ��� H�J 9 * ��� T 1"WIX Z ��[ 2 K �;/ ���
��� � � 	�� 	��  � G �0/ ����� H�J (�* �����YTV1$WYX7Z �$[ 2
K �0/ �����
� � � � 	�� 	��  � G���/ �
	 H'J 9 * ��� TV1$WYX Z ��[ 2 K ��/ �
	

(9)

Obviously, each wave front
� � � 	� 	�� 	�� is described by the

same class of curves. Therefore, for further model derivation
only one equation is used. In the transient state of the SMB
process, the propagation velocity of the wave fronts might be
different, i.e. � & � � & / � . Changing the indices of the parametersG M , O M and K M to P � � �E� 	� 	�� 	�� one obtains

� � � � 	�� 	 �  �FG � H J�� TV1$WIX�Z �$[ 2 K � � (10)

Eq. (10) describes one wave front over the length of � 	�� � 	 d 
and the time span of �E	 � � 	����	�� for each switching period� . For each wave front, one coordinate system is introduced
which moves with the switching of the ports (Fig. 5).
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Fig. 5: Wave front coordinate systems

K � is a constant concentration offset, which can be neglected.
Applying the transformation G � � H W J � 1�� * � to Eq. (10) one
obtains

�
��� � 	�� 	 �  �FH J�� TV1$W�T X�Z)* � ��� 1 � * � [ [ � (11)

The parameters O � , � & / � and ��B$/ � in Eq. (11) have a physical
meaning. O � specifies the form, � & / � the propagation velocity
and ��B"/ � the spatial offset at � � � . In the stationary SMB
operation O � , � & / � and � B$/ � are supposed to be time–invariant.
If Eq. (11) is used to describe the transient SMB behaviour
it is assumed that the parameters O � , � & / � and � B"/ � are constant
during one switching period � , but perform a stepwise change
after each port switching:O � � O � � �  � & / � � � & / � � �  � B$/ � � � B$/ � � �  � (12)

Because the wave model (11) has the same structure for each
SMB wave front, the index

�
is omitted in the following. If

a wave front propagates from one SMB section into the next,
which e.g. is the case for the wave front ��� � � 	�� 	��  if there is
one only column in section � , the propagation velocity of parts
of the wave front changes because of the different solvent mass
flows in the SMB sections. However, with respect to the spatial
offset ��B , it is assumed that � & is not a function of � . Therefore,��B�� � 2 �� only depends on �'B�� �  , � & � �  and � �	� :

��B � � 2 �  � ��B � �  2 � & � � �� �	� � d � (13)

The following factorisation is applied to derive new parame-
ters � � � �  , �  � �  and � � � �  which are interpreted as the state
variables of the wave model:� � � �  � O � � �  � �  � � O � �  � & � � � ��� �  � � O � �  � B � �  � (14)

For the dynamics of � � �  � � � � � �  �  � �  � ��� � � _ one
obtains

� � � 2 �  �
�� � � �� � �d �
�	� �

��
� ��� � 

� � �  � (15)

Eq. (15) is called the state equation of the wave model which in
this case is an autonomous linear discrete–time state equation.
The wave front � � � 	�� 	 � "! �$# � � � � �	 � 	��� , � 	 � � 	�� �	�  , � 	� � 	 d  , is determined applying# � � � � 
	 � 	��� �FH�%'& T)( [�* 1 � % 6 T+( [�* ��� %-, T)( [ 	 (16)

which directly follows from Eq. (11), (12) and (14). The output
of the wave model is defined by. � �  �0/ �1# � � � � �	 � � � � �	�����  (17)

where � � � �  	 � � 	�� � �  is the measurement time and � � is the
measurement position. Eq. (17) is called the output equation
of the wave model. For the presented wave model the natural
logarithm / �   �3254 �   is chosen. Then, Eq. (17) transformes
to . � �  � ����� � � � � 5� � �
� �687 T+( [

� � �  � (18)

The output .:9 � �  of an SMB plant wave front is determined
by the application of / to the concentration measurement��9 � � � � � �	�� � 	 �  :. 9 � �  �;/ ��� 9a/ ( � � � � � �	�����	 �   � (19)

6 Wave front observation

6.1 Observation problem

Problem 3.1 can be formulated uniquely for each wave front in
terms of the derived wave model: An SMB wave front in the
stationary regime with the state � � �  and the measurements� 9 � � � � � �	�����	 �  , is given. Furthermore, a wave model with
the states <� � �  and the output <. � �  as well as the functions /
and # are given.



Problem 6.1 Determine <� � �  such that �
� � � �� <� � �  ��� �
for � ��� by an observer � ! <� � � 2 �  � � � <� � � �	���� � � ,
where ��� �  � . � �  � <. � �  .
Fig. 6 illustrates the problem.
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Fig. 6: Wave front observation problem

The following stationary wave front behaviour is assumed:� � � 2 �  � � � � / B �  / B � � / B  _. � �  � � � � � / B 2 � � � �  �  / B 2 � � / B � (20)

The wave model is obtained from Eqs. (15) and (18):

<� � � 2 �  �  <� � �  (21)<. � �  � 6 � � �  <� � �  	 (22)

with the model state <� � �  � � <� � � �  <�  � �  <� � � � � _ . In a
first approach it is assumed that � � � �  � � � �	��
 4��� . Then,6 � � �  � 6 � ����
 4��� . However, it can easily be checked that the
rank of the observability matrix � � with

� � �
�� 6 �6 �  6 �  

��
(23)

is ��� 4�� � � �  �  . This means that for a solution of the ob-
servation problem additional measurements are necessary. To
achieve this the measurement time is varied at every switching
period � , e.g. by choosing

� � � �  	��$� � � 	 � � ���� � � � �  @� � � � � �5�� � (24)

Then the output equation (22) is time–variant. The observabil-
ity check based on the observability matrix � � � �  for linear
time–variant systems with

� ��� �  �
�������

6 � � � 6 � � � 2 ��  � � 6 � � � 2    � � 2 �   � � 
...6 � � � 2�� �5��  � � 2�� �   �"�"�  � � 

�      � 	

where � is the state dimension of the system, shows that��� 4�� � � ��� � � � � . This means, that the considered wave
model becomes observable if Eq. (24) is applied.

6.2 Wave model for the observer

The result that �!� 4�� � � �  �  for � � � const can be interpreted
such that the observation problem can be solved if one of the
states � � � �  , �  � �  or � � � �  , respectively, is known exactly.
Considering Eq. (20) the state <�  � �  can be determined in the
stationary state if two successive measurements . � � � �� and. � �  , which are recorded at the different measurement times� ��� �  @� � � � � �5�� , are available:. � � �5�� � � � � � / B 2 � � � � � �  �  / B 2 � � / B. � �  � � � � � / B 2 � � � �  �  / B 2 � � / B" �  / B � . � � 0� . � � �5��

� � � �  � � � � � �5�� � (25)

If an observer includes Eq. (25) to determine the state �  � � 
at each step � the observation problem can be solved. The fol-
lowing derivation of the observer � is proposed:

First, Eq. (25) is applied to determine <�  :
<�  � � 2 �  � � �R� �   <�  � �  2 �  . � �  � . � � � � 

� � � �  � � � � � � �  	 (26)

where �  is a design parameter with �$# �  # � . To avoid an
alternating behaviour of ��� �  , a sliding mean with horizon 1 of
is introduced:��� �  ! � � ���1. � �  � <. � � � 2 �1. � � � � 0� <. � � � �  � � (27)

Second, the classical error injection is applied for the correction
of <� � � �  and <�  � �  , which leads to the observer � with

� !
%& ' <� � � � 2 �  � <� � � �  2 � � ��� � <� �� � 2 �  � � �R� � � <�  � �  2 ��)( T)( [ W ( T)(�W � [��* T+( [ W ��* T)(�W � [<� ��� � 2 �  � d <� � � �  2 �
�	� <� �� �  2 <� ��� �  2 ���+��� � 

(28)��� , �  and ��� are the design parameters of the observer.

6.3 Observer design

The design of � � , �  and � � is based on the analysis of the
observer state dynamics. A model of the dynamics of <� � �  can
be derived using Eqs. (20), (22), (27) and (28). For the analysis
a new state , � �  has to be introduced:

, � �  �
��������
- � � � -  � � - � � � - � � � -/. � � -/0 � � 

�       � �
��������

<� � � � <� � � � �5��<�  � � <�  � � �5��<� ��� � <� � � � �5��

�       � �

The stationary and dynamical properties of the observer (28)
are determined by the dynamics of , � �  :, � � 2 �  �21 � �  , � �  243 	 (29)
where 1 � �  is a function of � �	� , d , � � � �  , � � � �\� �  and� � , �  and � � . 3 depends on � � , �  and � � , and on � � / B , �  / B
and � � / B . In the stationary regime with , � � 2 �  � , � �  the
observer states are equal to the process states:<� � � � � / B 	 <�  � �  / B 	 <� � � � � / B �
The dynamical behaviour is determined by the Eigenvalues of1 � �  . The Eigenvalues do not depend on � and can be placed
by a suitable choice of the � � , �  and ��� . [2]



7 Simulation results

The wave front observer was tested with a simulation of a
closed–loop controlled eight column SMB plant. Two columns
per SMB section and the separation of cis- and trans–phytol
in supercritical carbon dioxide with a nonlinear adsorption be-
haviour were considered [2]. During the startup of the un-
loaded plant the state observation was started with <� �c�� ��� at� � ��� .
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Fig. 7: Transient observer state behaviour

Fig. 7 shows the trajectories of the observer states for each
SMB section. The steady observer state is reached at about� � � � . The convergence behaviour of the observer states
is visible. Slow transitions of the SMB process are tracked
by the wave front observers. The wave front concentrations<�
� � � �	� 	�� 	��  , � �]� 	� 	�� 	 � , were supplied to discrete–time PI–
controllers with the sampling time ��� � to control the solvent
flows �� � in the SMB sections � such that the outlet concentra-
tions reach a given setpoint.
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Fig. 8: Snapshots of concentration profiles

Fig. 8 shows steady state concentration profile snapshots at� �F� 	 � � �	� 	 � �	� of one switching period � . Fig. 9 is a zoom
of Fig. 8. Despite of the nonlinear adsorption and the com-
pressible solvent, a good agreement of <�-� � � 	��� and ��� � � 	��� is
achieved for two reasons. On the one hand, the high number of

columns results in a good agreement between the TMB and the
SMB. On the other hand, wave fronts have low concentrations,
which leads to linear adsorption in this part of the concentration
profiles.
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Fig. 9: Zoom of the concentration profiles

8 Conclusion and outlook

This paper deals with the derivation of a simplified SMB
model. It was shown, that under the assumption of a good ap-
proximation of the SMB by the TMB and the consideration of
the convection-diffusionequation as a physical plant model, the
wave fronts of the concentration profiles in an SMB plant in the
stationary state belong to special class of curves. By interpret-
ing the parameters of the curves as states, a linear discrete-time
model of the wave front state dynamics could be derived suit-
able for the observation of the SMB wave fronts. To achieve
observability of all states, the measurement time is varied in
each switching period. A new approach to the derivation of a
wave model observer was presented.
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