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Abstract

In this paper a tool for initial control designs for an irrigation
channel is developed. The idea is that a physical model of the
channel is obtained using the St. Venant equations, and a data
set is generated by simulating this model. A first order non-
linear model is then estimated from the simulated data using
system identification techniques, and a controller is designed
based on the estimated model and the given design specifica-
tions. The controller is a PI controller augmented with a first
order low pass filter in order not to amplify waves present in
the channel. The developed routine for controller design is
based on frequency response design, and configurations with
and without feedforward from downstream gate are considered.
The designed controllers have shown good performance, and
they are able to track setpoint changes and the water levels re-
cover from disturbances with small deviations from setpoints
and without excessive oscillations.

1 Introduction

Water is becoming an increasingly scarce resource, and it is
therefore important to manage the water resources well and
minimize the losses. This applies particularly to networks of ir-
rigation channels, where huge amounts of water are wasted due
to poor management and control. These losses can be reduced
by improving the control of the water levels in the channels.

Controllers that show good performance are obtained in [10].
Those controllers were tuned using frequency response tech-
niques. Usually there are many gates, often more than 20 from
the start till the end of a channel, and it can be a hard and time
consuming task if control engineers have to tune each and ev-
ery controller manually. In addition, the models used to design
the controllers in [10] were obtained using system identifica-
tion methods based on the operational data (see e.g. [9] and
[7]). This requires measured data that are informative for iden-
tification purposes (see e.g. [4]). This kind of data is often not
readily available. Even if there are measured data available,
they are often irregularly or infrequently sampled, and hence
not providing sufficient information about the relevant dynam-
ics. Furthermore, in certain situations there is no operational

data available, for example when implementing an automated
control scheme in a channel for the first time.

Physical modelling only requires data like the length, height,
cross section area, etc. In contrast to operational data, physical
data are more widely available. Traditionally, the dynamics of
an irrigation channel are modelled by the St. Venant equations,
see e.g. [1]. Recent comparisons of the St. Venant equations
against real data [6] have shown that the St. Venant equations
are capable of capturing the relevant dynamics for control pur-
poses of a real irrigation channel.

Our aim is to develop a tool to help with initial control design.
Ideally this tool should be an automated routine for design-
ing controllers for a channel based on physical data only, i.e.
without any operational data. The tool developed is not a fully
automatic one, but it will assist a control engineer in simplify-
ing and speeding up the process of designing a large number of
controllers. As this is an initial controller design, the main goal
is to obtain controllers that stabilise the water levels without
being overly sluggish. They can be fine tuned for better perfor-
mance after operational closed loop data become available.

The idea is as follows. First, a data set is obtained by simulat-
ing the St. Venant equations based on physical data using the
Preissmann scheme (see e.g. [1]). Then, a simplified model is
estimated using system identification techniques from the sim-
ulated data. Given the obtained model and the controller design
specifications: the phase margin, and the controller gain at the
wave frequency, a controller is tuned by the developed routine.

This research is part of a collaborative research project between
the Department of Electrical and Electronic Engineering and
Rubicon Systems on modelling and control of irrigation chan-
nels.

In Section 2 a description of the irrigation channel is given.
In the next section, the St. Venant equations are presented,
followed by physical modelling and estimation of models using
system identification techniques. Control design and results
from simulation tests are presented in Section 5 and 6. Finally,
conclusions are given in Section 7.

2 Channel Description

The channel considered is automated with overshot gates as
shown in Figure 1. We refer to the stretch of the channel be-



tween two gates as a pool. We name the pool according to the
number of the upstream gate, e.g. the pool in Figure 1 is pool
i. yi andyj are the upstream water level of gatei and j re-
spectively, andpi andpj are the position of gates. The amount
of water above the gate is called the head over the gate, and
denoted byhi andhj .

Figure 1: Schematic of channel with overshot gates

The water levels, in mAHD (meter Australia Height Datum),
and the gate positions are the measured variables. The head
over gate is computed from these variables. A fully shut gate
has position of 0 meter and a positive value when the gate is
open. The measured gate position isp̄ = pmax − p, where
pmax is the position when the gate is fully shut. The head over
the gatei andj is calculated ashi = yi + p̄i − ai andhj =
yj + p̄j−aj , whereai andaj are the gate adjustment constants
necessary to convert from mAHD to meter.

3 St. Venant Equations

The St. Venant equations are derived from a mass and momen-
tum balance, see e.g. [1] and given by
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whereA is the cross sectional area of the channel,B is the
width of the water surface,g = 9.81m/s2 is the gravity,S̄
is the bottom slope,Q is the flow (discharge), andSf is the
friction slop. A commonly used relationship between the flow
and the head over gate isQ = ch3/2 (see e.g. [1]), wherec
is the gate constant. The gate constant of the upstream and
downstream gate are labelled ascin andcout. From [2], for a
sharp-edged rectangular channel,c ≈ 0.6

√
gb whereb is the

gate width.

According to the Manning equation,Sf = n2Q2

A2R
4
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, wheren is

the Manning coefficient, which mainly depends on the surface
roughness. Table values ofn for different flow surfaces are
available (see e.g. [8]).R = A

P is the hydraulic radius, where
the wetted perimeter,P , is defined as the length of line of in-
tersection of the channel’s wetted surface with a cross-sectional
plane normal to the flow (see [1]). In this paper the Preissmann
scheme with the weighting coefficientα = 0.6 is used for sim-
ulation. See [6] for details.

The pools we study are pool 9 and 10 of the Haughton Main

Channel (HMC). The physical data are given in [6]. Pool 9
is a short pool, 853 m long, and it has relatively fast dynam-
ics. On the other hand, Pool 10 is 3129 m long and has slower
dynamics than pool 9.

4 Modelling based on physical data

4.1 Input design and data simulation

In order to simulate the downstream water level using the St.
Venant equations, input signals; which are head over upstream
gate and downstream gate position are needed. In order to gen-
erate informative data, binary input signals are used and they
are designed based on information obtained from a step test
using the St. Venant equations. Step tests on pool 9 and 10
are performed by stepping the head over the upstream gate
from 0.5 m to 0.7 m. The step response in pool 9 is plotted
in Figure 2 (the result for pool 10 is not shown). From the
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Figure 2: Pool 9 step response

step tests, we find that the time constant of pool 9 and 10 are
around 19 min and 66 min. According to Section 13.3 in [4],
the clock frequency of the input signal should be around 2.5
times the bandwidth of the system. Hence, the clock period of
h9 is set to 15 min., i.e.h9 was constant for a multiple of 15
min, and the clock period of̄p10 is set to 60 min. For pool 10,
h10 andp̄11 have clock periods of 60 min and 25 min respec-
tively. The clock periods are chosen based on characteristics
of the pool downstream from the gate the signal is associated
with. This way we obtained signals similar to those we ex-
pect to encounter in practise. Our choices of clock periods are
shorter than the commonly suggested values. However this is
a reasonable choice taking into account that the time constant
is obtained from linear consideration about a nonlinear system,
and the time constant will in fact decrease with higher flows.
Furthermore, the bandwidth of the closed loop system will be
larger than the open loop bandwidth, and we also want to cap-
ture the wave, which has a higher frequency than the band-
width.

Simulations are performed using the St. Venant equations with
the designed input signals. The simulated data for pool 9 are
shown in Figure 3. The data to the left of the vertical line are
used for estimation purposes and those to the right for valida-
tion purposes. From the simulated water level, it is clear that
there are waves present. The same wave effect is also found in
the step test (Figure 2), and the wave periods are around 9 min



and 29 min for pool 9 and 10.
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Figure 3: Pool 9 water level (top), and head over gate and gate
position (bottom)

4.2 Model structure and parameter estimation

The model structure considered is a discrete time first order
nonlinear model, which is derived from a simple mass bal-
ance, see [9]. The models are identified using a prediction error
method with quadratic criteria, see e.g. [9] or [7]. The predictor
associated with the model for pooli− 1 (i = 10, 11) is

ŷi(t + 1, θ) = ŷi(t, θ) + ci−1h
3/2
i−1(t− τ)− ci(ŷi(t, θ)

+p̄i(t)− ai)3/2 (2)

whereθ = [ci−1, ci], andyi, hi−1 andp̄i are as defined in Sec-
tion 2, anda10 = 23.97 anda11 = 21.43. The time delay,τ
is obtained from the step test. The parameter values together
with the squared prediction errors on the validation set, which
is computed asVi−1(θ̂) = 1

501

∑1200
t=700(yi(t) − ŷi(t, θ̂))2 are

shown in Table 1. The water level predicted by (2) on the vali-

Pool (i− 1) ci−1 ci τ Vi−1(θ̂)
9 0.0447 0.0448 3min. 5.557× 10−5

10 0.0112 0.0111 11min. 7.127× 10−5

Table 1: Estimates, averaged squared prediction errors and time
delays for pool 9 and 10

dation set is shown together with the simulated water level us-
ing the St. Venant equations in Figure 4. The models (2) are
able to track the main trends in the water levels very well but
they cannot capture the waves.

Remark. This part of the routine is not fully automated, as
one needs to obtain the time constant, time delay and wave
frequency from the step test and simulated data. However, it
is sound practise always to look at the data before using them
for estimation purposes. Furthermore, after a few investiga-
tions, one will have a rough idea of the relationship between
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Figure 4: Pool 9 (top) and 10 (bottom) simulated and predicted
water levels

the length of the pool and its time constant, time delay and
wave period. In this case, the time constant and wave period
increase with about 2 min and 1 min respectively for every 100
m in length, and the time delay increases with about 1 min for
every 300 m in length. Moreover, it is not difficult to imple-
ment an automatic procedure for calculation of the time con-
stant and time delay from the step test. Hence, for a channel
with large number of gates, one will quickly be able to obtain
rough estimates of time constants and wave frequencies.

5 Control design

In this section, an automatic routine for designing a continu-
ous time controller based on the first order nonlinear model is
developed. By automatic, we understand that given the model
and some user specified criteria, like the phase margin, the rou-
tine generates controller parameters which satisfy the design
specifications. Many automatic controller tuning methods have
been proposed, e.g. the Ziegler-Nichols tuning rules, see e.g.
[5], and the relay feedback method, see e.g. [3] and the refer-
ences therein. However, these auto-tuning methods cannot be
applied in this case, because the experiment needed produces
undesired behavior in the channel, e.g. oscillations. Further-
more, most, if not all of the standard methods deal with the P,
PI or PID controllers. Here we use a PI controller augmented
with a low pass filter (see below).

The controller must be able to reject load disturbances. This
is because the offtake of water from the channel is equivalent
to a load disturbance. In addition, the controller must be able
to track water level setpoint changes. However, from a prac-
tical point of view, the ability to reject load disturbances is
much more important than tracking setpoint changes. This is



because offtake of water occurs much more frequently than set-
point changes. A distant downstream controller configuration
is used, where the downstream water level is controlled by the
upstream head over gate. The controller we consider is a PI
controller augmented with a low pass filter and we refer to this
combination as a robust PI controller. The integral action is
needed in order to reject load disturbances and the low pass
filter in order to suppress waves present in the channel. The
transfer function of the robust PI controller is (for pooli− 1)

Ci−1(s) =
Kc(1 + Tcs)

Tcs
.

1
(1 + Tfs)

(3)

We base the design on an integrator with delay model. The dis-
crete time model (2) is derived from a continuous time model
by an Euler approximation with sampling interval one minute
(see [9]), hence when converting tos-domainyi(t + 1)− yi(t)
is substituted bysyi(s), andci−1 andci remain unchanged. We
therefore obtain the following integrator with delay model.

yi(s) =
ci−1e

−τs

s
ui−1(s) (4)

whereui−1(t) = h
3/2
i−1(t)+

ci

ci−1
h

3/2
i (t+τ) (i = 10 andi = 11

for pool 9 and 10).ui−1(t) depends on future signals, so in
practise we will useui−1(t) = h

3/2
i−1(t) + ci

ci−1
h

3/2
i (t). Hence,

the total controller with the feedforward is

ui−1(s) = Ci−1(s) (yi,setpoint(s)− yi(s))

h
3/2
i−1(s) = ui−1(s)−Kff,i−1Fi−1(s)

ci

ci−1
h

3/2
i (s) (5)

whereKff,i−1 is the feedforward gain,Fi−1(s) is a low pass

filter, andh
3/2
i−1(s) and h

3/2
i (s) are the Laplace transform of

h
3/2
i−1(t) andh

3/2
i (t). As in [10], our choice ofFi−1(s) is a

second order Butterworth filter with cut off frequency around
half the wave frequency andKff,i−1 = 0.75. Figure 5 shows
the side view of the irrigation channel with the controllers.

Figure 5: Side view of irrigation channel with distant down-
stream controllers with feedforward

When no feedforward is used, equation (5) becomes

h
3/2
i−1(s) = Ci−1(s) (yi,setpoint(s)− yi(s)) (6)

5.1 Automatic controller tuning routine

The automated routine for controller tuning is based on the fre-
quency response design for the lead compensator.Ci−1(s) in

(3) can be rearrange asCi−1(s) =
(

Kc

Tcs

)(
1+Tcs
1+Tf s

)
, and the

second term is a lead compensator. For the moment we treat
Gi(s) · ( Kc

Tcs ) as the uncompensated system, whereGi(s) is
the open loop transfer function (4). From equation (3) and (4),
we observe that there are integrators both in the controller and
the model, and hence the phase is -180◦ initially. Therefore, a
phase lead is needed. The amount of phase lead is determined
by the ratio betweenTf andTc, and given the required phase
margin,φm, this ratio

β =
Tf

Tc
=

1− sin(φm + ∆φ)
1 + sin(φm + ∆φ)

(7)

can be computed. Note that in equation (7), on top ofφm, an
additional phase of∆φ = 10◦ is added in order to compensate
for the phase drop that will occur due to the so-called gain am-
plification effect (see e.g. [5]) and also due to the time delay.
The maximum phase lead is at the geometric mean frequency,
ωm = 1

Tc

√
β

, and there is a gain amplification ofA = 1√
β

at
this frequency. In order for the lead compensator to produce
its maximum phase lead at the new gain crossover frequency,
we setωm to be the frequency where the gain of the uncom-
pensated system is1A , i.e. |Gi(jω).( Kc

Tcjω )|ω=ωm = ci−1Kc

ω2
mTc

=
1/A, and by substitutingωm = 1

Tc

√
β

, we have

Kc =
1

ci−1Tc

√
β

(8)

We also require the gain of the controller at the wave frequency
ωw to be a certain value,Mwave, i.e.

|Ci−1(jω)|ω=ωw =
Kc

√
1 + T 2

c ω2
w

Tcωw

√
1 + β2T 2

c ω2
w

= Mwave (9)

This specification is used instead of the standard gain margin
because we do not want to amplify the wave, and whenever this
specification is satisfied, a large gain margin is also guaranteed.
SubstitutingKc (equation (8)) into equation (9), we obtain a
sixth order polynomial inTc: αβ2ω2

wT 6
c + αT 4

c − ω2
wT 2

c −
1 = 0, whereα = (Mwaveci−1

√
βωw)2. Hence, given the

system identification model, and the design specifications: the
phase margin, and the controller gain at the wave frequency,
β is computed (equation (7)) and the sixth order polynomial
is then solved numerically forTc. After thatTf is computed
asβTc, and finallyKc is computed using equation (8). The
routine is programmed to check if the value ofTc is reasonable
in the sense thatTc must be larger than1ci

in order to increase
the bandwidth.

A disturbance rejection test is also performed before the con-
troller is put into action to make sure that the overshoot is small
and that the maximum deviation from setpoint is acceptable.
The closed loop transfer function from the disturbance,di to
yi is Gdi(s) = yi(s)

di(s)
= Gi(s)

1+Ci−1(s)Gi(s)
. The test is carried out



by applying a step disturbance of size -0.1. Presently, these
checks are done manually, but an automatic routine could be
implemented to check the disturbance rejection criterion.

5.2 Pool 9

In this section a robust PI controller is designed for pool 9 using
the routine developed. From Section 4.1, we have that the wave
period is around 9 min. Based on operational experience, we
specifiedφm to be30◦, andMwave = −10 dB. With the model
in Table 1, the parametersKc = 1.493, Tc = 32.141, and
Tf = 6.989 were obtained. We can see thatTc is larger than
1

c10
≈ 22.32. The Bode plots of the robust PI controller, model,

and model with robust PI controller, and the disturbance rejec-
tion test result are shown in Figure 6. Note that the time delay
is approximated using a first order Páde approximation. The
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Figure 6: Pool 9: Bode plots (top) and step disturbance rejec-
tion test (bottom)

controller gain at the wave frequency (0.698 rad/min) is -10.46
dB, and the gain margin is 12.14 dB at 0.174 rad/min and the
phase margin is 28.6◦ at 0.067 rad/min (see Figure 6). Hence,
other than the slightly smaller phase margin, the controller sat-
isfies our specifications. From the disturbance rejection test,
there is an overshoot of less than 1.2 cm and the maximum de-
viation from the setpoint is about 6.8 cm, hence the designed
controller provides acceptable disturbance rejection.

5.3 Pool 10

The same procedure was repeated for pool 10. We obtained
Tf = 25.110, Kc = 1.658, andTc = 115.477, and again
Tc > 1

c11
≈ 90.09. The overshoot in the load disturbance test
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Figure 7: Pool 9 bode plots of the first and third order models

is around 1.1 cm and the maximum deviation from setpoint is
about 6 cm but with a much slower response than in pool 9.
The controller gain at the wave frequency (0.217 rad/min) is
-10.46 dB, the gain margin is 11.97 dB at 0.048rad/min and the
phase margin is 28.34◦ at 0.019 rad/min. Again, other than the
slightly smaller phase margin, the designed controller satisfies
the specifications and gives acceptable disturbance rejection.

6 Control performance

In this section, the controllers are put into action. A very ac-
curate third order non-linear model is used to simulate the true
system (see [9]). Obviously there is a mismatch between the
simulation model and the model used for control design. This
can be observed from the bode plots in Figure 7 of the first and
third order nonlinear models, i.e. the transfer functions from
h

3/2
i−1 to yi. There is a 4 dB mismatch in the low frequency re-

gion for pool 9. The corresponding mismatch is 2.5 dB for pool
10.

6.1 Control of pool 9 and 10

In this section we investigate the performance of the con-
trollers. We consider configurations with and without feedfor-
ward from the downstream heads (see equations (5) and (6)).
During the test, gate 11 is kept at a given gate position, and
gate 9 and 10 are controlled by the robust PI controllers.

The test is as follows. At time 0 minute both water levels are in
steady state at the setpoints of 23.97 mAHD and 21.43 mAHD.
The setpoint of pool 10 is kept constant throughout the whole
test. At time 100 min. the position of gate 11 is changed from
0.22 m to 0.42 m (lowered). This can be viewed as an offtake
in pool 10, i.e. a disturbance. Then, at time 600 the setpoint
in pool 9 is increased from 23.97 to 24.00 mAHD, and at time
1100 the position of gate 11 is reduced back to 0.22 m. The
water level responses in pool 9 and 10 are shown in Figure 8.

6.2 Discussion

From Figure 8, we can see the effect of the offtake in pool
10 propagating upstream to pool 9. For pool 9, we observe
that the controller without feedforward is able to track the set-
point change and it recovers from the disturbances caused by
the offtakes in pool 10 without excessive oscillations, but with
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Figure 8: Control performance of Pool 9 (top) and 10 (bottom)

a slow response time. With feedforward, the response is much
faster and the maximum deviation from the setpoint is only 3
cm, which is quite small. The response in pool 10 is similar
but as expected the response is much slower, since pool 10 is
more than three times longer than pool 9. These results show
that the designed controllers give good performance and fulfill
the required objectives, namely rejecting load disturbances and
tracking setpoint changes. Feedforward from the downstream
head improves the response significantly, i.e. faster response
and smaller deviation from setpoint, hence controller configu-
ration with feedforward is highly favorable. The designed con-
trollers in this paper are comparable to those designed in [10].
Note that first order linear models were used in [10] for control
design.

7 Conclusion

In this paper a tool is developed for speeding up the process
of designing a large number of decentralised controllers when
no operational data is available. The water levels of the channel
are simulated using the St. Venant equations based on the phys-
ical data. Using the simulated data, a discrete time first order
nonlinear model is obtained using system identification meth-
ods. An automated routine for designing a robust PI controller,
which is a standard PI controller augmented with a low pass
filter, based on the estimated model is developed. This routine
is only used to provide the user with an initial control design,
hence it is enough for the routine to provide controllers that sta-
bilise the water levels without being overly sluggish. The de-
signed controllers more than fulfill the required objectives and
show good performance. They are able to track the step change
in the setpoint quickly with small overshoot and reject load dis-

turbances with small deviations from the setpoints and without
excessive oscillations. The controller configuration with feed-
forward from head over downstream gate improves the closed
loop response significantly with faster response and smaller de-
viation from setpoint. The results show that the tool developed
is very useful, and it helps a control engineer in simplifying
and speeding up the process of designing a large number of
controllers given only physical data.

There are some room for improvement in the controller perfor-
mance, and when data from the closed loop systems become
available, the controllers can be fine tuned to give better perfor-
mance. Hence, performance monitoring is a natural extension
of this work, and it is a topic for future research.

Patent: A patent has been applied for to cover the develop-
ments that are described in this paper.
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